ALGEBRA PRELIMINARY EXAM

Attempt at least 3 problems from each section!

1. GROUP THEORY

- (1) Let $\{A_i \mid i \in I\}$ be a family of abelian groups. Prove that the product and the coproduct of $\{A_i \mid i \in I\}$ exist in the category of abelian groups.
- (2) Let A be a finitely generated abelian group. If $A \times A \simeq B \times B$ as groups, prove that $A \simeq B$.
- (3) Prove the Cayley's Theorem: Every finite group G is isomorphic to a subgroup of S_n with n = |G|.
- (4) Let p and q be two primes with $3 \le p < q$. Prove that a group of order p^2q^2 has a normal subgroup of order q^2 . (Hint: Use Sylow theory)
- (5) Prove that every nilpotent group is solvable.

2. RINGS AND MODULES

- (1) Show that $\mathbb{Z}[x]$ is not a principal ideal domain (PID), but $\mathbb{Z}[x]$ is a unique factorization domain (UFD).
- (2) State and prove Eisenstein's Criterion.
- (3) State and prove the Hilbert Basis Theorem.
- (4) Show: Let R be an integral domain. If M is a finitely generated R-module, then M/M_t is isomorphic to a submodule of a finitely generated free module.
- (5) State the fundamental theorem for finitely generated modules over a PID.

3. Fields and Galois Theory

- (1) Show: If $F \geq K$ is algebraic, and R is a ring with $F \geq R \geq K$, then R is a field.
- (2) State the Fundamental Theorem of Galois Theory.
- (3) (a) Show that the field of complex numbers is Galois over \mathbb{Q} .
 - (b) Determine the Galois group of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7})$.
- (4) (a) Prove that if k is algebraically closed, then k is not a finite field.
 - (b) Let k be a field and f be a polynomial over k with deg f = n. If L is a splitting of f over k, then argue that $[L:k] \mid n!$.
- (5) Let K be a field, and E its algebraic closure. Show that E is countable and infinite if K is finite, and |E| = |K| if K is infinite.