## Graph Theory Prelim - 5/26/12

For this prelim, <u>all</u> graphs are simple, i.e., they have no loops or multiple edges.

- 1) Let G = (V, E) be a graph, let  $u, v \in V$ , and let n be a non-negative integer.
  - a) Define the following:
    - ι) u-v walk of length n in G,
    - u) u-v trail of length n in G,
    - ιιι) u-v path of length n in G.
  - b) Prove that every path is a trail
  - c) Prove that if there is a u-v walk in G, then there is a u-v path in G.
- 2) An edge e of a graph G is defined to be a *cut edge* if  $G\setminus\{e\}$  has more components than G.
  - a) Prove that e is a cut edge of G if and only if no cycle of G contains e.
  - b) Let G = (V, E) be a graph with |V| = |E| + 1. Prove the following are equivalent:
    - ι) G is connected.
    - u) G has no cycles.
    - ιιι) Every edge of G is a cut edge.
    - (v) G is a tree.
  - c) Let  $T_1$  and  $T_2$  be spanning trees of the connected graph G, let e be an edge of  $T_1$ .
    - ι) Prove that  $(T_1 \setminus \{e\}) \cup \{f\}$  is a spanning tree for some edge f of  $T_2$ .
    - u) Prove that  $(T_2 \setminus \{g\}) \cup \{e\}$  is a spanning tree for some edge g of  $T_2$ .

(You may assume the following without proof: A tree on n vertices has exactly n-1 edges, and  $G\setminus\{e\}$  has at most one more component than G.)

- 3) The chromatic number of the graph G,  $\chi(G)$ , is the fewest number of colors required in a proper coloring of the vertices of G. And the clique number of G,  $\omega(G)$ , is the size of a largest set of mutually adjacent vertices of G. Finally, the complement of the graph G,  $\overline{G}$ , is the graph on the same vertex set as G, in which two different vertices are adjacent if and only if they are not adjacent in G. Let C be a cycle on n vertices.
  - a) If n is odd, prove that in any proper coloring of the vertices of C with colors red, blue, and green, there is at least one green vertex having one red neighbor and one blue neighbor.
  - b) Prove that  $\chi(\overline{C}) = \omega(\overline{C}) + x$ , where  $x \in \{0, 1\}$ ,  $x \equiv n \pmod{2}$ , provided that  $n \ge 4$ .
- 4) The *chromatic index* of the graph G,  $\chi'(G)$ , is the fewest number of colors required in a proper coloring of the edges of G. G is *class I* if  $\chi'(G) = \Delta(G)$ , and *class II* if  $\chi'(G) = \Delta(G) + 1$ . Vizing's theorem states that every graph is either class I or class II. If x is a real number,  $\lfloor x \rfloor$  denotes the greatest integer less than or equal to x. (Recall that  $\Delta(G)$  is the maximum degree of a vertex of G.) Define the graph G = (V, E) to be *overfull* if  $|E| > \Delta(G) \lfloor |V|/2 \rfloor$ .
  - a) Prove that an overfull graph has an odd number of vertices, and is class II.
  - b) Let n be an odd integer at least 3, and let G be a graph obtained from the complete graph  $K_n$  by removing at most (n-3)/2 of its edges. Prove that G is class II.
- 5) A matching in the graph G is a subset of the edges of G, no two of which share a vertex. The matching M in G is maximal if M is the only matching in G containing M, and it is maximum if there is no matching in G with more edges than M. The matching number of G,  $\alpha'(G)$ , is the size of a maximum matching.
  - a) Prove that if M is a maximal matching in G, then  $|M| \le \alpha'(G) \le 2|M|$ .
  - b) For each positive integer k, find a graph G with  $\alpha'(G) = 2k$ , and having a maximal matching M with |M| = k.