Prelim Exam- Coding Theory -2005

Do as many of the following as possible (favoring complete answers to fewer parts of questions rather than partial answers to more). The index tables for $\mathbf{F_4}$ and $\mathbf{F_{16}}$ are:

i	α^i
3 = 0	10
1	01
2	11
$\underline{}$	γ^i
15 = 0	1000
1	0100
2	0010
3	0001
4	1100
5	0110
6	0011
7	1101
8	1010
9	0101
10	1110
11	0111
12	1111
13	1011
14	1001

- (a) State and prove the Singleton (upper) bound on the size of a q-ary linear code of wordlength n and minimum distance d.
 - (b) State and prove the Varshamov (lower) bound on the size of a q-ary linear code of wordlength n and minimum distance d.
- 2. (a) Give a generator g(x) for a Reed-Solomon code C over \mathbf{F}_q with designed minimum distance δ . What are the parameters of C?
 - (b) If $q = p^m$, p a prime, what can be said of the parameters of the subfield subcode C_p over \mathbf{F}_p ? Find a generator polynomial in the case that $q = 16 = 2^4$ and $g(x) = (x + \gamma) \cdots (x + \gamma^6)$.

- 3. (a) Lift the factorization of $x^{15} 1 \in \mathbf{Z}_2[x]$ to a factorization of $x^{15} 1 \in \mathbf{Z}_4[x]$.
 - (b) Lift the index table for F_{16} to Z_4 as well.
- 4. (a) Prove Forney's formula.
 - (b) Use Forney's formula to compute the error magnitude at position γ^4 , given the syndromes $s_1 = \gamma^3$, $s_2 = \gamma^4$, and $s_3 = \gamma^9$ and the error-locator $\sigma(x) = x^3 + \gamma^9 x^2 + \gamma^{13} x + \gamma^{12}$.
- 5. (a) Which of the following generator matrices define catastrophic convolutional codes:

$$G_1 := \begin{pmatrix} 1 + x^2 & 1 + x^3 & 1 + x + x^3 \end{pmatrix}$$

$$G_2 := \begin{pmatrix} 1+x & 1+x & 1+x^2 \\ x & 1 & x^2 \end{pmatrix}$$

- (b) For each, if catastrophic find a message of infinite weight that produces a finite weight code; and if not, produce a finite state table, and find the minimum distance.
- 6. Use the Berlekamp-Massey algorithm to find a smallest linear recurrence from the syndromes $s_1 := 0$, $s_2 := \gamma^2$, $s_3 := 0$, $s_4 := \gamma^9$, $s_5 := \gamma^{12}$, $s_6 := \gamma^3$. (As a check, the result should be a scalar multiple of $(x + \gamma)(x + \gamma^2)(x + \gamma^{14})$.)
- 7. Let C be the AG code defined by $x^2y + y^2 + x = 0$ in characteristic 2 (similar to the Klein quartic).
 - (a) Find those points of C rational over \mathbf{F}_4 .
 - (b) Find the divisors (x) and (y).
 - (c) Find local parameters at all points.