Preliminary Exam Coding Theory

March 16, 1994

- 1) Show that any Reed-Solomon code satisfies the Singleton bound $d \le n+1-k$ with equality. Why must the dual of a Reed-Solomon code also be a Reed-Solomon code?
- 2) Perfect e-error-correcting codes are those for which every received word r is at most e errors away from exactly one codeword c(r). [Examples are Hamming codes for e=1, the binary Golay code (with length 23) for e=3, and the ternary Golay code (with length 11) for e=2.] How many codewords of minimum weight d=2e+1 are there in a perfect e-error-correcting code C? [Hint: Consider the received words of weight e+1.]
- 3) Consider the Reed-Solomon code over $GF(8) = GF(2)[\delta]/(1+\delta+\delta^3)$ with generator polynomial $g(x) = (\delta^1 + x)(\delta^2 + x)(\delta^3 + x)(\delta^4 + x) = \delta^3 + \delta^1 x + x^2 + \delta^3 x^3 + x^4$.
- a) What is the generator matrix implicit in polynomial encoding?
- b) What is the generator matrix implicit in functional encoding?
- 4) An idempotent e(x) for a code C must satisfy $e(x) \in C$, $e^2(x) = e(x)$, and e(x)c(x) = c(x) for $c(x) \in C$. [The binary linear, cyclic code C of length 7 with generator polynomial $g(x) = 1 + x + x^3$ has at least the idempotent $e(x) = x + x^2 + x^4$.]
- a) Show that any binary linear, cyclic code of odd wordlength has an idempotent. [Hint: Consider the Euclidean algorithm.]
- b) Is there always an idempotent generator?
- 5) The Berlekamp-Massey algorithm applied to a polynomial a(x) recursively produces polynomials $p_t(x)$, of degree at most t, such that $r_t(x) = p_t(x)a(x) \pmod{x^{2t+1}}$ also has degree at most t. How does this give a solution to Newton's identities

$$s_{j+e} + \sigma_1 s_{j+e-1} + \dots + \sigma_e s_j = 0, \ \ell+1 \le j \le \ell+e,$$

for finding the symmetric functions σ_i $1 \le i \le e$, (coefficients of the error-locator polynomial $\sigma(x)$) in terms of the power sums (syndromes) s_j , $\ell+1 \le j \le \ell+2e$, used in decoding BCH codes? [That is, what are a(x) and $p_t(x)$ and why does a particular $p_t(x)$ solve Newton's identities?]