April 1994 General Examination in Analysis (administered by J. B. Brown).

Work at least 8 problems.

- 1.a) Describe a function which is differentiable on [0,1] but not continuously differentiable there.
 - b) Describe a function which is of bounded variation on [0,1] but monotone on no subinterval of [0,1].
- 2.a) Define what it means to say that a subset M of [0,1] is (i) nowhere dense, (ii) first category, (iii) of Lebesgue measure zero, (iv) Lebesgue measureable.
 - b) Give an example (include details of construction) of a nowehere dense set which is of positive measure.
 - 3. Prove that if $f:[0,1] \to R$ is Lebesgue measureable, and $g:R \to R$ is continuous, then $g \circ f$ (i.e. g[f]) is Lebesgue measurable.

(Hypothesis for 4-7) Let f, f_1, f_2, \ldots be real valued functions which are measurable with respect to a σ -algebra A on a set Ω , and let μ be a (finite) measure with domain A.

- 4. Define what it means to say that (a) $\{f_n\}$ converges to f in measure μ , (b) $\{f_n\}$ converges to f uniformly, (c) $\{f_n\}$ converges to f almost everywhere (μ) , (d) $\{f_n\}$ convergers to f in the $L^1(\mu)$ sense, (e) $\{f_n\}$ converges to f pointwise.
- 5. Prove that if $\{f_n\}$ converges to f in measure μ , then some subsequence of $\{f_n\}$ converges to f almost everywhere (μ) .
- 6. Prove Egorov's theorem, i.e. that if $\{f_n\}$ converges almost everywhere $(\mu,)$ to f and $\varepsilon > 0$, then there is a set M such that $\mu(M^c) < \varepsilon$ and $\{f_n|M\}$ converges to f|M uniformly.
- 7.a) State the "Lebesgue Dominated Convergence Theorem" (about moving " $\lim_{n\to\infty}$ " inside or outside the integral sign).
 - b) Give an example of a sequence $\{f_n\}$ of continuous functions converging pointwise to a continuous function f on [0,1] such that

$$\lim_{n\to\infty} \int_0^1 f_n(x)dx$$
 and $\int_0^1 f(x)dx$

both exists but are unequal.

8.a) Give two equivalent definitions (an " $\varepsilon - \delta$ -partition" definition and another involving Lebesgue integrals) for what it means to say that a function $f: [0, 1] \to R$ is absolutely continuous.

- b) Give an example of a function $f:[0,1]\to R$ which is continuous and of bounded variation but is not absolutely continuous.
- 9.a) Define $L^p[0,1]$ and $L^p(R)$ for $0 { you can make the <math>L^p$ -spaces collections of functions or collections of equivalence classes of functions, either way is OK }.
 - b) Assume that $f \in L^1[0,1]$. Which of the following must also belong to $L^1[0,1]$?

$$(i)\sqrt{|f|}, (ii)f^2, (iii)Arctan(f)$$
 (give explanations).

- 10.a) State Fubini's Theorem.
 - b) Give an example of a function $f:[0,1]\times[0,1]\to R$ such that

$$\int_0^1 \int_0^1 f(x,y) dx dy$$
 and $\int_0^1 \int_0^1 f(x,y) dy dx$

both exists but are unequal.