Prelim: Linear Algebra and Matrix Theory

Thomas H. Pate

September 2, 2010

Note: I have substituted $\mathbb{C}^{m\times n}$ for the notation $\mathrm{M}_{m,n}(\mathbb{C})$ that I used in class. Both denote the set of all $m\times n$ complex matrices.

- 1. Give a careful description of the Jordan canonical form of a nilpotent matrix.
- 2. Give an example of a pair of 4×4 nilpotent matrices that are not similar. Prove from scratch that your matrices are not similar.
- 3. Suppose D is an $n \times n$ real symmetric matrix such that $D^3 = I$, where I denotes the $n \times n$ identity matrix. Must it be true that D = I? Either provide proof, or disprove via counterexample.
- 4. Suppose $A \in \mathbb{C}^{n \times n}$ and you know the Jordan canonical form of A. Carefully explain how you could determine the minimal polynomial of A.
- 5. Give an example of a pair of $n \times n$ real matrices that have the same minimal polynomial but are not similar.
- 6. Characterize all real symmetric matrices whose minimal and characteristic polynomials are the same.
- 7. What do you know about $n \times n$ real matrices with positive entries? Give the most significant facts, particularly with respect to eigenvalues, eigenvectors, spectral radius etc. Which results extend to non-negative matrices?
- 8. Suppose $A \in \mathbb{C}^{n \times n}$, and p(t) is a polynomial such that p(A) = 0. (a.) Show that any eigenvalue of A is a root of p(A). (b.) What does (a.) tell you about the eigenvalues of a matrix D such that $D^2 = I$? (c.) Prove that the minimal polynomial of A divides p(t).

- 9. Suppose A∈ C^{n×n} and A is Hermitian. Let λ be an eigenvalue of A of multiplicity one with associated unit eigenvector x. Regarding x as an n×1 matrix, let B = A − λxx*. (a.) Show that λ is real. (b.) Show that B is Hermitian. (c.) Show that if U is a unitary matrix such that U*AU = Λ, where Λ is a diagonal matrix, then U*BU is also a diagonal matrix, Λ'. What is the relationship between Λ and Λ'?
- 10. Suppose $A \in \mathbb{C}^{n \times n}$ and A is normal. (a.) Prove that a number $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $\bar{\lambda}$ is an eigenvalue of A^* . (b.) Show that the eigenspace of A associated with eigenvalue $\bar{\lambda}$ is the same as the eigenspace of A^* associated with eigenvalue $\bar{\lambda}$. (c.) Prove that if λ and μ are distinct eigenvalues of A then the corresponding eigenspaces are orthogonal with respect to standard inner product on \mathbb{C}^n . (d.) Using the above prove that if A is normal, then there exists a unitary matrix U such that U^*AU is a diagonal matrix. (e.) Is the converse true?
- 11. Suppose A is an $n \times n$ complex matrix. Prove from scratch that there exists a unitary matrix U such that U^*AU is upper triangular. Suppose \mathcal{F} is as subset of $\mathbb{C}^{n \times n}$. Under what conditions is it true that there exists a single unitary matrix U such that U^*AU is upper triangular for all $A \in \mathcal{F}$? For extra credit state and prove a theorem that states necessary and sufficient conditions under which members of \mathcal{F} are simultaneously unitarily upper triangularizable.
- 12. Carefully state the Cauchy interlacing theorem for Hermitian matrices. Suppose $A \in \mathbb{C}^{n \times n}$ and A is Hermitian. If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ is the sequence of eigenvalues of A arranged in non-ascending order, and $a = (a_1, a_2, \dots, a_n)$ is the sequence of diagonal entries of A arranged in non-ascending order, then prove that $\lambda \succeq a$, where \succeq denotes majorization.
- 13. Suppose $D \in \mathbb{R}^{n \times n}$, and $D = [d_{ij}]$ has non-negative entries. (a.) Show that if each row of D sums to r, where r is a positive real number, then the spectral radius of D is r. (b.) Suspend the assumption that the rows of D sum to the same number and show that the spectral radius of D, $\rho(D)$, is not less than the minimum row sum. That is, show that

$$\rho(D) \ge \min_{1 \le i \le n} \left\{ \sum_{j=1}^n d_{ij} \right\}.$$

Hint: Let r_i denote the *i*-th row sum of D and consider the matrix $\tilde{D} = \lambda D$ where λ is the diagonal matrix whose diagonal entries are the reciprocals of the numbers r_i . The case where some $r_i = 0$ must be considered separately. What do you know about the spectral radius of \tilde{D} . Let r denote the minimum of the r_i , and let \hat{D} denote (1/r)D. What is the relationship between \tilde{D} and \hat{D} ?

- 14. Suppose V is a complex vector space of dimention n, and T is a linear map from V to V. Recall that if λ is an eigenvalue of T, then the associated generalized eigenspace $GS_{\lambda}(T)$ is $\ker(T-\lambda I)^n$. (a.) Show that if λ is an eigenvalue of T, then $GS_{\lambda}(T)$ is invariant under T. (b.) Suppose $\lambda_1, \lambda_2, \ldots, \lambda_k$ is a sequence of distinct eigenvalues of T. Prove directly (from scratch) that if $x_i \in GS_{\lambda_i}(T)$ for each integer $i, 1 \leq i \leq k$, and $x_1 + x_2 + \cdots + x_k = 0$, then $x_i = 0$ for each i. (c.) Deduce from this that the sum $+_{i=1}^k GS_{\lambda_i}(T)$ is a direct sum. (d.) For extra credit show that if $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ is a complete list of the distinct eigenvalues of T, then $V = \bigoplus_{i=1}^k GS_{\lambda_i}(T)$. (e.) How is the result in (d.) related to the Jordan canonical form?
- 15. Suppose $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$. (a.) Suppose $\lambda \in \mathbb{C}$, and $\lambda \neq 0$. Show that λ is a eigenvalue of AB, if and only if λ is an eigenvalue of BA. (b.) Assume that λ is a non-zero eigenvalue of AB. Show that the generalized eigenspace $GS_{\lambda}(AB)$ has the same dimension as the generalized eigenspace $GS_{\lambda}(BA)$. Hint: Show that $(AB \lambda I)^k A = A(BA \lambda I)^k$ for all positive integers k. (c.) Assume that $m \geq n$. Show that $P_{AB}(t) = t^{m-n}P_{BA}(t)$, where $P_{AB}(t)$ and $P_{BA}(t)$ are the characteristic polynomials of AB and BA, respectively.