
Dr. Paul G. Schmidt September 21, 2008

Preliminary Doctoral Examination in Partial Differential Equations

Name:

Work Problems 1 and 2 and at least one of Problems 3–5. No books or notes are allowed.

Throughout, RN is Euclidean N -space, with N ∈ N, N ≥ 2, and Ω is a bounded domain in RN
with boundary ∂Ω. Whenever it exists, n̂ denotes the unit outward normal vector field on ∂Ω.

Problem 1

(a) Suppose that u, v ∈ L1
loc(Ω), α = (α1, . . . , αN) ∈ ZN+ . What do we mean when we say that

Dαu = v in the weak sense? (Notation: Dα = ∂α1
1 · · · ∂

αN

N )

(b) Given p ∈ [1,∞] and m ∈ Z+, give the definition of the Sobolev space Wm,p(Ω) and its norm,
denoted by ‖ · ‖m,p.

(c) What do we mean when we say that Ω is a Lipschitz domain?

(d) Suppose Ω is a Lipschitz domain and let p ∈ [1,∞), u ∈ W 1,p(Ω). Then u|∂Ω is defined in the
sense of traces and belongs to Lp(∂Ω). Explain what this means and why it is true.

(e) Under the assumptions of (d), the boundary condition u = 0 on ∂Ω may be interpreted in
the sense of traces. There is another interpretation, equivalent under the assumptions of (d), that
applies to arbitrary domains, without any regularity condition. Explain!

(f) Assuming again that Ω is Lipschitz, let p ∈ [1,∞), u ∈ W 2,p(Ω). Then ∂u
∂n̂ is defined in the

sense of traces and belongs to Lp(∂Ω). Explain why.

(g) Assuming that Ω is Lipschitz, let p, p′ ∈ (1,∞), 1/p + 1/p′ = 1, u ∈ W 1,p(Ω), v̄ ∈ W 1,p′
(Ω)N,

φ ∈W 2,p(Ω), ψ ∈W 1,p′
(Ω). Integrate by parts:

∫
Ω

(∇u) · v̄ = . . . ,
∫

Ω
(∆φ)ψ = . . .

(h) Assuming that Ω is Lipschitz, let p, q ∈ [1,∞). Under what condition on p and q is W 1,p(Ω)
contained in Lq(Ω)? Under what conditions is the embedding continuous or even compact?

(i) Suppose Ω is such that W 1,p(Ω) embeds compactly into Lp(Ω). Let p ∈ [1,∞) and assume that
| · | is a continuous seminorm on W 1,p(Ω) with |1Ω| 6= 0, where 1Ω is the constant function with
value 1 on Ω. For u ∈ W 1,p(Ω), define |u|1,p := (

∑N
j=1 ‖∂ju‖pp)1/p and ‖u‖ := (|u|p + |u|p1,p)1/p.

Prove that ‖ · ‖ is a norm on W 1,p(Ω), equivalent to ‖ · ‖1,p. Conclude that, restricted to the
hyperplane {u ∈ W 1,p(Ω) |

∫
Ω
u = 0} or any other closed complement of R1Ω in W 1,p(Ω), | · |1,p

and ‖ · ‖1,p are equivalent norms.

Hint. The only difficulty is to show that there exists a constant c such that ‖u‖1,p ≤ c‖u‖ for all
u ∈ W 1,p(Ω). Assuming the contrary, construct a sequence (un) in W 1,p(Ω) with ‖un‖1,p = 1 for
all n and ‖un‖ → 0 as n → ∞. Using the compactness of the embedding of W 1,p(Ω) into Lp(Ω),
argue that a subsequence of (un) converges with respect to ‖ · ‖1,p, necessarily with limit 0.
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Problem 2

(a) Suppose that Ω is Lipschitz. Given λ ∈ R and a function f ∈ L2(Ω), consider the Neumann
problem

(Pλ) −∆u+ λu = f in Ω,
∂u

∂n̂
= 0 on ∂Ω.

Recall that by a strong solution of (Pλ), we mean a function u ∈ H2(Ω), satisfying −∆u+ λu = f
in the sense of weak derivatives and ∂u

∂n̂ = 0 in the sense of traces. Show that a function u ∈ H2(Ω)
is a strong solution of (Pλ) if and only if

(∗)
∫

Ω

{
(∇u) · (∇v) + λuv

}
=
∫

Ω

fv for all v ∈ H1(Ω).

(b) Recall that a function u ∈ H1(Ω) that satisfies (∗) is called a weak solution of (Pλ). More
generally, given λ ∈ R and a functional φ ∈ H1(Ω)∗, the weak problem associated with (Pλ) is to
find u ∈ H1(Ω) such that

(Qλ)
∫

Ω

{
(∇u) · (∇v) + λuv

}
= φ(v) for all v ∈ H1(Ω).

Prove that if λ > 0, then Problem (Qλ) is well posed , that is, for every φ ∈ H1(Ω)∗ there is a unique
solution u ∈ H1(Ω), and the mapping φ 7→ u is continuous with respect to the norm topologies of
H1(Ω)∗ and H1(Ω).

(c) For the case λ = 0, prove the following: Given φ ∈ H1(Ω)∗, Problem (Q0) has a solution in
H1(Ω) if and only if φ(1Ω) = 0, where 1Ω is the function with constant value 1 on Ω. Further, if
φ(1Ω) = 0 and u0 is one solution of (Q0), then the set of all solutions is given by u0 + R1Ω. In
particular, if φ(1Ω) = 0, then (Q0) has a unique solution u0 in the orthogonal complement of R1Ω

in H1(Ω), and the mapping φ 7→ u0 is continuous with respect to the norm topologies of H1(Ω)∗

and H1(Ω).

(d) For arbitrary λ ∈ R, Problem (Qλ) satisfies a Fredholm alternative. State precisely what this
means, along the same lines as in (b) and (c), and give a proof.

(e) Given aij , bi, ci, d ∈ L∞(Ω), for i, j ∈ {1, . . . , N}, let ¯̄a := (aij)Ni,j=1, b̄ := (bi)Ni=1, c̄ := (ci)Ni=1,
and consider the following generalization of Problem (Qλ): Given φ ∈ H1(Ω)∗, find u ∈ H1(Ω)
such that

(Q̃λ)
∫

Ω

{
(¯̄a∇u+ b̄u) · ∇v + (c̄ · ∇u+ du+ λu)v

}
= φ(v) for all v ∈ H1(Ω).

Assuming sufficient regularity of the coefficients, (Q̃λ) is the weak version of a boundary-value
problem (P̃λ). Identify the problem (P̃λ). Give sufficient conditions to guarantee that Problem
(Q̃λ) satisfies a Fredholm alternative. Skipping the technical details, explain how this is proved.
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Problem 3
Assume that Ω is of class C1 and let aij , bi ∈ C(Ω̄) with aij = aji for i, j ∈ {1, . . . , N}. Suppose
there exists η ∈ (0,∞) such that

∑N
i,j=1 aij(x)ξiξj ≥ η|ξ|2 for all x ∈ Ω̄ and ξ ∈ RN. Define

L := −
∑N
i,j=1 aij∂ij +

∑N
i=1 bi∂i, let u ∈ C2(Ω) ∩ C(Ω̄), and suppose that Lu ≥ 0 in Ω.

(a) What are the assertions of the weak maximum principle and the strong maximum principle?

(b) Given x0 ∈ ∂Ω such that u(x) > u(x0) for all x ∈ Ω and assuming that u ∈ C1(Ω̄), what is the
assertion of Hopf’s boundary-point lemma?

(c) Given f ∈ C(Ω), g ∈ C(∂Ω), show that the Dirichlet problem Lv = f in Ω, v = g on ∂Ω cannot
have more than one solution in C2(Ω) ∩ C(Ω̄). Also, show that any two solutions of the Neumann
problem Lv = f in Ω, ∂v

∂n̂ = g in C2(Ω) ∩ C1(Ω̄) differ by at most an additive constant.

Problem 4
(a) Let X be a Banach space, S = (St)t∈R+ a family of bounded linear operators from X into itself.
What do we mean when we say that S is a strongly continuous contraction semigroup on X? What
do we mean by the generator of S?

(b) Assuming that Ω is of class C2, let X := L2(Ω) and define A : D(A) ⊂ X → X by D(A) :=
H2(Ω) ∩ H1

0 (Ω) and Au := ∆u for u ∈ D(A). Then A is the generator of a strongly continuous
contraction semigroup S on X. Outline a proof. Hint. Recalling the Hille-Yosida theorem, what
needs to be shown?

(c) Using the notation introduced in (b), let u0 ∈ D(A) and define u : R+ → X by u(t) := Stu0 for
t ∈ R+. Explain in what sense u is a solution of the initial-boundary value problem

ut −∆u = 0 in (0,∞)× Ω,
u = 0 on (0,∞)× ∂Ω,
u = u0 on {0} × Ω.

Problem 5
Given T ∈ (0,∞), f ∈ L2((0, T ) × Ω), g ∈ H1

0 (Ω), and h ∈ L2(Ω), consider the initial-boundary
value problem 

utt −∆u = f in (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,
u = g, ut = h on {0} × Ω.

(a) Under the above conditions, the initial-boundary value problem has a unique weak solution u.
In what sense? (Be precise!)

(b) Assuming sufficient regularity, u allows an expansion of the form u(t, x) =
∑∞
j=1 αj(t)φj(x),

for (t, x) ∈ (0, T )×Ω, where (φj) is an orthonormal basis of L2(Ω), consisting of eigenfunctions of
the Dirichlet problem −∆u = λu in Ω, u = 0 on ∂Ω. Let (λj) be the corresponding sequence of
eigenvalues. Identify the initial-value problems that determine the coefficients αj .

(c) Suppose f is given by f(t, x) := A(x) cos(ωt) for (t, x) ∈ (0,∞) × Ω, with A ∈ L2(Ω) and
ω ∈ (0,∞). What is the form of the coefficients αj in this case? (Be specific!) What can you
say about the behavior of u for large values of t if ω2 = λn for some n ∈ N? Give a physical
interpretation of this phenomenon, for example, in terms of forced vibrations of a flexible membrane.

3


