## Algebra Prelim, Spring 2004

## May 13, 2004

Do **eight** of the following twelve problems. You must show the logical steps in deriving your answers.

- 1. State the Sylow Theorems.
- 2. Show that there does not exist a simple group of order  $p^2q$ .
- State the Fundamental Theorem for Finitely Generated Modules Over Principal Ideal Domains.
- 4. How many Abelian groups are there of order 1800?
- 5. Show that the following are equivalent for a finite group G:
  - i) G is solvable.
  - ii) Every non-trivial epimorphic image of G contains a non-trivial normal Abelian subgroup.
  - iii) G has a composition series with cyclic factors.
- 6. Give an outline of the proof that there are five non-isomorphic groups of order 8.

- 7. Let R be a domain with the ascending chain condition on principal ideals (i.e., if  $(a_1) \subseteq (a_2) \subseteq (a_3) \cdots$ , then for some  $n \geq 1$ ,  $(a_k) = (a_n)$  for all  $k \geq n$ ). Show that every non-zero non-unit element of R is a product of irreducible elements.
- 8. a) Define Dedekind domain (as done in Algebra II) in terms of prime ideals in the domain and factorizations of ideals.
  - b) Give an outline of the proof that every proper ideal in a Dedekind domain is invertible.
- 9. Give examples of the following:
  - a) A Dedekind domain which is not a principal ideal domain.
  - b) A UFD which is not Dedekind. (Hint: consider a certain polynomial ring)
- 10. State the Fundamental Theorem of Galois Theory.
- 11. Find the Galois group of  $f(x) = x^4 2$  over the rational numbers.
- 12. Let E be a splitting field of a separable polynomial over F, and let G be the Galois group of E. Assuming the information that

$$|H| = [E : E_H]$$
 for  $H \le G$  where  $E_H = \{\alpha \in E \mid \sigma(\alpha) = \alpha \text{ for all } \sigma \in H\},$ 

and that

$$|G_K| = [E:K]$$
 for  $K$ , with  $F \subseteq K \subseteq E$ , and  $G_K = \{\sigma \in G \mid \sigma(\beta) = \beta \ \forall \ \beta \in K\}$ :

Deduce the correspondence part of the Fundamental Theorem of Galois Theory.