Prelim: Linear Algebra and Matrix Theory

Thomas H. Pate

August, 2013

Note: I have substituted $\mathbb{F}^{m \times n}$ for the notation $\mathcal{M}_{m,n}(\mathbb{F})$ that I used in class. Both denote the set of all $m \times n$ matrices with entries from \mathbb{F} .

1. Consider the vector $(a_1, a_2, \ldots, a_n)^t$ where each $a_i \in \mathbb{C}$. Let $V(a_1, a_2, \ldots, a_n)$ denote the $n \times n$ matrix, known as a Valdermonde matrix, whose (i, j)-th term is a_j^{i-1} for each i and j such that $1 \le i, j \le n$. Prove that

$$\det(V(a_1, a_2, \dots, a_n)) = (-1)^n \prod_{i < j} (a_j - a_i) \quad \forall a_1, a_2, \dots, a_n \in \mathbb{C}.$$

Now consider the $n \times n$ matrix $W(a_1, a_2, \ldots, a_n)$ such that for each i, $1 \le i \le n-1$, and j, $1 \le j \le n$, the (i, j)-th term is a_j^{i-1} , while the (n, j)-th term is a_j^n for each j. For example,

$$W(x, y, z) = \begin{bmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{bmatrix}.$$

Prove that

$$\det(W(a_1, a_2, \dots, a_n)) = (-1)^n \prod_{i < j} (a_i - a_j)(a_1 + a_2 + \dots + a_n).$$

2. Suppose $A \in \mathbb{C}^{m \times m}$ and $B \in \mathbb{C}^{n \times n}$. The tensor produce of A and B, denoted by $A \otimes B$, is the $mn \times mn$ matrix whose (i, j)-th $n \times n$ block is $a_{ij}B$, where $A = [a_{ij}]$. For example, if $A = [a_{ij}]$ is a 2×2 matrix, then

$$A \otimes B = \left[\begin{array}{cc} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{array} \right].$$

Prove each of the following in the general case (arbitrary m, and n). Assume that $A, C \in \mathbb{C}^{m \times m}$ and $B, D \in \mathbb{C}^{n \times n}$.

- (a.) $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$,
- (b.) $\det(A \otimes B) = (\det(A))^n (\det(B))^m$.

- 3. Suppose V is a complex inner product space of dimension m, and m > 0. Let U and W be subspaces of V, and assume that w_1, w_2, \ldots, w_p span W^{\perp} , while $\{u_1, u_2, \ldots, u_t\}$ is a basis for U. Let M denote that $p \times t$ matrix whose (i, j)-th term is $\langle w_i, u_j \rangle$ where $\langle \cdot, \cdot \rangle$ is the inner product on V. Prove the following.
 - (a.) $\dim(U \cap W) = \dim(\ker(M))$.
 - (b.) $\dim(U \cap W) = t \operatorname{rank}(M)$.
- 4. Let $p(x) = x^5 1$. Suppose D is an $n \times n$ real symmetric matrix such that P(D) = 0. Must it be true that D = I? Either provide proof, or disprove via counterexample.
- 5. Give an example of a pair of $n \times n$ non-zero real matrices that have the same minimal polynomial but are not similar. Prove that your example is correct.
- 6. Characterize all complex unitary matrices whose minimal and characteristic polynomials are the same.
- 7. Suppose \mathcal{O} is an $n \times n$ real orthogonal matrix. This means $\mathcal{O} \in \mathbb{R}^{n \times n}$ and that $\mathcal{O}^t \mathcal{O} = \mathcal{O} \mathcal{O}^t = I$. Prove that there exists a real orthogonal matrix Q such that $Q^t \mathcal{O} Q$ is a direct sum of 1×1 and 2×2 orthogonal matrices.
- 8. Suppose $A, B \in \mathbb{C}^{n \times n}$, and both A and B are diagonalizable. Prove that AB is diagonalizable if and only if A and B commute.
- 9. Suppose $A, B \in \mathbb{C}^{n \times n}$. What is the relationship between the characteristic polynomial of AB and the characteristic polynomial of BA. State and prove the appropriate theorm.
- 10. Suppose $A \in \mathbb{C}^{n \times n}$ and A is Hermitian and positive semi-definite. Use Schur's lemma to prove that there exists $X \in \mathbb{C}^{n \times n}$ such that $A = X^*X$.
- 11. Suppose $A, B \in \mathbb{C}^{n \times n}$ and both A and B are Hermitian and positive semi-definite. Show that each eigenvalue of AB is real and non-negative. Does this generalize to three matrices A, B, and C? In other words, if $A, B, C \in \mathbb{C}^{n \times n}$ are Hermitian and positive semi-definite, then is it true that each eigenvalue of ABC is real and non-negative? Prove or give a counterexample. Hint: Consider the case where C is a positive diagonal matrix.

- 12. What do you know about $n \times n$ real matrices with positive entries? Give the most significant facts, particularly with respect to eigenvalues, eigenvectors, spectral radius etc. Which results extend to non-negative matrices?
- 13. Suppose $A \in \mathbb{C}^{n \times n}$, and let

$$B = \left[\begin{array}{cc} 0 & A \\ A^* & 0 \end{array} \right].$$

- (a) Show that $det(B) = (-1)^n |det(A)|^2$. (b.) Find the eigenvalues of M in terms of the eigenvalues of A. (c.) Why can M not be positive semi-definite?
- 14. Suppose $A \in \mathbb{C}^{n \times n}$ and A is normal. (a.) Prove that a number $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $\bar{\lambda}$ is an eigenvalue of A^* . (b.) Show that the eigenspace of A associated with eigenvalue λ is the same as the eigenspace of A^* associated with eigenvalue $\bar{\lambda}$. (c.) Prove that if λ and μ are distinct eigenvalues of A, then the corresponding eigenspaces are orthogonal with respect to standard inner product on \mathbb{C}^n . (d.) Using the above prove that if A is normal, then there exists a unitary matrix U such that U^*AU is a diagonal matrix. (e.) Is the converse true?
- 15. Suppose $\mathcal{F} \subset \mathbb{C}^{n \times n}$. Under what conditions is it true that there exists a single unitary matrix U such that U^*AU is upper triangular for all $A \in \mathcal{F}$? State and prove a theorem that gives sufficient conditions under which members of \mathcal{F} are simultaneously unitarily upper triangularizable.
- 16. Carefully state the Cauchy interlacing theorem for Hermitian matrices.
- 17. Suppose $D \in \mathbb{R}^{n \times n}$, and $D = [d_{ij}]$ has non-negative entries. (a.) Show that if each row of D sums to r, where r is a positive real number, then the spectral radius of D is r. (b.) Suspend the assumption that the rows of D sum to the same number and show that the spectral radius of D, $\rho(D)$, is not less than the minimum row sum. That is, show that

$$\rho(D) \ge \min_{1 \le i \le n} \left\{ \sum_{j=1}^{n} d_{ij} \right\}.$$

Hint: Let r_i denote the *i*-th row sum of D and consider the matrix $\tilde{D} = \lambda D$ where λ is the diagonal matrix whose diagonal entries are the reciprocals of the numbers r_i . The case where some $r_i = 0$ must be considered separately.

What do you know about the spectral radius of \tilde{D} . Let r denote the minimum of the r_i , and let \hat{D} denote (1/r)D. What is the relationship between \tilde{D} and \hat{D} ?