Chris

Coding Theory Prelim 2006

Do as many problems as you can but you should be able to attempt at least 100 points worth in 3 hours.

- 1. Prove that an (n, k, d) code can correct s erasures and e errors as long as $2e + s \le d 1$. (20 points)
- 2. Find the Hensel lift of $x^4 + x + 1 \in \mathbb{Z}_2[x]$ to $\mathbb{Z}_4[x]$ which is a divisor of $x^{15} 1 \in \mathbb{Z}_4[x]$ (10 points)
- 3. Let C be a linear code and C^{\perp} its dual. Prove that $Aut(C) = Aut(C^{\perp})$ where Aut is the automorphism group of permutations. (20 points)
- 4. Prove that the dual of an Reed-Muller code RM(1, m) is the Reed-Muller code RM(m-2, m). (30 points)
- 5. Let P_k denote all polynomials of degree $\langle k \text{ over } \mathbb{F}_q$. Define $C = \{ev(f) \in \mathbb{F}_q^n | f \in P_k\}$ where ev is the evaluation of f(x) on $\mathbb{F}_q \setminus \{0\}$ and n = q 1.
 - (a) Prove that C is a maximum distance separable code (MDS). (20 points)
 - (b) Prove that C^{\perp} is a maximum distance separable code (MDS) given that C is MDS.(20 points)
 - (c) Prove that C is a Reed-Solomon code with defining roots α^i , i = 1, 2, ..., d-1 where α is a primitive element (20 points)
- 6. Prove the BCH root bound on the minimum distance of a cyclic code of length $n = 2^r 1$. (20 points)

- 7. Let $(g_1(D), g_2(D), \ldots, g_m(D))$ be an encoder for an (n, 1, m) convolutional code. Prove that the following are equivalent(total =50 points-partial credit allowed):
 - (a) The encoder is catastrophic
 - (b) The $g.c.d.\{g_1,\ldots,g_m\} > 1$
 - (c) the corresponding state diagram has a zero weight cycle (other than the zero loop from the zero state).
- 8. Let χ be the (non-singular) elliptic curve over \mathbb{F}_2 defined by $x^3 + xz^2 + z^3 + y^2z + yz^2 = 0$ (genus is 1). Let $D = kP_{\infty}$, where $P_{\infty} = (0:1:0)$.
 - (a) Find the affine points on χ over \mathbb{F}_8 . (20 points)
 - (b) Find the intersection divisors for the curves x=0,y=0,z=0 and $div(x^iy^j/z^{i+j})$ (20 points)
 - (c) Find a basis for the AG code L(D) for k=4 (20 points)