1996 ALGEBRA PRELIMINARY EXAMINATION

The examination is divided into two sections of six problems. In each section, you are required to do problem 6 and any four of the remaining five. If time permits you are encouraged to attempt all twelve problems.

I. GROUP THEORY

- 1. Let $N \neq 1$ be a normal subgroup of A_5 , the alternating group on 5 letters. Prove that N contains a 3-cycle.
- 2. (a) Give an example of a group that is not finitely generated.
 - (b) Using the minimal number of generators, exhibit generators and relations for the symmetric group S_3 .
 - (c) Choose an appropriate free group F and exhibit a homomorphism φ from F onto S_3 .
- 3. Prove or disprove: If A, B and C are abelian groups with $A \oplus B \cong A \oplus C$, then $B \cong C$.
- 4. With the exception of the trivial case where G is cyclic of prime order p, show that no group of prime power order can be simple.
- 5. It is easily verified that p = 499 is a prime.
 - (a) Describe the structure of the multiplicative group G of the field $\mathbf{Z}/p\mathbf{Z}$ for p=499.
 - (b) Show that G does *not* contain an element of order 4.
- 6. (a) Describe (up to isomorphism) all the abelian groups of order 1996.
 - (b) Using generators and relations, describe (up to isomorphism) all the non-abelian groups G of order 1996 in each of the following two categories.
 - (i) G has a cyclic group $\langle a \rangle$ for its Sylow 2-subgroup.
 - (ii) G has the Klein 4-group, $\langle a \rangle \times \langle b \rangle$, for its Sylow 2-subgroup.

For uniformity of notation in (i) and (ii), let c be an element of order 499 in G.

II. RING THEORY

Throughout this section, R is a ring with identity $1 \neq 0$ and all modules are assumed to be unitary.

- 1. Suppose R is commutative. Prove:
 - (a) Every maximal ideal of R is prime.
 - (b) If R is a principal ideal domain, every nonzero prime ideal of R is maximal.

- 2. Show that if R is a finite commutative ring such that |R| = p, a prime, then R is a field.
- 3. For any ring S, define

$$J(S) = \{ s \in S : s \in M \text{ for every maximal ideal } M \text{ of } S \}.$$

Prove each of the following.

- (a) J(R) is an ideal of R and J(R/J(R)) = 0, the zero ideal of R/J(R).
- (b) If R is commutative, $a \in J(R)$ if and only if 1 + ra is a unit for every $r \in R$.
- 4. If N is a submodule of a left R-module M such that M/N is projective, show that $M = N \oplus P$ for some projective submodule P of M.
- 5. (a) Show $\mathbf{Z}/n\mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Q} = 0$ for every integer $n \geq 1$.
 - (b) Give an example of a ring R, an exact sequence

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

of left R-modules and a right R-module M such that the induced sequence

$$0 \longrightarrow M \otimes_R A \stackrel{1 \otimes \alpha}{\longrightarrow} M \otimes_R B \stackrel{1 \otimes \beta}{\longrightarrow} M \otimes_R C \longrightarrow 0$$

of abelian groups is *not* exact.

- 6. Suppose M is a nonzero left R-module. Recall that M is simple if the only submodules of M are 0 and M itself. Call M indecomposable if whenever $M = A \oplus B$ for submodules A and B, then either A = 0 or B = 0. Prove the following statements.
 - (a) If M is simple, $\operatorname{Hom}_R(M, M)$ is a division ring.
 - (b) If $\operatorname{Hom}_R(M, M)$ is a division ring, then M is indecomposable.
 - (c) Every simple module is indecomposable, but the additive group of rationals **Q** is an indecomposable **Z**-module which is *not* simple.