TENTATIVE LIST OF 620-21 TOPICS (AND SOME 520-21-22 TOPICS) TO BE REVIEWED FOR 1992 WRITTEN GENERAL EXAM IN ANALYSIS: PRIMARY TOPICS FOR WHICH YOU SHOULD KNOW DEFINITION, EASIER SELF-CONTAINED PROOFS, EXAMPLES: - 1. Continuity and differentiability of real functions. Sets of continuity. Continuous nowhere differentiable functions. - 2. Monotone functions and functions of bounded variation. - 3. Cardinality, countable sets, uncountable sets, sets of cardinality c. - 4. Riemann integral, characterization (bounded, discountinuity set of measure zero) of Riemann integrability of a function on an interval. - 5. Lebesgue outer measure λ° and Lebesgue measure λ on an interval and on \mathbb{R} . Non-measurable sets. - 6. Perfect sets and Cantor sets (of measure zero and of positive measure). - 7. Nowhere dense sets, first and second category sets, residual sets, the Baire Category Theorem, first category sets of full measure. - 8. σ -algebras, mininal σ -algebra containing a given collection of sets, the Borel sets. Finite countably-additive non-negative measures μ on a σ -algebra. - 9. Lebesgue Differentiability Theorem (not the proof). - 10. Measurable functions, simple functions, (Lusin's Theorem) - 11. Sequences of measurable functions. Uniform, pointwise, almost everywhere, and L^p -convergence (primarily L^1-, L^2- , and L^∞ -convergence). Convergence in measure. Egoroff's Theorem. Non-negative measureable functions are a.e. limits of monotone increasing sequences of non-negative simple functions. - 12. Legesgue integral (with respect to Lebesgue measure λ and with respect to a finite non-negative measure μ). Dominated Convergence Theorem and Monotone Convergence Theorem. - 13. Absolutely continuous functions ($\varepsilon \delta$ partition definition and equivalent Lebesgue integral definition). Absolute continuity of one measure with respect to another and the Radon-Nikodym Theorem (Royden pg. 238-9, just the facts, not the proof.) 14. Complete normed linear spaces, in particular L^p spaces (primarily L^1, L^2 , and L^{∞}), with respect to Lebesgue measure λ on [0,1] and \mathbb{R} and with respect to an arbitrary finite non-negative measure μ . Hölder's inequality in L^p and Schwarz's inequality in L^p . Completeness of L^p (primarily for p=1,2, and ∞ (STATEMENTS). Also ℓ^p spaces. ADDITIONAL TOPICS FOR WHICH YOU SHOULD KNOW THE DEFINITIONS AND THE MAIN BASIC THEOREMS (not the proofs): - 15. Outer measure and associated measure (Royden Sec. 12. 1). - 16. Caratheodory Theorem on extension to σ -algebra of measure defined on an algebra (Royden Sec. 12.2). - 17. Product measures and Fubini's Theorem (Royden Sec. 12.4). STATEMENT.