ALGEBRA PRELIMINARY EXAMINATION

June 13, 2009

I. GROUPS

Do problems 1 and 2 and any three of the remaining five.

- 1. State and prove the Second Isomorphism Theorem (also known as the Diamond Theorem).
- 2. (a) Define solvable group (and include the definitions of any nonelementary terms you use).
 - (b) Let p and q be prime numbers. Prove that a group of order pq is solvable. (Hint: Reduce to the case $p \neq q$ and then use Sylow theory.)
- 3. Let G be a group and let H be a subgroup of G. Prove that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of the group $\operatorname{Aut}(H) \leq \operatorname{Sym}(H)$ of all automorphisms of H. $(N_G(H)$ denotes the normalizer of H in G and $C_G(H)$ denotes the centralizer of H in G.)
- 4. (a) Let m and n be positive integers with gcd(m,n)=1. Prove that

$$\mathbf{Z}_m \oplus \mathbf{Z}_n \cong \mathbf{Z}_{mn}$$
.

- (b) Determine the number of isomorphism classes of abelian groups of order 400.
- 5. (a) Define *composition series* of a group G (and include the definitions of any nonelementary terms you use).
 - (b) Prove or disprove: Every group has a composition series.
 - (c) Find the composition factors of the group $G = S_8 \times \mathbb{Z}_{12} \times D_{10}$, where D_{10} is the dihedral group of order 10 (no proof required).
- 6. Let G_1 and G_2 be groups.
 - (a) Prove that there exists a product of the family $\{G_i\}$ in the category of groups.
 - (b) Let $\iota_i: G_i \to G_1 \times G_2$ be the injections defined by $\iota_1(g_1) = (g_1, e_2)$ and $\iota_2(g_2) = (e_1, g_2)$, where e_i is the identity element of G_i . Prove that $(G_1 \times G_2, \{\iota_i\})$ need not be a coproduct of the family $\{G_i\}$ in the category of groups.
- 7. Give a Venn diagram representation of the following classes of finite groups: abelian, p-group, nilpotent, solvable, simple, cyclic. Provide an example of a group in each cell of the diagram. For the example you give to show that solvable groups and nilpotent groups are not the same, give a justification.

II. RINGS. MODULES, AND GALOIS THEORY

Do problems 8 and 9 and any three of the remaining five.

- 8. Suppose that R is a PID and that $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ is an ascending chain of ideals of R indexed by the positive integers. Show that there is a positive integer k such that $I_n = I_k$ for all $n \ge k$.
- 9. Let A be a subgroup of the additive group of rationals \mathbb{Q} and assume that $1 \in A$. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} A \cong \mathbb{Q}$ as abelian groups.
- 10. If p is a prime number, show that $\mathbb{Z}_p[x]$ contains an irreducible polynomial of degree n for every positive integer n.
- 11. Determine the Galois group of each of the following polynomials over \mathbb{Q} , and then use the Fundamental Theorem to list all the intermediate fields between \mathbb{Q} and the splitting field $F \subseteq \mathbb{C}$. (By determining the Galois group, we mean finding a "familiar" group to which the Galois group is isomorphic.)
 - (a) $x^4 5x^2 + 6$.
 - (b) $x^3 2$.
- 12. If R is a commutative ring with identity, prove that $a \in R$ is nilpotent if and only if a is contained in every prime ideal of R.
- 13. Suppose that $K \subseteq F_1$ and $K \subseteq F_2$ are field extensions (of the same field K) with respective Galois groups G_1 and G_2 . If there is a K-isomorphism $f: F_1 \to F_2$, prove that $G_1 \cong G_2$.
- 14. Let M be a (left) R-module over some ring R, and suppose that N is a submodule of M. Prove that $M=N\oplus K$ for some submodule K if and only if there is an R-module homomorphism $f:M\to N$ that restricts to the identity on N.