TENTATIVE LIST OF 620-21 TOPICS (AND SOME 520-21-22 TOPICS) TO BE REVIEWED FOR 1992 WRITTEN GENERAL EXAM IN ANALYSIS:

PRIMARY TOPICS FOR WHICH YOU SHOULD KNOW DEFINITION, EASIER SELF-CONTAINED PROOFS, EXAMPLES:

- 1. Continuity and differentiability of real functions. Sets of continuity. Continuous nowhere differentiable functions.
- 2. Monotone functions and functions of bounded variation.
- 3. Cardinality, countable sets, uncountable sets, sets of cardinality c.
- 4. Riemann integral, characterization (bounded, discountinuity set of measure zero) of Riemann integrability of a function on an interval.
- 5. Lebesgue outer measure λ° and Lebesgue measure λ on an interval and on \mathbb{R} . Non-measurable sets.
- 6. Perfect sets and Cantor sets (of measure zero and of positive measure).
- 7. Nowhere dense sets, first and second category sets, residual sets, the Baire Category Theorem, first category sets of full measure.
- 8. σ -algebras, mininal σ -algebra containing a given collection of sets, the Borel sets. Finite countably-additive non-negative measures μ on a σ -algebra.
- 9. Lebesgue Differentiability Theorem (not the proof).
- 10. Measurable functions, simple functions, (Lusin's Theorem)
- 11. Sequences of measurable functions. Uniform, pointwise, almost everywhere, and L^p -convergence (primarily L^1-, L^2- , and L^∞ -convergence). Convergence in measure. Egoroff's Theorem. Non-negative measureable functions are a.e. limits of monotone increasing sequences of non-negative simple functions.
- 12. Legesgue integral (with respect to Lebesgue measure λ and with respect to a finite non-negative measure μ). Dominated Convergence Theorem and Monotone Convergence Theorem.
- 13. Absolutely continuous functions ($\varepsilon \delta$ partition definition and equivalent Lebesgue integral definition). Absolute continuity of one measure with respect to another and the Radon-Nikodym Theorem (Royden pg. 238-9, just the facts, not the proof.)

14. Complete normed linear spaces, in particular L^p spaces (primarily L^1, L^2 , and L^{∞}), with respect to Lebesgue measure λ on [0,1] and \mathbb{R} and with respect to an arbitrary finite non-negative measure μ . Hölder's inequality in L^p and Schwarz's inequality in L^p . Completeness of L^p (primarily for p=1,2, and ∞ (STATEMENTS). Also ℓ^p spaces.

ADDITIONAL TOPICS FOR WHICH YOU SHOULD KNOW THE DEFINITIONS AND THE MAIN BASIC THEOREMS (not the proofs):

- 15. Outer measure and associated measure (Royden Sec. 12. 1).
- 16. Caratheodory Theorem on extension to σ -algebra of measure defined on an algebra (Royden Sec. 12.2).
- 17. Product measures and Fubini's Theorem (Royden Sec. 12.4). STATEMENT.