NT			
Name:			

(Total 150 points, 75 points are required for passing)

- 1. Let X be a nonempty set, \mathcal{M} a nonempty collection of subsets of X, and μ a mapping from \mathcal{M} into $[0, \infty]$.
- (a) (6 points) Define what it means to say that \mathcal{M} is an algebra on X and what it means to say that \mathcal{M} is a σ -algebra on X. Further, assuming that \mathcal{M} is a σ -algebra, define what it means to say that μ is a measure on \mathcal{M} .
- (b) (6 point) Assume that \mathcal{M} is an σ -algebra on X and μ is a measure on \mathcal{M} . If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$, prove that $\mu(\liminf E_j) \leq \liminf \mu(E_j)$.
- **2.** Let X be a nonempty set and $\mathcal{P}(X)$ the collection of all the subsets of X. Let $\mathcal{A}_0 \subset \mathcal{P}(X)$ be an algebra on X, and $\mu_0 : \mathcal{A}_0 \to [0, \infty]$ be a premeasure on \mathcal{A}_0 (i.e. $\mu_0(\emptyset) = 0$ and if $\{A_j\}_{j=1}^{\infty}$ is a sequence of disjoint sets in \mathcal{A}_0 and $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}_0$, then $\mu_0(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu_0(A_j)$).
- (a) **(6 points)** Define what it means to say that $\mu^* : \mathcal{P}(X) \to [0, \infty]$ is an outer measure on X and what it means to say that a set $A \subset X$ is μ^* -measurable. What is the outer measure induced from μ_0 ?
- (b) (8 points) Assume that μ^* is the outer measure induced from μ_0 . Prove that if $\mu^*(E) < \infty$, then E is μ^* -measurable iff there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subseteq B$ and $\mu^*(B \setminus E) = 0$, where $\mathcal{A}_{\sigma\delta}$ is the collection of countable intersections of sets in \mathcal{A}_{σ} and \mathcal{A}_{σ} is the collection of countable unions of sets in \mathcal{A}_0 .
- **3.** Let (X, \mathcal{M}, μ) be a measure space and $\bar{\mathbb{R}} = [-\infty, \infty]$.
- (a) **(6 points)** Define what it means to say that a function $f: X \to \overline{\mathbb{R}}$ is measurable. Assuming that $f: X \to [0, \infty]$ and $g: X \to \overline{\mathbb{R}}$ are measurable, what is the integral of f on X (with respect to μ) and what does it mean that g is integrable (with respect to μ)?
- (b) (8 points) If $\{f_n\}$ is a sequence of measurable functions on X, prove that the set $\{x \in X \mid \lim_{n\to\infty} f_n(x) \text{ exists}\}$ is a measurable set (it is said that $\lim_{n\to\infty} f_n(x) \text{ exists}$ if $-\infty < \liminf_{n\to\infty} f_n(x) = \limsup_{n\to\infty} f_n(x) < \infty$).
- (c) (6 points) If $f: X \to [0, \infty]$ is measurable, let $\lambda(E) = \int_E f d\mu$ for $E \in \mathcal{M}$. Prove that λ is a measure on \mathcal{M} .

- **4.** Let (X, \mathcal{M}, μ) be a measure space.
- (a) **(6 points)** State the Monotone Convergence Theorem, Fatou's Lemma, and the Dominated Convergence Theorem.
- (b) (6 points) Use the Monotone Convergence Theorem to prove Fatou's Lemma.
- (c) **(6 points)** Compute the following limit and justify your calculations, $\lim_{n\to\infty} \int_0^1 (1+nx^2)(1+x^2)^{-n} dx$.
- **5.** Let (X, \mathcal{M}, μ) be a measure space.
- (a) (4 points) State the definition of the space $L^p(X, \mathcal{M}, \mu)$ and its norm $\|\cdot\|_p$ for $1 \leq p < \infty$ and state the definition of the space $L^{\infty}(X, \mathcal{M}, \mu)$ and its norm $\|\cdot\|_{\infty}$.
- (b) (8 points) If $f \in L^p(X, \mathcal{M}, \mu) \cap L^{\infty}(X, \mathcal{M}, \mu)$ for some $1 \leq p < \infty$, prove that $f \in L^q(X, \mathcal{M}, \mu)$ for any q > p and $\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}$.
- **6.** Let (X, \mathcal{M}, μ) be a measure space and $f, f_1, f_2, \dots \in L^p(X, \mathcal{M}, \mu)$ $(1 \le p < \infty)$.
- (a) **(6 points)** Define what it means to say that i) f_n converges to f in measure μ , ii) f_n converges to f in $L^p(X, \mathcal{M}, \mu)$, iii) f_n converges to f weakly in $L^p(X, \mathcal{M}, \mu)$.
- (b) (8 points) If $|f_n| \leq g \in L^p(X, \mathcal{M}, \mu)$ and f_n converges to f in measure, prove that f_n converges to f in $L^p(X, \mathcal{M}, \mu)$ (Hint: You can use the conclusion that if f_n converges to f in measure μ , then there is a subsequence $\{f_{n_j}\}$ such that f_{n_j} converges to f almost everywhere with respect to μ).
- (c) (4 points) Give an example which shows that there are $f_n, f \in L^2(X, \mathcal{M}, \mu)$ $(n = 1, 2, \cdots)$ such that $f_n \to f$ weakly as $n \to \infty$, but $f_n \not\to f$ a.e.
- 7. Let (X, \mathcal{M}) be a measurable space
- (a) (4 points) Define what it means to say that $\nu : \mathcal{M} \to [-\infty, \infty]$ is a signed measure on \mathcal{M} and state the Lebesgue-Radon-Nikodym Theorem.
- (b) (10 points) Let X = [0,1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, m = Lebesgue measure, and $\mu =$ counting measure on \mathcal{M} . Prove i) $m \ll \mu$ but $dm \neq f d\mu$ for any f; ii) μ has no Lebesgue decomposition with respect to m.
- 8. Let $-\infty < a < b < \infty$.
- (a) (8 points) Let $L^1([a,b])$ be the space of Lebesgue integrable functions on the interval [a,b] with the Lebesgue measure and ϕ be a bounded linear functional on $L^1([a,b])$. Define the function by $g(x) = \phi(\chi_{[a,x]})$ for $x \in [a,b]$. Prove that g is absolutely continuous on the interval [a,b].

- (b) (8 points) If $f:[a,b] \to \mathbb{R}$ is absolutely continuous, prove that f is of bounded variation on [a,b].
- **9.** Let X be a normed space on \mathbb{R} .
- (a) (8 points) Prove that if X is a Banach space and X^* is separable, then X is separable.
- (b) **(6 points)** If X is an infinite-dimensional Hilbert space, prove that every orthonormal sequence in X converges weakly to 0.
- 10. (a) (6 point) State the Urysohn Lemma and the Arzelá-Ascoli Theorem (for a family of continuous functions on a compact metric space X).
- (b) **(6 points)** Let $K \in C([0,1] \times [0,1])$. For $f \in C([0,1])$, let $Tf(x) = \int_0^1 K(x,y)f(y)dy$. Prove that $Tf \in C([0,1])$ for any $f \in C([0,1])$, and that $\{Tf \mid f \in C([0,1]), \|f\|_u = \sup_{x \in [0,1]} |f(x)| \le 1\}$ is precompact in C([0,1]).