Topology Preliminary Exam, August 2009

Do seven of the eleven problems, including at least one of numbers 9, 10, 11.

- 1. Let X and Y be compact topological spaces. Prove that $X \times Y$ is compact.
- **2.** Prove that if X is a topological space, Y is a connected subset of X, and $Y \subseteq Z \subseteq \overline{Y}$, then Z is also connected.
- 3. Prove that a topological space is compact if and only if every nonempty collection of closed sets having the finite intersection property has nonempty intersection.
 - 4. Prove that every separable metric space is second countable.
 - 5. Prove that every paracompact Hausdorff space is also regular.
- **6.** Let X be an uncountable set, with $c \in X$. Define a topology on X by letting all points other than c be isolated, and if $c \in U \subseteq X$, then U is open if and only if $X \setminus U$ is finite. Prove that X is not metrizable.
- 7. Let X and Y be metric spaces. Prove that a function $f: X \to Y$ is continuous if and only whenever $\langle x_n : n \in \omega \rangle$ is a sequence converging in X to x, $\langle f(x_n) : n \in \omega \rangle$ converges in Y to f(x).
 - 8. Let X_n be metric spaces, $n \in \omega$. Prove that $\prod_{n \in \omega} X_n$ is metrizable.
- 9. Let $p:(E,e_0)\to (B,b_0)$ be a covering map, and let $f:[0,1]\to B$ be a path with initial point b_0 . Prove that there is a path $\tilde{f}:[0,1]\to E$ with initial point e_0 such that $p\circ \tilde{f}=f$.
- 10. Let $p:(E,e_0)\to (B,b_0)$ be a covering map, let f and g be paths in B with initial point b_0 , and let \tilde{f} and \tilde{g} be the lifts of f and g (respectively) to E with initial point e_0 . Prove that if f and g are path-homotopic in B then \tilde{f} and \tilde{g} have the same final point.
- 11. Let A be a deformation retract of a space X. Prove that the inclusion map $i:A\to X$ induces an isomorphism of the fundamental groups of A and X.