Topology Preliminary Exam 8/8/05

Solve eight out of the following problems, including at least two out of problems 9-12. Please do not use the same sheet of paper for two different problems. Use a cover sheet which lists the problems you have chosen to solve.

- 1. Prove that every compact subset of a Hausdorff space is closed.
- 2. Prove that if \mathcal{H} is a collection of connected subsets of a topological space X such that $\cap \mathcal{H}$ is nonempty, then $\cup \mathcal{H}$ is a connected subset of X.
- 3. Prove that if X and Y are compact spaces, then $X \times Y$ is compact.
- 4. Prove that every metric space is normal.
- 5. Prove that the product of a countable collection of separable spaces is separable.
- 6. Suppose that $f: X \to Y$ is continuous and $H \subset X$ is connected. Show that f(H) is connected.
- 7. Prove that the space X is compact if and only if every collection of closed subsets with the finite intersection property has nonempty intersection.
- 8. Let $\mathcal{C}(I,I)$ be the space of all continuous functions $f:I\to I$, where I=[0,1], and give $\mathcal{C}(I,I)$ the topology defined by the metric $d(f,g)=\sup\{|f(x)-g(x)|:0\leq x\leq 1\}$. Prove that $\mathcal{C}(I,I)$ is separable.
- 9. Let $X \subseteq Y$ be path-connected metric spaces with $x_0 \in X$, let $j: X \to Y$ be the inclusion map j(x) = x, and let $j_*: \pi_1(X, x_0) \to \pi_1(Y, x_0)$ be the induced homomorphism. Find such spaces X and Y so that
 - (a) j_{\star} is not 1–1.
 - (b) j_{\star} is not onto.

(You may, if you wish, use the same example for both parts, but giving two different examples is also OK.)

- 10. Let E and B be path-connected metric spaces, and let n be a fixed positive integer. Let $p: E \to B$ be a continuous function such that $p^{-1}(b)$ has exactly n elements for each $b \in B$, and such that for every $e \in E$ there are neighborhoods U of e and V of p(e) such that p|U is a homeomorphism from U onto V. Prove that p is a covering map.
- 11. Let X be the square $[0,1] \times [0,1]$, and let Y be the quotient space obtained by identifying the four corners (i.e., $\{(0,0),(0,1),(1,1),(1,0)\}$ is one equivalence class and the remaining equivalence classes are singletons.) Prove that Y is not simply connected.
- 12. Prove that the fundamental group of the Klein Bottle is not Abelian.