Preliminary Examination in Analysis

8:30 am to 12:00 pm, July 28, 2025

Name:

- 1. Let X be a nonempty set, \mathcal{E} and \mathcal{M} nonempty collection of subsets of X, and μ a mapping from \mathcal{M} into $[0, \infty]$.
- (a) (6 points) Define what it means to say that \mathcal{M} is a σ -algebra on X. What is the σ -algebra generated by \mathcal{E} ? Further, assuming that \mathcal{M} is a σ -algebra, define what it means to say that μ is a measure on \mathcal{M} .
- (b) (8 points) What is the Borel σ -algera, denoted by $\mathcal{B}_{\mathbb{R}}$, on \mathbb{R} ? Prove that the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$ on \mathbb{R} is generated by $\mathcal{E} = \{(a, b] : a, b \in \mathbb{R}, a < b\}$.
- **2.** Let X be a nonempty set and $\mathcal{P}(X)$ the collection of all the subsets of X. Let $\mathcal{A}_0 \subset \mathcal{P}(X)$ be an algebra on X, and $\mu_0 : \mathcal{A}_0 \to [0, \infty]$ be a premeasure on \mathcal{A}_0 (i.e. $\mu_0(\emptyset) = 0$ and if $\{A_j\}_{j=1}^{\infty}$ is a sequence of disjoint sets in \mathcal{A}_0 and $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}_0$, then $\mu_0(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu_0(A_j)$.
- (a) (6 points) Define what it means to say that $\mu^* : \mathcal{P}(X) \to [0, \infty]$ is an outer measure on X and what it means to say that a set $A \subset X$ is μ^* -measurable. What is the outer measure induced from μ_0 ?
- (b) (8 points) Let m be the Lebesgue measure on \mathbb{R} . Suppose that $A \subset \mathbb{R}$ is Lebesgue measurable, $m(A) < \infty$, and for every interval I, $m(A \cap I) \leq \frac{1}{2}m(I)$. Prove that A has Lebesgue measure zero.
- **3.** Let (X, \mathcal{M}, μ) be a measure space and $\mathbb{R} = [-\infty, \infty]$.
- (a) **(6 points)** State the Monotone Convergence Theorem, Fatou's Lemma, and the Dominated Convergence Theorem.

- (b) (8 points) If $\{f_n\}$ is a sequence of measurable functions on X, prove that the set $\{x \in X \mid \lim_{n\to\infty} f_n(x) \text{ exists}\}$ is a measurable set (it is said that $\lim_{n\to\infty} f_n(x) \text{ exists if } -\infty < \liminf_{n\to\infty} f_n(x) = \limsup_{n\to\infty} f_n(x) < \infty$).
- **4.** Let (X, \mathcal{M}, μ) be a measure space.
- (a) **(6 points)** State the definition of the space $L^p(X, \mathcal{M}, \mu)$ and its norm $\|\cdot\|_p$ for $1 \leq p < \infty$, and state the definition of the space $L^{\infty}(X, \mathcal{M}, \mu)$ and its norm $\|\cdot\|_{\infty}$.
- (b) (8 points) If $f \in L^p(X, \mathcal{M}, \mu) \cap L^{\infty}(X, \mathcal{M}, \mu)$ for some $1 \leq p < \infty$, prove that $f \in L^q(X, \mathcal{M}, \mu)$ for any q > p and $\lim_{q \to \infty} ||f||_q = ||f||_{\infty}$.
- **5.** Let (X, \mathcal{M}, μ) be a measure space and $f, f_1, f_2, \dots \in L^p(X, \mathcal{M}, \mu)$ $(1 \leq p < \infty)$.
- (a) (6 points) Define what it means to say that i) f_n converges to f in measure μ , ii) f_n converges to f in $L^p(X, \mathcal{M}, \mu)$, iii) f_n converges to f weakly in $L^p(X, \mathcal{M}, \mu)$.
- (b) (8 points) If $|f_n| \leq g \in L^p(X, \mathcal{M}, \mu)$ and f_n converges to f in measure, prove that f_n converges to f in $L^p(X, \mathcal{M}, \mu)$ (Hint: You can use the fact that if f_n converges to f in measure μ , then there is a subsequence $\{f_{n_j}\}$ such that f_{n_j} converges to f almost everywhere with respect to μ).
- **6.** Let (X, \mathcal{M}) be a measurable space. Let $f \in L^1_{loc}(\mathbb{R}^n)$.
- (a) (6 points) Define what it means to say that $\nu : \mathcal{M} \to [-\infty, \infty]$ is a signed measure on \mathcal{M} and state the Lebesgue-Radon-Nikodym Theorem. State the Lebesgue Differentiation Theorem.
- (b) (8 points) What is the Lebesgue set L_f of f? If f is continuous at x, prove that $x \in L_f$.

- 7. Let $-\infty < a < b < \infty$ and $f : [a, b] \to \mathbb{R}$.
- (a) (6 points) Define what it means to say that f is of bounded variation on [a, b] and that f is absolutely continuous on [a, b].
- (b) (8 points) If $f:[a,b] \to \mathbb{R}$ is absolutely continuous, prove that f is of bounded variation on [a,b].
- **8.** (a) **(6 point)** State the Arzelá-Ascoli Theorem (for a family of continuous functions on a compact metric space X), and the Uniform Boundedness Principle.
- (b) (8 points) If X is an infinite-dimensional Hilbert space, prove that every orthonormal sequence in X converges weakly to 0.