Graph Theory Prelim, 7/10/09

- 1) a) State Kruskal's algorithm for finding a cheapest spanning tree in a connected graph with edge costs.
- b) If $\{e_1, e_2, \ldots, e_{n-1}\}$ is the edge set of a spanning tree T in the n-vertex graph G, describe a cost assignment to the edges of G so that Kruskal's algorithm is forced to choose the edges of T, in the order listed.
 - c) What does Kruskal's algorithm choose if it's given a disconnected graph with edge costs?
- 2) a) State Euler's theorem characterizing those graphs having Euler tours.
- b) Let G be a graph having an Euler tour, let e₁ and e₂ be edges of G having exactly one incident vertex in common. Prove or disprove: G has an Euler tour in which e₁ and e₂ are consecutive.
- c) Prove (possibly using a)) that any graph G has an orientation in which, at every vertex v of G, the indegree of v and the outdegree of v differ by at most 1.
- 3) a) Suppose the edge e of the connected graph G is contained in at least one cycle of G. Prove that G\e is connected.
- b) Suppose the edge e of the connected graph G is contained in no cycles of G. Prove that G\e has exactly two components. (In this case, e is defined to be a *bridge* of G.)
- c) In the case b) above, prove that either every perfect matching of G contains e, or no perfect matching of G contains e.
- 4) The Wiener index of a connected graph G, W(G), is defined to be the sum, over all two-element subsets $\{v, w\}$ of the vertex set of G, of d(v, w) (= the distance between v and w).
- a) Among all connected graphs G on n vertices, prove that the ones with the largest value of W(G) are trees. (Hint: if T is a spanning tree of G, prove that $W(G) \le W(T)$, with equality if and only if T = G.)
 - b) Prove that among all trees on n vertices, the path P_n has the largest value of W(G).
 - c) Among the trees on n vertices, which has the smallest value of W(G)? (Prove your answer.)