TOPOLOGY PRELIMINARY EXAM

5/27/00

Solve 8 out of the following problems, including at least two of problems 9 through 12. Use a separate sheet for each problem. Use a cover sheet which lists the problems you have chosen to solve.

- **Problem 1.** Show that any separable metric space has a countable basis.
- **Problem 2.** Prove that any product of completely regular spaces is completely regular.
- **Problem 3.** Let $q: X \to Y$ be a quotient map, and $f: Y \to Z$ an arbitrary map from Y to a space Z. Show that f is continuous if and only if $f \circ q$ is continuous.
- **Problem 4.** Let X be a space. Define the product $\alpha * \beta$ of paths in X, and show that if α is path-homotopic to α' and β is path-homotopic to β' , then $\alpha * \beta$ is path-homotopic to $\alpha' * \beta'$.
 - **Problem 5.** Show that every completely metrizable space is a Baire space.
- **Problem 6.** Prove that the collection of components of a space X forms a partition of X into closed subsets.
- **Problem 7.** Let X_0, X_1, \ldots be metrizable spaces. Prove that $\Pi_{n \in \mathbb{N}} X_n$ is metrizable.
 - **Problem 8.** Prove that if X and Y are connected, then $X \times Y$ is connected.
- **Problem 9.** Let (X, d) be a compact metric space, and let \mathcal{U} an open cover of X. Show that there exists $\epsilon > 0$ such that any subset of X of diameter less than ϵ is contained in some member of \mathcal{U} .
 - **Problem 10.** Prove that every compact Hausdorff space is normal.
- **Problem 11.** Prove that regular Lindelöf spaces are paracompact. (A space is Lindelöf if every open cover has a countable subcover.)
- **Problem 12.** Let b_0 be the point (1,0) on the unit circle S^1 . In the proof that $\pi_1(S^1, b_0)$ is isomorphic to the group \mathbb{Z} of integers under addition, describe how the isomorphism $\phi : \pi_1(S^1, b_0) \to Z$ is defined. (You need not prove it is an isomorphism, only define it.)