Development and Applications of a Novel Mass Spectrometer System For Laser ⁴⁰Ar/³⁹Ar Geochronology

Dr. Bill Hames¹ and Dr. Andreas Illies², Auburn University.

¹Department of Geology and Geography;

²Department of Chemistry and Biochemistry

Presentation Outline

- Commercial Noble Gas Spectrometers
- Motivation For Building a Spectrometer
- Construction
- Characteristics
- Performance
- Applications

Instruments that enable precise analysis with smaller sample quantities lead to scientific advances.

Commercial Instruments For ⁴⁰Ar/³⁹Ar Dating

Nu Instruments

Noblesse http://www.nu-ins.com/nobledetail.html

Aurora http://www.nu-ins.com/auroradetail.html

GV Instruments

Argus http://www.gvinstruments.co.uk/Noble_Gas_MS.htm

Motivations for Building an Instrument

- Higher sensitivity and lower blank for argon isotopes;
- Greater efficiency (in time and facilities);
- Compatibility with standard hardware;
- Lower cost of operation.

Construction:

The time from conception of the instrument to routine analysis was approximately six years.

Construction

Construction

ANIMAL: Auburn Noble Isotope Mass Analysis Laboratory

Characteristics

$$t_{\text{age}} = 1/\lambda \cdot \ln \left[\frac{^{40}\text{Ar}^*}{^{39}\text{Ar}^*} \cdot \mathbf{J} + 1 \right]$$
 $^{40}\text{Ar}^* = (^{40}\text{Ar}_{\text{meas}}) - (295.5 \cdot ^{36}\text{Ar})$

Characteristics

Testing

• Blanks for m/e=40 are $\sim 1-2 \times 10^{-16}$ mol (4 minute)

Performance: Earthtime Standards

FC2-NMT (VN-FC-98)

TCR-USGS

ACS-BGC

Twenty international laboratories are participants in Earthtime ⁴⁰Ar/³⁹Ar dating.

Performance: Earthtime Standards

$$t_{\text{age}} = 1/\lambda \cdot \ln \left[\frac{^{40}\text{Ar}^*}{^{39}\text{Ar}^*} \cdot J + 1 \right]$$
 $^{40}\text{Ar}^* = (^{40}\text{Ar}_{\text{meas}}) - (295.5 \cdot ^{36}\text{Ar})$

Assigned ages for standards based on Renne et al., 1998, and Nomade et al., 2005

Performance: Taylor Creek Rhyolite

Performance: VN-FCT-98

Crystals analyzed included some with melt inclusions.

Performance: Alder Creek Sanidine

Application: Himalayan Sedimentation

Dr. A. Uddin and AU Graduate Students

Application: Metallogeny and Magmatism in the Early Yellowstone Hotspot

The weighted average of three analyses for adularia of Jumbo is 16.54±0.04 (95% confidence level). Two crystals exhibit extraneous, non-atmospheric argon.

Application: Tectonics of the Eastern Anatolian Suture

Rızaoğlu et al., in press.

L-R: Dr. O. Parlak, W. Hames, Z. Billor

Hornblende from post-emplacement granitoids in ophiolites in the Eastern Anatolian Shear Zone yield laser single-crystal ⁴⁰Ar/³⁹Ar ages of 84-85 Ma.

Application: Tectonics of the Scandinavian Caledonides

Students directed by Dr. M. Steltenpohl

Ca. 400 Ma

Ca. 260 Ma

Tectonic Reconstructions: Dr. Ron Blakey, Northern Arizona University

Application: Tectonics of the Southeastern Appalachians

Refinements:

- Computer monitoring and control of electronics;
- Web-based instrument control and real-time viewing of experiments;
- Changes in vacuum system to permit ~5x10⁻¹⁷ mol ⁴⁰Ar in a typical blank (lower by 50%);

Adaptation and Future Construction:

- A specialized system can be constructed for ⁴⁰Ar/³⁹Ar dating with UV-laser ablation;
- A specialized system can be constructed for quantitative helium measurements in (U-Th)/He dating.

Goals for Teaching and Training

- ANIMAL will become a regional center supporting a diverse array of geochronologic research activities;
- Experiments in ANIMAL will become a routine part of the Auburn University core science and humanities curriculum (Physical and Historical Geology, Concepts of Science, Human Odyssey);
- ANIMAL will continue to provide students with the unique perspective of designing, building and using an instrument for advanced geochronologic research.

Conclusions

- The characteristics and test data for ANIMAL compare favorably with results of established geochronologic laboratories;
- ANIMAL can be a viable Center at Auburn University that supports stateof-the-art research activities;
- Instrumentation developed at Auburn University can help promote noble gas mass spectrometry and geochronology.