Name (readable):	
,	
Signature:	

Preliminary Examination in ORDINARY DIFFERENTIAL EQUATIONS January 2010

Instruction. 90 points are required for passing, 150 points for a "100% performance". Time: 3 hours.

1. Find the principal fundamental matrix solution of

$$\begin{cases} \dot{x} = x - y + z, \\ \dot{y} = -x + y - z, \\ \dot{z} = x - y + z. \end{cases}$$

$$(1)$$

20 pts.

2. Let $n \in \mathbb{N}$, $f \in C^1(\mathbb{R}^n, \mathbb{R}^n)$, $V \in C^1(\mathbb{R}^n, \mathbb{R})$, $\lim_{\|x\| \to \infty} V(x) = \infty$, and $f(x) \cdot \nabla V(x) \leq 0$ for $x \in \mathbb{R}^n$. Denote by φ the solution flow of

$$\dot{u} = f \circ u, \tag{2}$$

and set $Z := \{x \in \mathbb{R}^n : \nabla V(x) \cdot f(x) = 0\}.$

- a. Show that $t^+(x) = \infty$ for $x \in \mathbb{R}^n$ and that $\gamma^+(x)$ is bounded for all $x \in \mathbb{R}^n$.
- b. Show that the ω -limit set $\omega(x)$ of $\varphi(\cdot, x)$ is a subset of Z for $x \in \mathbb{R}^n$.
- c. Show that (2) has no nontrivial periodic solution, if Z is an isolated set. (Z is called isolated, iff for $z \in Z$, there exists an $r \in (0, \infty)$ with $Z \cap B_z(r) = \{z\}$.)

30 pts.

- 3. a. State Gronwall's inequality.
 - b. State a variation of parameters formula.

Let $n \in \mathbb{N}$, $A, B \in C([0, \infty), \mathfrak{M}_{n,n})$, and Φ and Ψ be fundamental matrix solutions of $\dot{x}(t) = A(t)x(t)$ and $\dot{y}(t) = B(t)y(t)$, respectively. Assume $\sup\{\|\Phi(t)\|_{n,n}: t \geq 0\} < \infty$ and $\sup\{\|\Phi(t)^{-1}\|_{n,n}: t \geq 0\} < \infty$.

- c. Prove that $u \equiv 0$ is the only solution $u \in C^1([0,\infty),\mathbb{R}^n)$ of $\dot{x}(t) = A(t)x(t)$ which satisfies $\lim_{t \to \infty} u(t) = 0$.
- d. Assume that $\int\limits_0^\infty \|A(t)-B(t)\|_{n,n} \ dt < \infty$. Show that $\sup\{\|\Psi(t)\|_{n,n}: t \geq 0\} < \infty$.

30 pts.

4. Consider

$$\begin{cases} \dot{x} = -(x^2 + y^2)y\\ \dot{y} = x + y - (x^2 + y^2)y \end{cases}$$
 (3)

- a. Verify that $X: t \mapsto (\cos(t), \sin(t))$ is a (2π) -periodic solution of (3).
- b. Prove that X is orbitally stable under the solution flow of (3).

25 pts.

5. a. Define the concept "center manifold" and state the center manifold theorem.

b. Let $f \in C^2(\mathbb{R}^3, \mathbb{R}^3)$, $f(\mathbf{0}) = \mathbf{0}$, $g \in C^2(\mathbb{R}^3, \mathbb{R})$, $S := \{\mathbf{x} : g(\mathbf{x}) = 0\}$, $\nabla g(\mathbf{x}) \neq 0$ for $\mathbf{x} \in S$, and $f(\mathbf{x}) \cdot \nabla g(\mathbf{x}) = 0$ for $\mathbf{x} \in S$. Denote by φ the solution flow of $\dot{u} = f \circ u$. Assume that

- ightharpoonup 0 is an isolated zero of f;
- ▶ $0 \in \sigma((Df)(0))$ with a 2-dimensional eigenspace E;
- \blacktriangleright (Df)(0) has an eigenvalue with nonzero real part;
- $ightharpoonup z \cdot \nabla g(\mathbf{0}) = 0 \text{ for } z \in E.$

Prove that S is a center manifold of φ at 0.

25 pts.

6. Let $n \in \mathbb{N}$, $U \subseteq \mathbb{R}^n$ be open, $z \in U$, and $f \in C^1(U,\mathbb{R}^n)$ with f(z) = 0. Denote by φ the solution flow of $\dot{u} = f \circ u$, and assume that z is asymptotically stable under φ . Prove that $\{x \in U : z \in \omega(x)\}$ is open. Give an counterexample if the stability assumption is dropped.

20 pts.

7. Consider

$$\begin{cases} \dot{x} = -x^3 \\ \dot{y} = -y + x^2 \end{cases} \tag{4}$$

- a. Show that (4) has no non-constant periodic solution.
- b. Show that (0,0) is the only rest point of the solution flow φ of (4) and determine the stable and center spaces of the linearization at (0,0).
- c. Prove that (0,0) is a stable rest-point of φ .

- **8. a.** Define the concept "global attractor" and state the existence theorem for a global attractor.
 - **b.** Denote by φ the solution flow of

$$\begin{cases} \dot{x} = x(1 - x^2 - y^2) \\ \dot{y} = y(1 - \frac{x^2}{4} - y^2) \end{cases}$$
 (5)

- (i) Find the nullclines for (5) and rest points of φ .
- (ii) For each rest point, linearize (5) at the rest point and determine the stable, unstable and center spaces of the linearization.
- (iii) Show that φ has a global attractor.
- (iv) Determine positively invariant sets under φ and conclude that φ has no regular periodic orbit.
- (v) Describe an under φ invariant compact set with (0,0) as interior point by means of unstable manifolds.
- (vi) Use (v), possibly without proof, do describe the global attractor.

70 pts.