Coding Theory Prelim, May 30, 2009

In
$$\mathbf{F}_2[x]$$
,

$$x^{15} - 1 = (x+1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1).$$

$$\mathbf{F}_{16} := \mathbf{F}_2[\gamma]/\langle 1 + \gamma + \gamma^4 \rangle$$

$$= \{c_0 + c_1\gamma + c_2\gamma^2 + c_3\gamma^3 : c_i \in \mathbf{F}_2\}$$

$$= \{0\} \cup \{\gamma^i : 0 \le i < 15\}$$

$i \mid$	c_0	c_1	c_2	c_3
$15 \equiv 0$	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	1	0	0
1 2 3 4 5 6 7 8 9	0	1	1	0
6	0	0	1	1
7	1	1	0	1
8	1	0	1	0
	0	1	0	1
10	1	1	1	0
11	0	1	1	1
12	1	1	1	1
13	1	0	1	1
14	1	0	0	1

```
In \mathbf{F}_2[x],
x^{31} - 1 = (x+1)(x^5 + x^2 + 1)(x^5 + x^3 + 1)(x^5 + x^4 + x^3 + x^2 + 1)
(x^5 + x^4 + x^3 + x + 1)(x^5 + x^4 + x^2 + x + 1)(x^5 + x^3 + x^2 + x + 1).
           \mathbf{F}_{32} := \mathbf{F}_2[\delta]/\langle 1 + \delta^2 + \delta^5 \rangle
                   = \{c_0 + c_1\delta + c_2\delta^2 + c_3\delta^3 + c_4\delta^4 : c_i \in \mathbf{F}_2\}
= \{0\} \cup \{\delta^i : 0 \le i < 31\}
                                         1
                                            1
                                                 0
                                                      0
                                                           0
                                 2
                                            0
                                                 1
                                                      0
                                                           0
                                 3
                                                 0
                                            0
                                                           0
                                 4
                                                0
                                 5
                                 6
                                                 0
                                                      1
                                                           0
                                            1
                                 7
                                            0
                                                1
                                                      0
                                                           1
                                 8
                                            0
                                                      1
                                 9
                                                 0
                                                            1
                                10
                                                 0
                                11
                                                      0
                                12
                                13
                                            0
                                                 1
                                                      1
                                                            1
                                14
                                       1
                                                 1
                                                      1
                                                            1
                                15
                                                            1
                                                            1
                                16
                                                 0
                                17
                                                 0
                                                            1
                                18
                                19
                                20
                                                 1
                                                            0
                                21
                                       0
                                            0
                                                 0
                                                            1
                                22
                                                 1
                                23
                                                 1
                                                            0
                                24
                                                 1
                                25
                                26
                                            1
                                                 1
                                                       0
                                27
                                                            0
                                            1
                                                 0
                                                      1
                                28
                                            1
                                                       0
                                       0
                                                 1
                                29
                                       1
                                                 0
                                                      1
                                      0
                                30 |
```

1. Explain, using some reasonable notation how the error e, the syndrome power series s, the error-locator polynomial σ , and the error-evaluator polynomial ρ are related. Include a proof that the error-locator polynomial actually locates error positions.

Which of these show up where in the following Berlekamp-Massey computation over \mathbf{F}_{16} ?

- 2. Assume λ is a *primitive* (q-1)-st root of 1 in \mathbf{F}_q (and hence generates an index table for \mathbf{F}_q).
 - (a) Define a Reed-Solomon code $RS(q, \delta)$ over \mathbf{F}_q with (designed) minimum distance δ , by describing a generator polynomial g(x) for it, and give its other parameters n, the wordlength and k, the dimension. Justify these and the fact that $d = \delta$ is the actual minimum distance.

(b)

$$g(x) := (x-1)(x-\gamma)(x-\gamma^2)(x-\gamma^3)(x-\gamma^4)|m_{\gamma^0}(x)m_{\gamma}(x)m_{\gamma^3}(x)$$
$$= (x+1)(x^4+x+1)(x^4+x^3+x^2+x+1) =: G(x).$$

Since $G(x) \in \mathbf{F}_2[x]$, it generates a cyclic (sub)code over \mathbf{F}_2 . What are the parameters (n, k, d) of this code?

3. One of the following matrices generates a *catastrophic convolutional code* and one does not.

$$G_1:=egin{pmatrix}1&1+x&x\1+x&x&1\end{pmatrix},\;G_2:=egin{pmatrix}1&1+x&0\1+x&x&1+x\end{pmatrix}$$

(a) For the catastrophic code, find a message \underline{m} of infinite weight with corresponding codeword \underline{c} of finite weight.

- (b) For the other, produce a finite state table and compute its *minimum free distance*.
- 4. $x^5 + x^2 + 1 \in \mathbf{Z}_2[x]$ was used to produce the index table for \mathbf{F}_{32} above. Lift this from $\mathbf{F}_2[x]$ to one in $\mathbf{Z}_4[x]$. And lift the corresponding *index* table for \mathbf{F}_{32} to an "index table" over \mathbf{Z}_4 as well.
- 5. State and prove at least one good upper bound and one good lower bound on the size of a linear code the sphere-packing bound and the Gilbert-Varshamov bound being perhaps the most obvious choices.
- 6. Given a curve defined by the equation $x^2y+y^2+x=0$ in characteristic 2, find the divisors div(y) and div(x). Pick a point P_{∞} at which both have poles, and find as many rational functions (in y and x) that have only poles at P_{∞} and with different pole orders there as you can. Make a guess at the genus (that is, the number of "missing" pole orders) based on what you found.
- 7. Finish the following Berlekamp-Massey-Sakata type row-reduction and shifiting computation ($22 \le m \le 26$) relative to the Hermitian curve above and an error of weight 6, and produce a Gröbner basis for the error-locator ideal computed by it. Make sure you explain how you chose the unknown syndrome values.

0	:	γ^0					γ^6		
4	:	γ^1	γ^0				0	0	
							γ^9		
5	:	γ^3	0				0	γ^9	
		γ^0							
8	:	γ^{10}	γ^3	γ^0			0	0	0
		0					0	γ^8	
9	:	γ^3	γ^5				0	0	γ^8
		γ^9	γ^0				0	0	
10	:	γ^0	0	0			0	0	0
		γ^5	0				0	0	
		γ^0					0		
12	:	γ^{12}	γ^{13}	γ^9	γ^0		0	0	0
		0	0				0	0	
		0					0		
13	:	γ^2	γ^6	γ^5	0		0	0	0
		γ^{11}	γ^3	γ^0			0		
		0	•						
	5 8 9 10	4 : 5 : 8 : 9 : 10 :	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$