FINAL EXAM MATH 7320 AND PART 1 OF THE ALGEBRA PRELIMINARY EXAM SPRING 2025, DR. LUKE OEDING

Instructions: Closed notes, closed book, no electronic devices, no collaboration. Write each answer starting on a new sheet of paper, and label all pages with your name and problem number.

Complete and turn in this part of the exam in 2 hours. For the preliminary exam, you may obtain part 2 after turning in part 1, and then take the remaining time to complete it.

1. Representation Theory, and Linear Algebra over a ring

Theory

Exercise 1 (10 points). State the Hilbert Basis Theorem.

Exercise 2 (10 points). State the Classification Theorem for linear representations of finite groups.

Exercise 3 (10 points). State the Classification Theorem for finitely generated \mathbb{Z} -modules.

Computations

Exercise 4 (10 points). Find the complete list of isomorphism classes of abelian groups of order 2025.

Exercise 5 (10 points). Suppose G is an abelian group presented by the matrix $\begin{pmatrix} 3 & 1 & -4 \\ 2 & -3 & 1 \\ -4 & 6 & -2 \end{pmatrix}$. Find the isomorphism class of G.

Proofs

Exercise 6 (10 points). A module is called simple if it is not the zero module and it has no proper submodule. Prove the following version of Shur's lemma: let $\varphi: S \to S'$ be a homomorphism of simple modules. Then φ is either zero or an isomorphism.

Exercise 7 (10 points). Prove that all finite-dimensional irreducible representations of an abelian group are 1-dimensional.

Combo

Exercise 8. Consider the polynomial ring S = k[x, y, z] field k of characteristic 0 and denote by S_2 the homogeneous polynomials of degree 2 (and the zero polynomial). Let the dihedral group \mathfrak{D}_3 act on S_2 by the permutations obtained by \mathfrak{D}_3 acting on the labelled triangle x - y.

- (a) $[(15 \ points)]$ Find the character table of the dihedral group \mathfrak{D}_3 .
- (b) [(15 points)] Find a decomposition of S_2 into irreducibles obtained from this group action.

Algebra Preliminary Exam (part 2)

Spring 2025

Instructions: Closed notes, closed book, no electronic devices, no collaboration. Write each answer starting on a new sheet of paper, and label all pages with your name and problem number.

Complete and turn in this part of the exam in 2 hours after turning in part 1.

Groups, rings, and modules.

1. Let G be a group, and let Z(G) denote the *center* of G, i.e.

$$Z(G) := \{ z \in G : zg = gz \text{ for all } g \in G \}.$$

- (a) (5 points) Prove that Z(G) is a normal subgroup of G.
- (b) (15 points) Prove that, if G/Z(G) is cyclic, then G is abelian.
- **2.** (a) (10 points) Let k be a field. Prove that the rings $k[x,y]/(x^2-y)$ and $k[x,y]/(x^2-y^2)$ are not isomorphic.
 - (b) (10 points) Prove that $x^2 + y^2 1$ is irreducible in $\mathbb{Q}[x, y]$.
- **3.** Let R be a principal ideal domain.
 - (a) (10 points) Suppose $P \subseteq R$ is a nonzero prime ideal. Prove that P is maximal.
 - (b) (10 points) Suppose $p \in R$ is a prime element. Prove that p is irreducible.
- **4.** Let R be a commutative ring, $I \subseteq R$ an ideal, and M an R-module.
 - (a) (5 points) Show $\operatorname{Ann}_I(M) := \{ m \in M : rm = 0 \text{ for all } r \in I \}$ is a submodule of M.
 - (b) (15 points) Prove that there is an isomorphism $\operatorname{Hom}_R(R/I,M) \cong \operatorname{Ann}_I(M)$.
- 5. (a) (15 points) Let R be a commutative ring, and let M be an R-module. Use the universal property of the tensor product to prove there is an isomorphism $M \otimes_R R \cong M$.
 - (b) (5 points) Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic \mathbb{R} -vector spaces.