Graph Theory Prelim 2013

- 1. (a) Define the terms path and connected.
 - (b) Prove that if G is a connected graph, then any two paths of maximum length in G have a common vertex.
 - (c) What simple graphs have the property that every two edges have exactly one vertex in common? Prove your answer to be true.
- 2. All graphs in this question are simple. If H is a spanning subgraph of G (a subgraph of G with V(H) = V(G)), the relative complement of H in G is defined to be the spanning subgraph of G whose edge set is $E(G) \setminus E(H)$. If G is a complete graph, then this graph is called the complement of H.
 - (a) If k is a positive integer, and H is a subgraph of the complete bipartite graph $K_{2,k}$, prove that H is isomorphic to its relative complement in $K_{2,k}$ if and only if H has exactly k edges.
 - (b) Consider the following graph H on nine vertices: its vertices are the nine cells of a three by three checkerboard, and two different vertices are adjacent if and only if they lie in either the same row, or the same column. Prove that H is isomorphic to its complement.
- 3. (a) Let G be an n-vertex graph. Denote by $\alpha(G)$ the maximum size of an independent set in G, and denote by $\tau(G)$ the minimum size of a $vertex\ cover$ in G (a set of vertices S in G such that every edge in G is incident to at least one vertex in S).
 - i. Prove that $\tau(G) + \alpha(G) = n$.
 - ii. Prove that if G is simple and triangle-free, then

$$|E(G)| \le \alpha(G) \cdot \tau(G)$$

- (b) Use part (a) to prove that an *n*-vertex triangle-free simple graph has at most $\frac{n^2}{4}$ edges. (This result is part of *Mantel's Theorem*, which asserts, in addition, that if G is a triangle-free n-vertex simple graph, then $|E(G)| = \lfloor \frac{n^2}{4} \rfloor$ if and only if $G \approx K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$).
- (c) State Turán's Theorem and explain briefly how it generalizes Mantel's Theorem.
- 4. (a) Suppose that n > 1 and $0 < d_1 \le d_2 \le \cdots \le d_n$ are integers. Prove that there is a loopless multigraph on vertices v_1, \ldots, v_n in which v_i has degree d_i , $i = 1, \ldots, n$, if and only if
 - i. $\sum_{j=1}^{n} d_j$ is even, and
 - ii. $\sum_{j=1}^{n-1} d_j \ge d_n.$
 - (b) Suppose that n > 1 and $0 < p_1 \le \cdots \le p_n$ are integers. Give, with proof, necessary and sufficient conditions for K_{p_1,\ldots,p_n} to have a perfect matching $(K_{p_1,\ldots,p_n}$ is the *complete multipartite* graph consisting of n independent pairwise disjoint sets of vertices with sizes p_1,\ldots,p_n , respectively, where every pair of vertices in different sets is joined by an edge).
 - (c) Suppose that $0 < p_1 \le p_2 \le p_3 \le p_4 \le p_5$ are integers. Find, in terms of p_1, \ldots, p_5 , the number of edges in a smallest maximal matching in $K_{p_1, p_2, p_3, p_4, p_5}$.