
Applied Stochastic Processes Prelim

8 a.m. – 12 p.m., 07/27/2018

Based on MATH 7820-7830 taught in Fall 2017 and Spring 2018

There are five problems which may contain several questions listed as (a), (b), (c), etc. The work on

each problem will be assigned 10 points maximum, total 50. To pass the prelim 30 points are needed.

The work for each problem should start on a separate page. Please enumerate all pages, put your initials

on each page, and staple all. A stapler and blank paper are provided.

Previously prepared notes are allowed. They should be turned in, separately, with the exam. After the

exams are graded they will be returned to the students. In addition, there is no restriction on what can

be brought to the exam: calculators, laptops, tablets, etc., even books.

Final remarks:

• Some questions are “closed” and some questions are “open”.

– The closed questions are theorems to prove with the stated assumptions and theses.

– The open questions appear after phrases such as“give examples”, “discuss conditions”, “de-

scribe applications”, or “show a construction”, etc. A brief mini-essay of mathematical

nature, right to the point, is expected - yes, “brief” and “mini”! Please avoid unnecessary

or unrelated divagations.

• Please make your writing legible and transparent.

• Use suitable verbal comments to explain your steps. Especially, refer to the known theorems that

you apply in your reasoning. For example, while deriving a convergence result a phrase such as

“by the Lebesgue Dominated Convergence Theorem” should appear.

• All sets and functions that appear here are assumed to be suitably measurable. For example, if

you see T ⊂ R, then you know that it is tacitly assumed that T is a Borel set.
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Problem 1 - Poisson and related processes

.

Introduction.

By N(t) = Nt we denote the standard Poisson process on [0,∞) with unit intensity. A random Poisson

measure (a.k.a. a generalized Poisson process) on a measure space (T, T ,Λ) takes independent values

on disjoint sets and X(A) is Poisson with the intensity parameterΛ(A), A ∈ T . So Λ may be called

the intensity or control measure. For a connected T ⊂ R, 0 ∈ T,, we write X(t) = Xt = X[0, t].

Such processes are random point processes, i.e., they count random points, called signals, in particular

sets.

Let T ⊂ R be a Borel set. A continuous nondecreasing function C : T → [0,∞) is called a clock.

Then X(t)
def
= N(C(t)) is a generalized Poisson process on T with the control measure Λ.

Objectives.

(a) Given the intensity λ(x) =
1

x
, x > 0 (i.e., the density of Λ), find the clock C(t).

(a) Given the clock C(t) = tanπt, −1
2 < t < 1

2 , find the intensity function λ(x).

(c) In each case find the conditional probability of at least one signal in the interval (14 , 4] given there

was no signal in the interval (12 , 2].

(d) Give some examples with explanations of possible physical (or financial, or natural, or human-

made, etc.) phenomena that the above random Poisson measures in (a) and in (b) may serve as suitable

models.
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Problem 2 - Markov Chains

Introduction.

This is the classical Gambler’s Ruin Problem. The whole game follows the Bernoulli process of iid

two-outcome single games, played one at a time, where the win +1$ happens with probability p and the

loss −1$ happens with probability q = 1 − p. Let Xn denote the gambler’s fortune at game (or time)

n. The whole game is over when Xn = 0 or Xn = N for some predestined amount N . The gambler

starts with i$, i ∈ { 0, 1, ..., N }, which is the state space.

Objectives.

(a) Find the transition matrix and transition probabilities.

(b) Classify all states as transient or recurrent, with proofs or explanations.

(c) Show that eventually, i.e., at a finite time, the game will be over with probability 1. Denote by

fi (that is also a function of N , fi = fiN ) the probability that, starting at i, the gambler’s fortune

eventually will reach N . What is fN?

(d) Find a recursive relation between fi−1, fi, fi+1. Then solve for fi as a function of f1 (and of i

and p, of course).

(e) Finally, let N → ∞ and find the limit of fiN . Give an interpretation of the obtained outcome.

Why is this called “The Gambler’s Ruin Problem”?
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Problem 3 - Martingales and Lévy processes

Introduction

The characteristic function of a Lévy process Xt, t ∈ T ⊂ R, has the form E eiθXt = exp { tΨ(θ) } ,

related to the fundamental Lévy-Khinchin formula.

Objectives.

(a) There are several forms of the function Ψ(θ). Show a few examples and explain the differences

and similarities. Discuss the parameters and their uniqueness.

(b) Denote by X(A) the generalized increment of the process, if well defined. Let B ⊂ A. If the

process is integrable of mean 0, compute

E [X(B) |X(A) ] .

If you are not sure about the existence of X(A) for arbitrary Borel sets, use at least usual intervals.

What answer do you obtain when the assumption B ⊂ A is suppressed?

(c) Define the “exponential process” Yt(z) = exp { zXt − tΦ(z) } . Describe conditions and the

range of the parameter z under which this process is a martingale.

(d) Using major examples of Lévy processes (Poisson, stable, Gamma and symmetrized Gamma, and

Wiener, with or without deterministic trend) give explicit formulas for the exponential martingales, if

they exist. In particular, determine the cases when the partial derivatives ∂kY
∂zk

are also martingales.
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Problem 4 - Brownian Motion

Suppose that the assets A(t) at time t ≥ 0 of some financial institution vary at random, proportionally

to values of a standard Brownian motion, A(t)
D
= aBt (as stochastic processes). The institution files

for bankruptcy when the assets reach the debt −b, where b > 0. Let T = Tb denote the waiting time

for that event. That is,

Tb > t ⇐⇒ min
s≤t

A(s) > −b.

(a) Illustrate the above relation graphically.

(b) The main objective: Find the probability distribution of Tb,

(c) Show that Tb <∞ with probability 1 but ETb =∞.

Remark. It may help to notice that this problem is equivalent to the situation when the institution

pulls out of the market once its assets hit the positive level b. Also, it may help to strip the context of

financial connotations and proceed in an abstract way.
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Problem 5 - Stochastic integration

Using again at least three distinct examples of stochastic processes Xt on T ⊂ R, show the construction

of the integral

∫
T
f(t)X(dt). Usually T is an interval, the closed or open positive half line, or R. In

particular:

(a) your work should exhibit the distinction between the Lebesgue-Stieltjes integral and truly stochas-

tic integral (which does not exist in the former sense);

(b) examine the properties of the process Yt =

∫ t

0
f dX in regard to preservations of properties of

the integrand Xt. For example, if Xt is a martingale (or its increments are independent, or they are

uncorrelated, etc.), check if Yt is also a martingale (preserves the original property);

(c) In your examples show a potential area of applicability of stochastic integration as a suitable

model for real life phenomena.
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Problem 1 - Poisson and related processes

.

Introduction.

By N(t) = Nt we denote the standard Poisson process on [0,∞) with unit intensity. A random Poisson

measure (a.k.a. a generalized Poisson process) on a measure space (T, T ,Λ) takes independent values

on disjoint sets and X(A) is Poisson with the intensity parameterΛ(A), A ∈ T . So Λ may be called

the intensity or control measure. For a connected T ⊂ R, 0 ∈ T,, we write X(t) = Xt = X[0, t].

Such processes are random point processes, i.e., they count random points, called signals, in particular

sets.

Let T ⊂ R be a Borel set. A continuous nondecreasing function C : T → [0,∞) is called a clock.

Then X(t)
def
= N(C(t)) is a generalized Poisson process on T with the control measure Λ.

Objectives.

(a) Given the intensity λ(x) =
1

x
, x > 0 (i.e., the density of Λ), find the clock C(t).

(b)1 Given the clock C(t) = tanπt, −1
2 < t < 1

2 , find the intensity function λ(x).

(c) In each case find the conditional probability of at least one signal in the interval (1
4 , 4] given there

was no signal in the interval (1
2 , 2].

(d) Give some examples with explanations of possible physical (or financial, or natural, or human-

made, etc.) phenomena that the above random Poisson measures in (a) and in (b) may serve as suitable

models.

1originally there was a typo: “(a)”
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Problem 1 - Answers

This problem is conceptual and not computational. It’s focused on the distinction between the classical

concept of a stochastic process Xt versus stochastic measure X(A), even on the real line, even for usual

intervals A = (a, b]. The mathematical apparatus must be adapted to conform to the requirements

dictated by reality and potential applications. A student is expected to at least address the forthcoming

issue when the introduced concept of the “clock” is insufficient and thus must be re-interpreted.

The question (c) is closed.

One should distinguish between two meanings of the term “intensity”. The confusion originates from

the intersection of the probabilistic and analytic (or physical) terminology. First, it may (and often

does) denote the parameter of a Poisson random variable. Secondly, it may denote the density (e.g.,

the derivative if it exists):

Λ(a, b] =

∫ b

a
λ(x) dx.

So, Λ(A) appears in the former sense while λ(x) appears in the latter sense. Therefore, it is better to

distinguish the objects, calling the former the “control measure” while keeping the term “intensity” for

λ(x).

In addition, the “clock” function in (b) is negative for t < 0, contradicting the requirement of positivity.

The quick integration in (a) yields a function that is either negative or decreasing on some interval.

The point is that the given definition of the “clock” depends on the linear order of the real line while for

the measure Λ the order is irrelevant. The order is reflected only in intervals (a, b], where by convention

a ≤ b. The issue disappears away from the real line, e.g., while considering a Poisson measure on the

plane, which has no linear order that is compatible with the control measure. On the plane the concept

of a “clock” is meaningless.

While often X(t) = Xt = X[0, t] is used but this notation should be used cautiously. The existence of

random measure X(a, b] does not imply the existence (as a finite number) of X(0, t].

Such processes are random point processes, i.e., they count random points, called signals, in particular

sets.

A student should observe that the process X(t) = N(C(t)) has also independent increments since C(t)

is nondecreasing. Therefore the one-dimensional distributions determine the joint distributions of all

finite sequence of increments. It may help to write down the formula for the Poisson measure X(A),

a.k.a. generalized Poisson process, using the Laplace transform:

E e−θ(X(b)−X(a)) = e−Λ(a,b](1−e−θ). (0.1)

(Alternatively, the Poisson integral or just the pmf may be used.)

Again, “Xt” should be used carefully for reasons explained, that also transpire in examples (a) and (b).
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The relation between a non-decreasing C(t) and the control measure Λ should be established. For

example, using the Laplace transform,

E e−θX(t) = E e−θN(C(t)) = exp
{
−C(t)

(
1− e−θ

)}
.

Thus, from the first formula in (0.1) it follows that the “clock” C(t) is the cumulative function of the

intensity λ(x), subject to subtle differences to be analyzed in the forthcoming (a).

In order to interpret intensities or measures it would be helpful to express the generated process in terms

of transformation of the standard signals Sn that posses the n-Gamma distribution (or n-Erlang’s). It

turns out that Tn = φ(Sn), where φ = C−1 (using the generalized inverse when C(t) is piecewise

constant). Indeed,

P(Tn ≥ t) = P(X(t) ≤ n) = P(N(C(t)) ≤ n) = P(Sn ≥ C(t) = P(C−1(Sn) ≥ t). (0.2)

Question (a).

The domain is the open set T = (0,∞). Here X(t) does not exists, since the count of signals in (0, t)

is infinite, so C(t) or Λ(0, t] do not exist (or are infinite). Still, the intensity x−1, x > 0, yields the

control measure

Λ(a, b] = ln(b/a).

Therefore, the clock, if it exists, should use another reference point, distinct from 0.

The number 1 seems to be a natural choice that may yield the definition Xt = X(1, t] for t ≥ 1 and

Xt = X(t, 1] for t ∈ (0, 1]. Consequently, the requirement of the non-decrease of C(t) is no longer

reasonable. To resolve the issue, one may consider C(t) = | ln t|, which is decreasing for t < 1. The

answer “| ln t|” alone is insufficient, because it contradicts the definition of a “clock”.

One of consequences of the extended definition is the significant change of enumeration of signals. No

longer T1 is the first signal after time 0 but rather the first signal in the vicinity of time t = 1. Then the

definition of the second signal T2, and then of consecutive signals, becomes ambiguous. To resolve this

issue one may consider transformations of two independent Poisson process, the standard Nt ↔ (Sn) and

a generalized Ñt ↔ (S̃n) on [0, 1] with time reversed t 7→ 1− t. In the latter case φ(t) may and should

be replaced by φ̃ = 1/(1− t). Hence, Tn = exp {Sn } ∈ [1,∞) and T̃n = 1− exp
{
−S̃n

}
∈ [0, 1).

Question (b).

C(t) is negative for t < 0, contradicting the given definition of a clock, so the problem is ill-posed.

However, the intensity, hence the control measure Λ, is well defined: λ(t) = π sec2 t. Hence, the same

issue as in (a) arises, which can be resolved in the same manner. Alternatively, the definition of the

clock may be extended, admitting negative C(t), interpreted as time running backward.

However, the specific computational question in (c) allows to postpone this discussion, since only t > 0

is involved.
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Question (c).

Case (a): Denote A = (1
4 , 4], B = (1

2 , 2], B ⊂ A.

p = P(X(A) ≥ 1|X(B) = 0) = 1− P(X(A) = 0|X(B) = 0) = 1− eΛ(B)−Λ(A) = 1− eΛ(A\B).

Therefore,

Λ(A \B) = ln
1/2

1/4
+ ln

4

2
= 2 ln 2,

so p = 1− e−2 ln 2 = 1− 2−2 = 3
4 .

Case (b): Λ[1/2,∞] = 0. Hence P(X(B) = 0) = 1. Also, Λ(A) = Λ(1/4, 1/2) = ∞. Thus

P(X(A) ≥ 1) = 1. Hence P(X(A) ≥ 1|X(B) = 0) = P(X(A) ≥ 1) = 1.

Question (d).

In the case (a) an “explosion at time 0” model applies, eventually signals become more and more sparse.

In contrast, in the case (b) the initial signals after t = 0 are rare but then their intensity rapidly increases

to infinity on a bounded interval, yielding a “catastrophe” at the end.

A student taking the prelim may elaborate to use more specific examples illustrating the described

phenomena. In the current prelim a student used the example of a star’s photon emission. One may

add that the case (a) might describe the process after s star is becoming supernova while (b) (for t > 0)

may describe the process before the supernova happens.
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Problem 2 - Markov Chains

Introduction.

This is the classical Gambler’s Ruin Problem. The whole game follows the Bernoulli process of iid

two-outcome single games, played one at a time, where the win +1$ happens with probability p and the

loss −1$ happens with probability q = 1 − p. Let Xn denote the gambler’s fortune at game (or time)

n. The whole game is over when Xn = 0 or Xn = N for some predestined amount N . The gambler

starts with i$, i ∈ { 0, 1, ..., N }, which is the state space.

Objectives.

(a) Find the transition matrix and transition probabilities.

(b) Classify all states as transient or recurrent, with proofs or explanations.

(c) Show that eventually, i.e., at a finite time, the game will be over with probability 1. Denote by

fi (that is also a function of N , fi = fiN ) the probability that, starting at i, the gambler’s fortune

eventually will reach N . What is fN?

(d) Find a recursive relation between fi−1, fi, fi+1. Then solve for fi as a function of f1 (and of i

and p, of course).

(e) Finally, let N → ∞ and find the limit of fiN . Give an interpretation of the obtained outcome.

Why is this called “The Gambler’s Ruin Problem”?
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Problem 2 - Answers

This classical problem is well described in many standard textbooks, e.g., in Stochastic Processes by

Sheldon M. Ross, Example 4.4(A). No further details will be provided.

A student taking the prelim may use the Ross’ elementary method by mathematical induction of solving

the recurrence equation in (d), or may use his or hers alternative approach, e.g., using the method of

generating functions:

F (t) =
∞∑
n=0

fn t
n,

and rewriting the recurrence equation as a second order linear differential equation and solving it.

This approach should earn extra points because it is more elegant, and also more powerful in other,

more complicated problems.

In the Ross’ presentation, literally the probability of “getting rich” rather than probability of ruin is

presented. Of course, by symmetry, both interpretations are equivalent - as should be noted in the

introduction:

“the win +1$ happens with probability p and the loss −1$ happens with probability q = 1− p.”

by adding “or conversely”.
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Problem 3 - Martingales and Lévy processes

Introduction

The characteristic function of a Lévy process Xt, t ∈ T ⊂ R, has the form E eiθXt = exp { tΨ(θ) } ,

related to the fundamental Lévy-Khinchin formula.

Objectives.

(a) There are several forms of the function Ψ(θ). Show a few examples and explain the differences

and similarities. Discuss the parameters and their uniqueness.

(b) Denote by X(A) the generalized increment of the process, if well defined. Let B ⊂ A. If the

process is integrable of mean 0, compute

E [X(B) |X(A) ] .

If you are not sure about the existence of X(A) for arbitrary Borel sets, use at least usual intervals.

What answer do you obtain when the assumption B ⊂ A is suppressed?

(c) Define the “exponential process” Yt(z) = exp { zXt − tΦ(z) } . Describe conditions and the

range of the parameter z under which this process is a martingale.

(d) Using major examples of Lévy processes (Poisson, stable, Gamma and symmetrized Gamma, and

Wiener, with or without deterministic trend) give explicit formulas for the exponential martingales, if

they exist. In particular, determine the cases when the partial derivatives ∂kY
∂zk

are also martingales.
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Problem 3 - Answers

Problem (b) is closed, (a) and (c) are partially open and partially closed, (d) is an open problem.

A student should give the original Lévy-Khinchin formula for a single infinitely divisible distribution, with

or without extracting the atom of the Lévy measure at 0:

ln E eiθXt = iat+

∫
R

(
eiθx − 1− iθx

1 + x2

)
ν(dx)

= iat− σ2t2

2
+

∫
R\{ 0 }

(
eiθx − 1− iθx

1 + x2

)
ν0(dx),

where ν { 0 } = σ2 while ν0 { 0 } = 0 (one may still use ν as long as the domain R \ { 0 } is stated).

Then the triple [a, σ2, ν0] is unique.

(a) The function
x

1 + x2
may be replaced by an equivalent function [[x]]. One of the reasons for such

replacement is to provide a clear analog of the LC-formula in higher dimensions. Also, another choice

may alleviate cumbersome computations.

The equivalence is defined simply by the integrability of the difference between the new and the original

function. A replacement causes the change in the shift parameter a 7→ a′. The new triple [a′, σ2, ν] is

also unique for a fixed specific function [[x]]. For example, one may choose [[x]] ≈ x near 0 and bounded

away from 0. A popular choices are [[x]] = x1I{|x|≤1} (conveniently extendable to Rn or even Banach

spaces) or [[x]] = x1I{|x|≤1} + sign(x)1I{|x|>1} (only for R). Zolotarev (after Lévy) used [[x]] = sinx in

derivation of the ch.f. of a stable distribution that is commonly used as a default.

(b) It suffices (as it was written) to deal with common intervals. By stationarity, one may choose

A = [0, a] and B = [0, b]. If b is of the form bk = a +
k(b− a)

n
, k = 1, . . . , n, i.e., it is a point of

uniform partition of [0, a] into n intervals, then, denoting by B1 = [0, b1], Bk = (bk, bk+1], k = 2, . . . , n,

by stationarity it follows that

X(A) = E [X(A) |X(A) ] =
∑
k

E [X(Bk) |X(A) ] = nE [X(Bk0) |X(A) ]

for any k0. Hence,

E [X(Bk) |X(A) ] =
1

n
X(A).

By additivity, if B is a union of some Bk,

E [X(B) |X(A) ] =
|B|
|A|

X(A).

For an arbitrary b < a one may use a decreasing sequence of bk’s, or Bk’s from the above uniform

partitions, The limit |B| = b on the right hand side is obvious. On the left hand side E [X(Bk) |X(A) ]

form a martingale with respect to (reversed) filtration Ft = σ {Xs : s ≥ t }. Then by the Doob’s

convergence theorem, the left hand sides converge to X(Bk) a.s. and in L1.

Note that the slightly more complicated downward approximation of a point from the right is applied

to obtain X(0, b], while an upward approximation would yield X(0, b). That is, the right continuity of

trajectories of a Lévy process is used.
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The case of an arbitrary Borel set B (or A) requires a more advanced measure-theoretical argument.

First of all, the quantity X(B) would have to be defined. In the course of 2017/208 the concept of the

integral Xf =
∫
f dX was introduced first, which for Lévy processes is particularly easy. Then simply

X(B) = X(1IB). This part is not required for the prelim but would give a student some additional

leverage.

When B is not a subset of A, the decomposition B = (B ∩A) ∪ (B \A) helps. Hence

E [X(B) |X(A) ] = E [X(B ∩A) |X(A) ] + E [X(B \A) |X(A) ]

=
|B ∩A|
|A|

X(A) + EX(A \B) =
|B ∩A|
|A|

X(A),

since X(B \A) is independent of X(A) and the zero mean was assumed.

(c) First of all, the process Yt(z) = exp { zXt − tΦ(z) } must be integrable, i.e., at least some

exponential moments of the process Xt must exist. This determines the domain of z’s. The natural

filtration Ft generated by the process may be used. Let s < t. Then

E [Yt | Fs ] = E
[
ezXs+z(Xt−Xs)−tΦ(z) | Fs

]
= ezXs−tΦ(z)E ez(Xt−Xs) = ezXs−tΦ(z)e(t−s)Φ(z) = Ys.

(d) In the first part it suffices simply to list the forms of the function Ψ(z):

a zero mean Brownian motion with variance σ2: Ψ(z) =
σ2z2

2
, z ∈ R.

(a.k. the Geometric Brownian Motion)

a standard Poisson process with intensity λ: Ψ(z) = λ
(
e−θ − 1

)
, z = −θ < 0.

a Gamma process: Ψ(z) = ln(1 + z), z > −1.

A stable random variable does not have higher moments, hence the exponential martingale doesn’t exist

for real z. However, for z = iθ, choosing for simplicity a symmetric α-stable process,

Yt = eiθXt−i
α tθα

is a complex valued martingale.

The differentiation is possible under stronger integrability assumptions. Then the martingale property

is preserved (essentially, one relies on the Lebesgue Dominated Convergence Theorem). For the kth

derivative,

E |Xt|k ezXt <∞

is required. It is satisfied for a Brownian motion, Poisson process, and Gamma process for any natural

number k for z listed. In the stable case, only k = 1 is possible for α > 1.
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Problem 4 - Brownian Motion

Suppose that the assets A(t) at time t ≥ 0 of some financial institution vary at random, proportionally

to values of a standard Brownian motion, A(t)
D
= aBt (as stochastic processes). The institution files

for bankruptcy when the assets reach the debt −b, where b > 0. Let T = Tb denote the waiting time

for that event. That is,

Tb > t ⇐⇒ min
s≤t

A(s) > −b.

(a) Illustrate the above relation graphically.

(b) The main objective: Find the probability distribution of Tb,

(c) Show that Tb <∞ with probability 1 but ETb =∞.

Remark. It may help to notice that this problem is equivalent to the situation when the institution

pulls out of the market once its assets hit the positive level b. Also, it may help to strip the context of

financial connotations and proceed in an abstract way.
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Problem 4 - Answers

All questions are closed. The derivation of (c) from (b) is a routine probabilistic procedure, reducing

the work to Calculus. It is expected.

This is (after the switch to maximum) the classical Maximum Principle, resulting from the Reflec-

tion Principle for a Brownian Motion. Most of standard textbooks contain it. For example, in Ross’

Stochastic Processes, 2nd. ed., Section 8.2.

Therefore, no further details will be given.
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Problem 5 - Stochastic integration

Using again at least three distinct examples of stochastic processes Xt on T ⊂ R, show the construction

of the integral

∫
T
f(t)X(dt). Usually T is an interval, the closed or open positive half line, or R. In

particular:

(a) your work should exhibit the distinction between the Lebesgue-Stieltjes integral and truly stochas-

tic integral (which does not exist in the former sense);

(b) examine the properties of the process Yt =

∫ t

0
f dX in regard to preservations of properties of

the integrand Xt. For example, if Xt is a martingale (or its increments are independent, or they are

uncorrelated, etc.), check if Yt is also a martingale (preserves the original property);

(c) In your examples show a potential area of applicability of stochastic integration as a suitable

model for real life phenomena.
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Problem 5 - Answers

All questions are open.

In (a), essentially, a Poisson integral and Wiener (or Brownian) integral should be described. The

constructions differ significantly yet the first step - the integral of a step function, is the same, as is

the same virtually in stochastic integration with respect to any numerical process, random or not, even

vector-valued.

The significant differences appear when the integral is extended beyond simple integrands and the issue

of a limit arises.

In the Poisson case the best tool is the Laplace transform of the joint distribution of Poisson increments.

It takes exactly the form of the Laplace transform of a Poisson integral of a step function. The a.s. limit

then exists provided
∫

(|f | ∧ 1) < ∞. The resulted integral is a path Lebesgue-Stieltjes integral. This

can be quickly generalized to abstract Poisson measures.

In contrast, the Wiener integral is based on the L2 isometry, and utilizes the completeness of L2. The

path integrals do no exist because of unbounded variation, in contrast to the finiteness of the quadratic

variation.

Other integrators may use one of these principal approaches. For example, for the stable integrator Xt,

if α < 1 and Xt ≥ 0, the Poissonian approach works perfectly. For a symmetric α-stable process, α < 2,

the Wiener-like approach also works, but then instead of isometry one relies on an isomorphism in Lα.

(b) Examples of properties are listed. Arguments, including computations, are straightforward for most

of the chosen properties (and such should be chosen).

(c) This is a very rich topic and a good brief essay may be written.
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