Real Analysis

Prelim Exam 2022

Auburn University Auburn, AL **Time:** 10:00-13:00, Aug. 9th

Classroom: Parker Hall 250

Committee: Le Chen (adm)

Selim Sukhtaiev Richard Zalik

Print Full (First, Last) Name:

Instructions:

- 1. Folland's textbook is allowed but lecture notes and any electronic devices are not allowed during the exam.
- 2. Please work out the problems in the space provided and show your answers clearly and legibly. You will be provided draft papers, which won't be graded.
- 3. Coverage: One problem for each chapter and the following sessions will be covered:

1.1	Introduction	
1.2	σ -algebras	
1.3	Measures 15 point	
1.4	Outer measures	
1.5	Borel measures on the real line	
2.1	Measurable functions	
2.2	Integration of nonnegative functions	
2.3	Integration of complex functions	
2.4	Modes of convergence	15 points
2.5	Product measures	
2.6	The n -dimensional Lebesgue integral	
2.7	Integration in polar coordinates	
3.1	Signed measures	
3.2	The Lebesgue-Radon-Nikodym theorem	
3.3	Complex measures	15 points
3.4	Differentiation on Euclidean space	
3.5	Functions of bounded variation	
4.1	Topological spaces	
4.2	Continuous maps	
4.3	Nets	15 points
4.4	Compact spaces	15 points
4.5	Locally compact Hausdorff spaces	
4.6	Two compactness theorems	
5.1	Normed vector spaces	
5.2	Linear functionals	
5.3	The Baire category theorem and its consequences	20 points
5.4	Topological vector spaces	20 points
5.5	Hilbert spaces	
6.1	Basic theory of L^p spaces	
6.2	The dual of L^p	
6.3	Some useful inequalities	20 points
6.4	Distribution functions and weak L^p	20 points
6.5	Interpolation of L^p spaces	

Mark: ((out of 100)	

Question 1 (15 points) If $E \in \mathcal{L}$ and m(E) > 0, for any $\alpha < 1$ there is an open interval I such that $m(E \cap I) > \alpha m(I)$.

Question 2 (15 points) Suppose $\{f_n\} \subset L^+$, $f_n \to f$ pointwise, and $\int f = \lim \int f_n < \infty$. Then, $\int_E f = \lim \int_E f_n$ for all $E \in \mathcal{M}$. Moreover, this need not be true if $\int f = \lim \int f_n = \infty$.

Question 3 (15 points) If E is a Borel set in \mathbb{R}^n , the density $D_E(x)$ of E at x is defined as (whenever the limit exists)

$$D_E(x) := \lim_{r \to 0} \frac{m \left(E \cap B(r, x) \right)}{m \left(B(r, x) \right)}.$$

- 1. Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.
- 2. Find one example of E and x such that $D_E(x)$ is a given number $\alpha \in (0,1)$.
- 3. Find one example of E and x such that $D_E(x)$ does not exist.

Question 4 (15 points) Let (X, ρ) be a metric space. A function $f \in C(X)$ is called Hölder continuous of exponent α with $\alpha > 0$ if the quantity

$$N_{\alpha}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}} < \infty.$$

Show that if X is compact, then the following set is compact in C(X):

$$\mathcal{F} := \left\{ f \in C(X) : \ \left| \left| f \right| \right|_u \leqslant 1 \text{ and } N_{\alpha}(f) \leqslant 1 \right\}.$$

Question 5 (15 points) Let $g \in L^2([0,1] \times [0,1])$ and define $L: L^2([0,1]) \to L^2([0,1])$ by $L(f)(x) = \int_0^1 g(x,y)f(y)dy$.

- 1. Show that $||L|| \leq \left(\int_0^1 \int_0^1 |g(x,y)|^2 dxdy\right)^{1/2}$.
- 2. Show that there exists an $f_0 \in L^2([0,1])$ such that $||L(f_0)||_{L^2([0,1])} = ||L||$.

Hints: For part 2, you may want to apply *Alaoglu's theorem*: If \mathcal{X} is a normed vector space, the closed unit ball $B^* = \{f \in \mathcal{X}^* : ||f|| \leq 1\}$ in \mathcal{X}^* is compact in the weak star topology.

Question 6 (20 points) If $0 < \alpha < n$, define an operator T_{α} on functions on \mathbb{R}^n by

$$T_{\alpha}f(x) = \int_{\mathbb{R}^n} |x - y|^{-\alpha} f(y) dy.$$

Show that T_{α} is weak type $(1,(n-\alpha)^{-1})$ and strong type (p,r) with respect to Lebesgue measure on \mathbb{R}^n , where

$$1 and $\frac{1}{r} = \frac{1}{p} - \frac{\alpha}{n}$.$$