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Note: I have substituted F™*™ for the notation M, ,,(F) that I used in class.

Both denote the set of all m xn matrices with entries from F.

1. Consider the vector (a1, az, ..., a,)" where each a; € C. Let V (a1, az,...,ay,)
denote the n x n matrix, known as a Valdermonde matrix, whose (z, j)-th

term is a;'»_l for each ¢ and j such that 1 <4,j < n. Prove that
det(V(ay,az,...,a,)) = (—=1)" H(aj —a;) VYai,ag,...,a, €C.
i<j
Now consider the n x n matrix W(ay,as,...,a,) such that for each i,
1<i<n—1,and j, 1 < j < n, the (i, j)-th term is a;‘-*l, while the (n, j)-th

term is a7 for each j. For example,
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Prove that
det(W(ay,as,...,a,)) = (—1)" H(ai —aj)(a +az+ - +ap).
i<j

2. Suppose A € C™*™ and B € C™**". The tensor produce of A and B,
denoted by A ® B, is the mn x mn matrix whose (4, j)-th n x n block is

a;jB, where A = [a;;]. For example, if A = [a;;] is a 2 X 2 matrix, then

auB algB
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A®B=

Prove each of the following in the general case ( arbitrary m, and n ).
Assume that A,C € C™*™ and B, D € C"*",

(a.) (A® B)(C® D) =(AC)® (BD),

(b.) det(A ® B) = (det(A))™(det(B))™.
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Suppose V is a complex inner product space of dimension m, and m > 0.
Let U and W be subspaces of V, and assume that wi,ws,...,w, span
W+, while {uy,us,...,u;} is a basis for U. Let M denote that p x ¢
matrix whose (,7)-th term is (w;,u;) where (-,-) is the inner product on
V. Prove the following.

(a.) dim(U N W) = dim(ker(M)).

(b.) dim(U NW) =t — rank(M).

. Let p(x) = 2° — 1. Suppose D is an nxn real symmetric matrix such that

P(D) = 0. Must it be true that D=17 Either provide proof, or disprove

via counterexample.

Give an example of a pair of n xn non-zero real matrices that have the
same minimal polynomial but are not similar. Prove that your example is

correct.

Characterize all complex unitary matrices whose minimal and character-

istic polynomials are the same.

Suppose O is an nxn real orthogonal matrix. This means O € R™*™ and
that O'O = OO = I. Prove that there exists a real orthogonal matrix Q)
such that Q*OQ is a direct sum of 1 x 1 and 2 x 2 orthogonal matrices.

Suppose A, B € C"*", and both A and B are diagonalizable. Prove that
AB is diagonalizable if and only if A and B commute.

Suppose A, B € C™"*", What is the relationship between the characteristic
polynomial of AB and the characteristic polynomial of BA. State and

prove the appropriate theorm.

Suppose A € C™*" and A is Hermitian and positive semi-definite. Use
Schur’s lemma to prove that there exists X € C™"*™ such that A = X*X.

Suppose A, B € C" ™ and both A and B are Hermitian and positive
semi-definite. Show that each eigenvalue of AB is real and non-negative.
Does this generalize to three matrices A, B, and C? In other words, if
A,B,C € C**™ are Hermitian and positive semi-definite, then is it true
that each eigenvalue of ABC' is real and non-negative? Prove or give a
counterexample. Hint: Consider the case where C is a positive diagonal

matrix.
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What do you know about nxn real matrices with positive entries? Give the
most significant facts, particularly with respect to eigenvalues, eigenvec-

tors, spectral radius etc. Which results extend to non-negative matrices?
Suppose A € C"*™ and let

0 A
A* 0

(a) Show that det(B) = (—1)"|det(A)|?>. (b.) Find the eigenvalues of
M in terms of the eigenvalues of A. (c.) Why can M not be positive

semi-definite?

Suppose A€C™*™ and A is normal. (a.) Prove that a number A € C is an
eigenvalue of A if and only if ) is an eigenvalue of A*. (b.) Show that the
eigenspace of A associated with eigenvalue A is the same as the eigenspace
of A* associated with eigenvalue A. (c.) Prove that if A\ and y are distinct
eigenvalues of A, then the corresponding eigenspaces are orthogonal with
respect to standard inner product on C". (d.) Using the above prove that
if A is normal, then there exists a unitary matrix U such that U*AU is a

diagonal matrix. (e.) Is the converse true?

Suppose F C C™*™. Under what conditions is it true that there exists a
single unitary matrix U such that U*AU is upper triangular for all A€ F?
State and prove a theorem that gives sufficient conditions under which

members of F are simultaneously unitarily upper triangularizable.
Carefully state the Cauchy interlacing theorem for Hermitian matrices.

Suppose D € R"*", and D = [d;;] has non-negative entries. (a.) Show
that if each row of D sums to r, where r is a positive real number, then
the spectral radius of D is r. (b.) Suspend the assumption that the rows
of D sum to the same number and show that the spectral radius of D,

p(D), is not less than the minimum row sum. That is, show that

Hint: Let r; denote the i-th row sum of D and consider the matrix D=\D
where A is the diagonal matrix whose diagonal entries are the reciprocals of

the numbers r;. The case where some r; =0 must be considered separately.



What do you know about the spectral radius of D. Let r denote the
minimum of the 7;, and let D denote (1/r)D. What is the relationship
between D and D?



