
PGI® Fortran Reference
The Portland GroupTM

STMicroelectronics
Two Centerpointe Drive, Suite 320

Lake Oswego, OR 97035

www.pgroup.com

ii

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of

STMicroelectronics, makes no warranty for the use of its products and assumes no responsibility for any errors that may appear, or

for damages resulting from the use of the information contained herein. STMicroelectronics retains the right to make changes to this

information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document

may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's personal use without the

express written permission of STMicroelectronics.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this manual, STMicroelectronics was aware of a trademark claim. The designations have been printed in caps

or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular, to the High Performance Debugging Forum for

their efforts.

PGF90, PGF95, PGC++, Cluster Development Kit, CDK and The Portland Group are trademarks and PGI, PGHPF, PGF77, PGCC,

PGPROF, and PGDBG are registered trademarks of STMicroelectronics, Inc. Other brands and names are the property of their

respective owners. The use of STLport, a C++ Library, is licensed separately and license, distribution and copyright notice can be

found in online documentation for a given release of the PGI compilers and tools.

 PGI Fortran Reference
 Copyright © 2005-2007, STMicroelectronics, Inc. All rights reserved.

 Printed in the United States of America

First Printing:Release 6.0, March, 2005
 Second Printing:Release 6.1, December, 2005
 Third Printing:Release 6.1-3, February, 2006

 Fourth Printing: Release 7.0-1, December, 2006
 Fifth Printing: Release 7.0-2, February, 2007

Technical support: http://www.pgroup.com/support/

Sales: sales@pgroup.com

Web: http://www.pgroup.com

iii

Contents
Preface . xiii

Audience Description . xiii
Compatibility and Conformance to Standards . xiv
Organization . xv
Hardware and Software Constraints . xvi
Conventions . xvi
Related Publications .xvii

1 Language Overview . 1
Elements of a Fortran Program Unit .1

Statements .1
Free and Fixed Source .2
Statement Ordering .2

The Fortran Character Set .3
Free Form Formatting .5
Fixed Formatting .6

Column Formatting .6
Fixed Format Label Field .6
Fixed Format Continuation Field .7
Fixed Format Statement Field .7
Fixed Format Debug Statements .7
Tab Formatting .7
Fixed Input File Format – Summary .8

Including Fortran Source Files .8
The Components of Fortran Statements .9

Symbolic Names .9
Expressions .10

Expression Precedence Rules .10
Arithmetic Expressions .12
Relational Expressions .14
Logical Expressions .14
Character Expressions .15
Character Concatenation .15

Symbolic Name Scope .16
Assignment Statements .16

Arithmetic Assignment .17

iv

Logical Assignment Statement . 17
Character Assignment . 18

Listing Controls . 19
OpenMP Directives . 19
HPF Directives . 20

2 Fortran Data Types .21
Intrinsic Data Types . 21

Kind Parameter . 21
Number of Bytes Specification . 22

Constants . 25
Integer Constants . 25
Binary, Octal and Hexadecimal Constants . 26
Real Constants . 26
Double Precision Constants . 27
Complex Constants . 28
Double Complex Constants . 28
Logical Constants . 28
Character Constants . 29
PARAMETER Constants . 30

Derived Types . 30
Arrays . 30

An Array Declaration Element . 31
Deferred Shape Arrays . 32
Subscripts . 32
Character Substring . 32

Fortran Pointers and Targets . 33
Fortran Binary, Octal and Hexadecimal Constants . 33

Octal and Hexadecimal Constants - Alternate Form . § 34
Hollerith Constants . 35
Structures . 36

Records . 37
UNION and MAP Declarations . 38
Data Initialization . 40

Pointer Variables . 41
Restrictions . 42

3 Fortran Statements .43
Origin of Statement . 43
Statements . 44

v

4 Fortran Arrays . 139
Array Types .139

Explicit Shape Arrays .140
Assumed Shape Arrays .140
Deferred Shape Arrays .140
Assumed Size Arrays .140

Array Specification .141
Explicit Shape Arrays .141
Assumed Shape Arrays .141
Deferred Shape Arrays .141
Assumed Size Arrays .142

Array Subscripts and Access .142
Array Sections and Subscript Triplets .142
Array Sections and Vector Subscripts .143

Array Constructors .144
CM Fortran Extensions .144

The ARRAY Attribute § .144
Array Constructors Extensions § .144

5 Input and Output Formatting . 145
File Access Methods .145

Standard Preconnected Units .146
Opening and Closing Files .146

Direct Access Files .147
Closing a File .147

Data Transfer Statements .149
Unformatted Data Transfer .150
Formatted Data Transfer .150

Implied DO List Input Output List .151
Format Specifications .151

A Format Control – Character Data .153
B Format Control – Binary Data .154
D Format Control – Real Double Precision Data with Exponent .154
E Format Control – Real Single Precision Data with Exponent .155
EN Format Control .155
ES Format Control .155
F Format Control - Real Single Precision Data .156
G Format Control .156
I Format Control – Integer Data .156

vi

L Format Control – Logical Data . 157
Quote Format Control . 157
BN Format Control – Blank Control . 158
H Format Control – Hollerith Control . 158
O Format Control Octal Values . 158
P Format Specifier – Scale Control . 159
Q Format Control - Quantity . 159
S Format Control – Sign Control . 159
T , TL and X Format Controls – Spaces and Tab Controls . 160
Z Format Control Hexadecimal Values . 161
Slash Format Control / – End of Record . 161
The : Format Specifier – Format Termination . 162
$ Format Control . 162

Variable Format Expressions ,<expr> . 162
Non-advancing Input and Output . 162
List-directed formatting . 163

List-directed input . 163
List-directed output . 165
Commas in External Field . 167

Namelist Groups . 167
Namelist Input . 167
Namelist Output . 168

6 Fortran Intrinsics .171
FORTRAN 77 and Fortran 90/95 Intrinsics by Category . 171
FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions . 201
Supported HPF Intrinsics . 258
CM Fortran Intrinsics . § 261

7 3F Functions and VAX Subroutines .265
3F Routines . 265
VAX System Subroutines . 290

Built-In Functions . 291
VAX/VMS System Subroutines . 291

8 OpenMP Directives for Fortran .295
Parallelization Directives . 295
PARALLEL ... END PARALLEL . 296
CRITICAL ... END CRITICAL . 300
MASTER ... END MASTER . 301

vii

SINGLE ... END SINGLE .302
DO ... END DO .302
BARRIER .305
DOACROSS .305
PARALLEL DO .306
SECTIONS ... END SECTIONS .307
PARALLEL SECTIONS .308
ORDERED .309
ATOMIC .309
FLUSH .310
THREADPRIVATE .310
Run-time Library Routines .310
Environment Variables .313

9 HPF Directives . 315
Adding HPF Directives to Programs .315
HPF Directive Summary .316

Appendix A. HPF_LOCAL . 327

viii

ix

Tables
Table 1-1: Fortran Characters. .4
Table 1-2: C Language Character Escape Sequences .5
Table 1-3: Fixed Format Record Positions and Fields .6
Table 1-4: Fortran Operator Precedence .11
Table 1-5: Arithmetic Operators .13
Table 1-6: Arithmetic Operator Precedence .13
Table 2-1: Fortran Intrinsic Data Types .22
Table 2-2: Data Types Kind Parameters .22
Table 2-3: Data Type Extensions. .23
Table 2-4: Data Type Ranks .24
Table 2-5: Example of Real Constants .27
Table 2-6: Double Precision Constants. .28
Table 3-1: OPTIONS Statement. .109
Table 5-1: OPEN Specifiers .148
Table 5-2: Format Character Controls for a Printer .153
Table 5-3: List Directed Input Values .164
Table 5-4: Default List Directed Output Formatting .166
Table 6-1: Numeric Functions .172
Table 6-2: Mathematical Functions .179
Table 6-3: Real Manipulation Functions .182
Table 6-4: Bit Manipulation Functions .182
Table 6-5: Fortran 90/95 Bit Manipulation Subroutine .186
Table 6-6: Elemental Character and Logical Functions .187
Table 6-7: Fortran 90/95 Vector/Matrix Functions .189
Table 6-8: Fortran 90/95 Array Reduction Functions .189
Table 6-9: Fortran 90/95 String Construction Functions .193
Table 6-10: Fortran 90/95 Array Construction/Manipulation Functions .193
Table 6-11: Fortran 90/95 General Inquiry Functions .197
Table 6-12: Fortran 90/95 Numeric Inquiry Functions .197
Table 6-13: Fortran 90/95 Array Inquiry Functions .199
Table 6-14: Fortran 90/95 String Inquiry Function. .199
Table 6-15: Fortran 90/95 Subroutines .199
Table 6-16: Fortran 90/95 Transfer Function .201
Table 6-17: Miscellaneous Functions .201
Table 6-18: HPF Intrinsics and Library Procedures .259
Table 8-1: Initialization of REDUCTION Variables .299

x

Table 9-1: HPF Directive Summary . 316
Table A-1: HPF_LOCAL_LIBRARY Procedures. 328

xi

Figures
Figure 1-1: Order of Statements .3

xii

Audience Description

xiii

Preface
This help collection describes The Portland Group's implementation of the FORTRAN 77, Fortran 90/95
languages. Collectively, The Portland Group compilers that implement these languages are referred to as
the PGI Fortran compilers. This help collection is part of a set of other documents describing the Fortran
language and the compilation tools available from The Portland Group. This help collection presents
the Fortran language statements, intrinsics, and extension directives. The Portland Group’s Fortran
compilation system includes a compilation driver, multiple Fortran compilers, associated runtime
support and mathematical libraries, and associated software development tools for debugging and
profiling the performance of Fortran programs. Depending on the target system, The Portland Group’s
Fortran software development tools may also include an assembler or a linker. You can use these tools to
create, debug, optimize and profile your Fortran programs. ” Related Publications” lists other manuals
in the PGI documentation set.

This manual describes The Portland Group's implementation of the FORTRAN 77, Fortran 90/95 and
High Performance Fortran (HPF) languages. Collectively, The Portland Group compilers that implement
these languages are referred to as the PGI Fortran compilers. This manual is part of a set of other
documents describing the Fortran language and the compilation tools available from The Portland
Group. This manual presents the Fortran language statements, intrinsics, and extension directives. The
Portland Group’s Fortran compilation system includes a compilation driver, multiple Fortran compilers,
associated runtime support and mathematical libraries, and associated software development tools for
debugging and profiling the performance of Fortran programs. Depending on the target system, The
Portland Group’s Fortran software development tools may also include an assembler or a linker. You can
use these tools to create, debug, optimize and profile your Fortran programs. ” Related Publications”
lists other manuals in the PGI documentation set.

Audience Description

This help collectionmanual is intended for people who are porting or writing Fortran programs using
the PGI Fortran compilers. To use Fortran you should be aware of the role of Fortran and of source-level
programs in the software development process and you should have some knowledge of a particular
system or workstation cluster. To use the PGI Fortran compilers, you need to be familiar with the Fortran
language, either FORTRAN77, or Fortran 90/95 or HPF, and the basic commands available on your host
system.

xiv

Compatibility and Conformance to Standards

The PGI Fortran compilers, PGF77, or PGF95, run on a variety of 32-bit and 64-bit x86 processor-based
host systems. The PGF77 compiler accepts an enhanced version of FORTRAN 77 that conforms to the
ANSI standard for FORTRAN 77 and includes various extensions from VAX/VMS Fortran, IBM/VS Fortran,
and MIL-STD-1753. The PGF95 compiler accepts a similarly enhanced version of the ANSI standard for
Fortran 90/95.

The PGI Fortran compilers, PGF77, PGF95 and PGHPF, run on a variety of 32-bit and 64-bit x86
processor-based host systems. The PGF77 compiler accepts an enhanced version of FORTRAN 77 that
conforms to the ANSI standard for FORTRAN 77 and includes various extensions from VAX/VMS Fortran,
IBM/VS Fortran, and MIL-STD-1753. The PGF95 compiler accepts a similarly enhanced version of the
ANSI standard for Fortran 90/95. The PGHPF compiler accepts the HPF language and is largely, though
not strictly, a superset of Fortran 90/95. The PGHPF compiler conforms to the High Performance Fortran
Language Specification Version 1.1, published by the Center for Research on Parallel Computation, at
Rice University (with a few limitations and modifications, consult the PGHPF Release Notes for details).

For further information on the Fortran language, you can also refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• ISO/IEC 1539 : 1991, Information technology – Programming Languages – Fortran, Geneva, 1991
(Fortran 90).

• ISO/IEC 1539 : 1997, Information technology – Programming Languages – Fortran, Geneva, 1997
(Fortran 95).

• Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass,
1997.

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas
(1993), http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas
(1997), http://www.crpc.rice.edu/HPFF.

• OpenMP Fortran Application Program Interface, Version 1.1, November 1999, http://
www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

Organization

xv

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

This manual is divided into the following chapters and appendices:

Chapter 1, “Language Overview”, provides an introduction to the Fortran language.

Chapter 2, “Fortran Data Types”, describes the data types supported by PGI Fortran compilers and
provides examples using various data types. Memory allocation and alignment issues are also discussed.

Chapter 3, “Fortran Statements”, describes each Fortran and HPF statement that the PGI Fortran
compilers accept. Many HPF statements are in the form of compiler directives which can be ignored by
non-HPF compilers.

Chapter 4, “Fortran Arrays”, describes special characteristics of arrays in Fortran 90/95.

Chapter 5, “Input and Output Formatting”, describes the input, output, and format statements that
allow programs to transfer data to or from files.

Chapter 6, “Fortran Intrinsics”, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
comilers.

Chapter 7, “3F Functions and VAX Subroutines”, describes the functions and subroutines in the Fortran
run-time library and discusses the VAX/VMS system subroutines and the built-in functions supported by
the PGI Fortran compilers.

Chapter 8, “OpenMP Directives for Fortran”, lists the language extensions that the PGI Fortran
compilers support.

Chapter 9, “HPF Directives”, describes the HPF directives which support data distribution and alignment,
and influence data parallelism by providing additional information to the PGHPF compiler.

Appendix A., “HPF_LOCAL”, lists the HPF_LOCAL_LIBRARY procedures supported by the PGHPF
compiler.

xvi

Hardware and Software Constraints

The PGI compilers operate on a variety of host systems and produce object code for a variety of target
systems. Details concerning environment-specific values and defaults and host-specific features or
limitations are presented in the PGI User’s Guide, the man pages for each compiler in a given
installation, and in the release notes and installation instructions included with all PGI compilers and
tools software products.

Conventions

This PGI Fortran Reference manual uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width is used in examples and for language statements in the text.

[item] square brackets indicate optional items. In this case item1 is optional.

{ item2 | item3} braces indicate that a selection is required. In this case, you must select
either item2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may
occur. In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown using upper-case characters and a
reduced point size.

<TAB> non-printing characters, such as TAB, are shown enclosed in greater than
and less than characters and a reduced point size.

§ this symbol indicates an area in the text that describes a Fortran 90/95
Language enhancement. Enhancements are features that are not
described in the ANSI Fortran 90/95 standards.

@ This symbol indicates an area in the text that describes a FORTRAN 77
enhancement. Enhancements may be VAX/VMS Fortran enhancements,
IBM/VM enhancements, or military standard MIL-STD-1753
enhancements.

Related Publications

xvii

Related Publications

The following documents contain additional information related to HPF and other compilers and tools
available from The Portland Group, Inc.

• The PGI User's Guide describes the general features and usage guidelines for all PGI compilers,
and describes in detail various available compiler options in a user's guide format.

• The PGHPF User's Guide describes the PGHPF compiler and describes some details concerning the
PGI implementation of HPF in a user's guide format.

• Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the statements,
data types, input/output format specifiers, and additional reference material that defines ANSI/ISO
Fortran 95.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories,
Inc, (available from Prentice Hall, Inc.)

• The High Performance Fortran Handbook, from MIT Press, describes the HPF language in detail.

• High Performance Fortran Language Specification, Rice University, Houston Texas (1993), is the
specification for the HPF language and is available online at http://www.crpc.rice.edu/HPFF.

• American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).

• Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

• Military Standard, FORTRAN, DOD Supplement to American National Standard Programming
Language FORTRAN, ANSI X3.-1978, MIL-STD-1753 (November 9, 1978).

xviii

Elements of a Fortran Program Unit

1

1 Language Overview
This chapter describes the basic elements of the Fortran language, the format of Fortran statements, and
the types of expressions and assignments accepted by the PGI Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language code,
binary object code or binary executables in conjunction with the assembler, linker and libraries on the
target system. The input language must be extended FORTRAN 77 as specified in this reference manual.
The PGF95 compiler functions similarly for Fortran 90/95. The PGF95 and PGHPF compilers function
similarly for Fortran 90/95 and HPF respectively.

This chapter is not an introduction to the overall capabilities of Fortran. Rather, it is an overview of the
syntax requirements of programs used with the PGI Fortran compilers. The Fortran 95 Handbook
provides details on the capabilities of Fortran 90/95 language.The Fortran 95 Handbook and The High
Performance Fortran Handbook provide details on the capabilities of Fortran 90/95 and HPF languages.

Elements of a Fortran Program Unit

A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or PROGRAM
program units.

Fortran source code consists of a sequence of program units which are to be compiled. Every program
unit consists of statements and optionally comments beginning with a program unit statement, either a
SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an END statement (BLOCK DATA
and MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM statement.

Statements

Statements are either executable statements or nonexecutable specification statements. Each statement
consists of a single line or source record, possibly followed by one or more continuation lines. Multiple
statements may appear on a single line if they are separated by a semicolon (;). Comments may appear
on any line following a comment character (!).

Language Overview

2

Free and Fixed Source

Fortran permits two types of source formatting, fixed source form and free source form. Fixed source
form uses the traditional Fortran approach where specific column positions are reserved for labels,
continuation characters, and statements and blank characters are ignored. The PGF77 compiler
supports only fixed source form. The PGF77 compiler also supports a less restrictive variety of fixed
source form called tab source form. Free source form introduced with Fortran 90 places few restrictions
on source formatting; the context of an element, as well as the position of blanks, or tabs, separate
logical tokens. Using the compiler option –Mfreeform you can select free source form as an option to
PGF95 or PGHPF.

Statement Ordering

Fortran statements and constructs must conform to ordering requirements imposed by the language
definition. The figure “Order of Statements” illustrates these requirements. Vertical lines separate
statements and constructs that can be interspersed. Horizontal lines separate statements that must not
be interspersed.

These rules are less strict than those in the ANSI standard. The differences are as follows:

• DATA statements can be freely interspersed with PARAMETER statements and other specification
statements.

• NAMELIST statements are supported and have the same order requirements as FORMAT and
ENTRY statements.

• The IMPLICIT NONE statement can precede other IMPLICIT statements.

The Fortran Character Set

3

Figure 1-1: Order of Statements

The Fortran Character Set

Table 1-1 , “Fortran Characters”, shows the set of Fortran characters. Character variables and constants
can use any ASCII character. The value of the command-line option –Mupcase determines if the
compiler distinguishes between case (upper and lower) in identifiers. By default, without the –Mupcase
option selected, the compiler does not distinguish between upper and lower case characters in identifiers

END Statement

Comments
and

INCLUDE
Statements

OPTIONS Statement

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statements

Statement Function
Definition

Other
Specification

NAMELIST,
FORMAT,

And
ENTRY

Statements

USE Statements

IMPLICIT NONE Statement

IMPLICIT Statements

PARAMETER

EXECUTABLE Statements

DATA
Statements

CONTAINS Statement

Internal Subprograms or Module

Language Overview

4

(upper and lower case are always significant in character constants).

Table 1-1: Fortran Characters

Table 1-2 , “C Language Character Escape Sequences”, shows C language character escape sequences
that the PGI Fortran compilers recognize in character string constants. These values depend on the
command-line option –Mbackslash.

Character Description Character Description

, Comma A-Z, a-z Alphabetic

: Colon <space> Space character

; Semicolon = Equals

_ Underscore character + Plus

< Less than - Minus

> Greater than * Asterisk

? Question mark / Slash

% Percent (Left parenthesis

" Quotation mark) Right parenthesis

$ Currency symbol [Left bracket

. Decimal point] Right bracket

! Exclamation mark <CR> Carriage return

0-9 Numeric <TAB> Tabulation charac-
ter

Free Form Formatting

5

Table 1-2: C Language Character Escape Sequences

Free Form Formatting

Using free form formatting, columns are not significant for the elements of a Fortran line, and a blank
or series of blanks or tabs and the context of a token specify the token type. 132 characters are valid per
line, and the compiler option –Mextend does not apply. Comments are indicated by a blank line, or by
following a Fortran line with the ! character. All characters after the ! are stripped out of the Fortran text.

Characte
r Description

\v vertical tab

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

\0 null

\' apostrophe (does not terminate a string)

\" double quotes (does not terminate a
string)

\\ \

\x x, where x is any other character

\ddd character with the given octal representa-
tion.

Language Overview

6

Using free form formatting, the & character at the end of a line means the following line represents a
continuation line. If a continuation line starts with the & character, then the characters following the &
are the start of the continuation line. Without a leading & at the start of the continuation line, all
characters on the line are part of the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple statements
on a single line. Free format labels are valid at the start of a line, as long as the label is separated from
the remaining statements on the line by at least one blank or a <TAB>. Labels consist of a numeric field
drawn from digits 0 to 9. The label cannot be more than 5 characters.

Fixed Formatting

This section describes the two types of fixed formatting that PGI Fortran compilers support, column
formatting and tab formatting.

Column Formatting

Using column formatting a Fortran record consists of a sequence of up to 73 ASCII characters, the last
being <CR>. There is a fixed layout as shown in the table below.

Table 1-3: Fixed Format Record Positions and Fields

Characters beyond position 72 on a line are ignored unless the –Mextend option is specified. In addition,
any characters following a ! character are comments and are disregarded during compilation.

Fixed Format Label Field

The label field holds up to five characters. The characters C or * in the first character position of a label
field indicate a comment line.

Position Field

1-5 Label field

6 Continuation field

7-72 Statement field

Fixed Formatting

7

In addition to the characters C or *, either of the characters D or ! in the first position of a label field also
indicate a comment line.

When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is a label. A line with
no label, and with five space characters or a <TAB> in the label field, is an unlabeled statement. Each
label must be unique in its program unit. Continuation lines must not be labeled. Labels can only be
jumped to when they are on executable statements.

Fixed Format Continuation Field

The sixth character position, or the position after the tab, is the continuation field. This field is ignored
in comment lines. It is invalid if the label field is not five spaces. A value of 0, <space> or <TAB>
indicates the first line of a statement. Any other value indicates a subsequent, continuation line to the
preceding statement.

Fixed Format Statement Field

The statement field consists of valid identifiers and symbols, possibly separated by <space> or <TAB>
and terminated by <CR>.

Within the statement field tabs and spaces are ignored as are comments, characters following a !, or any
characters found beyond the 72nd character (unless the option –Mextend is enabled).

Fixed Format Debug Statements

The letter D in column 1 using fixed formatting designates the statement on the specified line is a
debugging statement. The compiler will treat the debugging statement as a comment, that is ignoring it,
unless the command line option –Mdlines is set during compilation. In that case, the compiler acts as if
the line starting with D were a Fortran statement and compiles the line according to the standard rules.

Tab Formatting

The PGI Fortran compilers support an alternate form of fixed source from called tab source form. A tab
formatted source file is made up of a label field, an optional continuation indicator and a statement
field. The label field is terminated by a tab character. The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a digit. The statement field
starts after a continuation indicator, when one is present. The 73rd and subsequent characters are
ignored.

Language Overview

8

Fixed Input File Format – Summary

Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins an
optional continuation indicator field. If a non-zero digit follows the tab character, the continuation field
exists and indicates a continuation field. If anything other than a non-zero digit follows the tab
character, the statement body begins with that character and extends to the end of the source statement.
Note that this does not override Fortran's free source form handling since no valid Fortran statement can
begin with a non-zero digit. The tab character is ignored if it occurs in a line except in Hollerith or
character constants.

Input lines may be of varying lengths. If there are fewer than 72 characters, the line is padded with
blanks; characters after the 72nd are ignored unless the –Mextend option is used on the command line.

If the –Mextend option is used on the command line then the input line can extend to 132 characters.
The line is padded with blanks if it is fewer than 132 characters; characters after the 132nd are ignored.
Note that use of this option extends the statement field to position 132.

Blank lines are allowed at the end of a program unit.

The number of continuation lines allowed is extended to 1000 lines.

Including Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. This is carried out using the INCLUDE statement which takes the form:

INCLUDE

"filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that source the
file is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same COMMON
block data mappings are used in several program units. For example the following statement includes
the file MYFILE.DEF.

INCLUDE "MYFILE.DEF"

The Components of Fortran Statements

9

Recursive includes are not allowed. That is, if a file includes a file, that file may not also include the
same file.

Nested includes are allowed, up to a PGI Fortran defined limit of 20.

The Components of Fortran Statements

Fortran program units are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its elements combined with
operators. Hence the basic building block of a statement is an element. An element takes one of the
following forms:

A constant represents a fixed value.

A variable represents a value which may change during program execution.

An array is a group of values that can be referred to as a whole, as a section, or separately. The separate
values are known as the elements of the array. The array has a symbolic name.

A function reference or subroutine reference is the name of a function or subroutine followed by an
argument list. The reference causes the code specified at function/subroutine definition to be executed
and if a function, the result is substituted for the function reference.

Symbolic Names

Symbolic names identify different entities in Fortran source code. A symbolic name is a string of letters
and digits, which must start with a letter and be terminated by a character not in the symbolic names set
(for example a <space> or a <TAB> character). Underscore (_) characters may appear within symbolic
names. Only the first thirty-one characters identify the symbolic name. Below are several examples of
symbolic names:

NUM

CRA9

numericabcdefghijklmnopqrstuvwxyz

The last example is identified by its first 31 characters and is equivalent to:

numericabcdefghijklmnopqrstuvwx

The following examples are invalid symbolic names.

8Q

Language Overview

10

This is invalid because it begins with a number.

FIVE.4

This is invalid because it contains a period which is an invalid character for a symbolic name.

Expressions

Each data item, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary or
unary operators, so that the expression itself yields a value. A Fortran expression may be any of the
following:

• A scalar expression

• An array expression

• A constant expression

• A specification expression

• An initialization expression

• Mixed array and scalar expressions

Expression Precedence Rules

Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in “Arithmetic Expressions” on page 12. When no guidance is given to the
compiler it will impose a set of precedence rules to identify each expression uniquely. Table 1-4 ,
“Fortran Operator Precedence”, shows the operator precedence rules for expressions.

Expressions

11

Table 1-4: Fortran Operator Precedence

An expression is formed as:

expr binary-operator expr

or

unary-operator expr

where an expr is formed as

Operator Evaluated

Unary defined Highest

** N/A

* or / N/A

Unary + or - N/A

Binary + or – N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same prece-
dence

Relational operators <, <=, >, >= Same prece-
dence

Relational operators .EQ., .NE., .LT. Same prece-
dence

.NOT. N/A

.AND. N/A

.OR. N/A

.NEQV. and .EQV. N/A

Binary defined Lowest

Language Overview

12

expression or element

For example,

A+B

-C

+D

These are simple expressions whose components are elements. Expressions fall into one of four classes:
arithmetic, relational, logical or character.

Operators of equal rank are evaluated left to right. Thus:

A*B+B**C .EQ. X+Y/Z

.AND. .NOT. K-3.0 .GT. T

is equivalent to:

((((A*B)+(B**C)) .EQ.

(X+(Y/Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

Arithmetic Expressions

Arithmetic expressions are formed from arithmetic elements and arithmetic operators. An arithmetic
element may be:

• an arithmetic expression

• a variable

• a constant

• an array element

• a function reference

• a field of a structure

The arithmetic operators specify a computation to be performed on the elements. The result is a numeric
result. Table 1-5 , “Arithmetic Operators”, shows the arithmetic operators.

Note that a value should be associated with a variable or array element before it is used in an expression.
Arithmetic expressions are evaluated in an order determined by a precedence associated with each
operator. The precedence of each arithmetic operator is shown in Table 1-5 , “Arithmetic Operators”.

Expressions

13

This following example is resolved into the arithmetic expressions (A) + (B * C) rather than (A +
B) * (C).

A + B * C

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed to be
evaluated first.

(A + B) * C

The compiler resolves this into the expressions (A + B) * (C).

Table 1-5: Arithmetic Operators

Table 1-6: Arithmetic Operator Precedence

The type of an arithmetic expression is:

INTEGER if it contains only integer elements.

REAL if it contains only real and integer elements.

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary
minus

Operator Precedence

** First

* and / Second

+ and - Third

Language Overview

14

DOUBLE PRECISION if it contains only double precision, real and integer elements.

COMPLEX if any element is complex. Any element which needs conversion to complex
will be converted by taking the real part from the original value and
setting the imaginary part to zero.

DOUBLE COMPLEX if any element is double complex.

Relational Expressions

A relational expression is composed of two arithmetic expressions separated by a relational operator. The
value of the expression is true or false (.TRUE. or .FALSE.) depending on the value of the expressions
and the nature of the operator. The table below shows the relational operators.

In relational expressions the arithmetic elements are evaluated to obtain their values. The relationship
is then evaluated to obtain the true or false result. Thus the relational expression:

TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is less than the value of LAST, then the result is true, otherwise it is
false.

Logical Expressions

A logical expression is composed of two relational or logical expressions separated by a logical operator.
Each logical expression yields the value true or false (.TRUE. or .FALSE.) The following table shows
the logical operators.

Operator Relationship

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

Expressions

15

In the following example, TEST will be .TRUE. if A is greater than B or I is not equal to J+17.

TEST = A .GT. B .OR. I .NE. J+17

Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Its length is the
number of characters in the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

'ab_&'

'A@HJi2'

'var[1,12]'

Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions using
the concatenation operator //. The following table shows several examples of concatenation.

Operator Relationship

.AND. True if both expressions are true.

.OR. True if either expression or both is true.

.NOT. This is a unary operator; it is true if the expression is false, otherwise
it is false.

.NEQV. False if both expressions have the same logical value

.XOR. Same as .NEQV.

.EQV. True if both expressions have the same logical value

Expression Value

'ABC'//'YZ' "ABCYZ"

Language Overview

16

Symbolic Name Scope

Fortran 90/95 scoping is expanded from the traditional FORTRAN 77 capabilities which provide a
scoping mechanism using subroutines, main programs, and COMMONs. Fortran 90/95 adds the
MODULE statement. Modules provide an expanded alternative to the use of both COMMONs and
INCLUDE statements. Modules allow data and functions to be packaged and defined as a unit,
incorporating data hiding and using a scope that is determined with the USE statement.

Fortran 90/95 and HPF scoping is expanded from the traditional FORTRAN 77 capabilities which provide
a scoping mechanism using subroutines, main programs, and COMMONs. Fortran 90/95 and HPF add
the MODULE statement. Modules provide an expanded alternative to the use of both COMMONs and
INCLUDE statements. Modules allow data and functions to be packaged and defined as a unit,
incorporating data hiding and using a scope that is determined with the USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONs are global to those modules that reference
them. They must refer to unique objects, not only during compilation, but also in the link stage.

The scope of names other than these is local to the module in which they occur, and any reference to the
name in a different module will imply a new local declaration. This includes the arithmetic function
statement.

Assignment Statements

A Fortran assignment statement can be any of the following:

• An intrinsic assignment statement

• A statement label assignment

• An array assignment

• A masked array assignment

'JOHN '//'SMITH' "JOHN SMITH"

'J '//'JAMES '//

'JOY'
"J JAMES JOY"

Expression Value

Assignment Statements

17

• A pointer assignment

• A defined assignment

Arithmetic Assignment

The arithmetic assignment statement has the following form:

object = arithmetic-expression

where object is one of the following:

• Variable

• Function name (within a function body)

• Subroutine argument

• Array element

• Field of a structure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE PRECISION or
COMPLEX) and the arithmetic-expression is coerced into the correct type if necessary.

In the case of:

complex = real expression

the implication is that the real part of the complex number becomes the result of the expression and the
imaginary part becomes zero. The same applies if the expression is double precision, except that the
expression will be coerced to real.

The following are examples of arithmetic assignment statements.

A=(P+Q)*(T/V)

B=R**T**2

Logical Assignment Statement

The logical assignment statement has the following form:

object = logical-expression

Language Overview

18

where object is one of the following:

• Variable

• Function name (only within the body of the function)

• Subroutine argument

• Array element

• A field of a structure

The type of object must be logical.

In the following example, FLAG takes the logical value .TRUE. if P+Q is greater than R; otherwise FLAG
has the logical value .FALSE.

FLAG=(P+Q) .GT. R

Character Assignment

The form of a character assignment is:

object = character

expression

where object is one of the following:

• Variable

• Function name (only within the body of the function)

• Subroutine argument

• Array element

• Character substring

• A field of a structure

Above, object must be of type character.

Listing Controls

19

None of the character positions being defined in object can be referenced in the character expression and
only such characters as are necessary for the assignment to object need to be defined in the character
expression. The character expression and object can have different lengths. When object is longer than
the character expression trailing blanks are added to the object; and if object is shorter than the
character expression the right-hand characters of the character expression are truncated as necessary.

In the following example, note that all the variables and arrays are assumed to be of type character.

FILE = 'BOOKS'

PLOT(3:8) = 'PLANTS'

TEXT(I,K+1)(2:B-1) = TITLE//X

Listing Controls

The PGI Fortran compilers recognize three compiler directives that affect the program listing process:

%LIST Turns on the listing process beginning at the following source code line.

%NOLIST Turns off the listing process (including the %NOLIST line itself).

%EJECT Causes a new listing page to be started.

These directives have an effect only when the –Mlist option is used. All of the directives must begin in
column one.

OpenMP Directives

OpenMP directives in a Fortran program provide information that allows the PGF77 and PGF95
compilers to generate executable programs that use multiple threads and processors on a shared-
memory parallel (SMP) computer system. An OpenMP directive may have any of the following forms:

!$OMPdirective

C$OMPdirective

*$OMPdirective

A complete list and specifications of OpenMP directives supported by the PGF77 and PGF95 compilers,
along with descriptions of the related OpenMP runtime library routines, can be found in Chapter 8,
“OpenMP Directives for Fortran”.

Language Overview

20

HPF Directives

HPF directives in a Fortran program provide information that allows the PGHPF compiler to explicitly
create data distributions from which parallelism can be derived. An HPF directive may have any of the
following forms:

CHPF$directive

!HPF$directive

*HPF$directive

Since HPF supports two source forms, fixed source form and free source form, there are a variety of
methods to enter a directive. The C, !, or * must be in column 1 for fixed source form directives. In free
source form, Fortran limits the comment character to !. If you use the !HPF$ form for the directive
origin, your code will be universally valid. The body of the directive may immediately follow the directive
origin. Alternatively, any number of blanks may precede the HPF directive. Any names in the body of the
directive, including the directive name, may not contain embedded blanks. Blanks may surround any
special characters, such as a comma or an equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not
significant). A complete list and specifications of HPF directives supported by the PGHPF compiler can be
found in Chapter 9, “HPF Directives”.

Intrinsic Data Types

21

2 Fortran Data Types
Every Fortran element and expression has a data type. The data type of an element may be implicit in its
definition or explicitly attached to the element in a declaration statement. This chapter describes the
Fortran data types and constants that are supported by the PGI Fortran compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types provided by
the language are intrinsic types. Types specified by the programmer and built from the intrinsic data
types are called derived types.

Intrinsic Data Types

Fortran provides six different intrinsic data types as shown in Table 2-1 , “Fortran Intrinsic Data Types”.
Table 2-2 , “Data Types Kind Parameters” and Table 2-3 , “Data Type Extensions” show variations and
different "kinds" of the intrinsic data types supported by the PGI Fortran compilers.

Kind Parameter

The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND parameter
follows a data type specifier and specifies size or type of the supported data type. A KIND specification
overrides the length attribute that the statement implies and assigns a specific length to the item,
regardless of the compiler's command-line options. A KIND is defined for a data type by a PARAMETER
statement, using sizes supported on the particular system.

The following are some examples using a KIND specification:

INTEGER (SHORT) :: L

REAL (HIGH) B

REAL (KIND=HIGH) XVAR, YVAR

These examples require that the programmer use a PARAMETER statement to define kinds:

INTEGER, PARAMETER :: SHORT=1

INTEGER HIGH

PARAMETER (HIGH=8)

The following table shows several examples of KINDs that a system could support.

Fortran Data Types

22

Table 2-1: Fortran Intrinsic Data Types

Table 2-2: Data Types Kind Parameters

Number of Bytes Specification

The PGI Fortran compilers support a length specifier for some data types. The data type can be followed
by a data type length specifier of the form *s, where s is one of the supported lengths for the data type.
Such a specification overrides the length attribute that the statement implies and assigns a specific
length to the specified item, regardless of the compiler options. For example, REAL*8 is equivalent to
DOUBLE PRECISION. The following table shows the lengths of data types, their meanings, and their
sizes.

Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION A double precision floating point number, real number,
taking up two numeric storage units and whose preci-
sion is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic. For-
tran provides two precisions for COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

Type Kind Size

INTEGER SHORT 1 byte

INTEGER LONG 4 bytes

REAL HIGH 8 bytes

Intrinsic Data Types

23

Table 2-3: Data Type Extensions

The BYTE type is treated as a signed one-byte integer and is equivalent to LOGICAL*1.

Assignment of a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type word has a
specifier.

For example:

CHARACTER*4 FUNCTION C*8 (VAR1)

Type Meaning Size

LOGICAL*1 Small LOGICAL 1 byte

LOGICAL*2 Short LOGICAL 2 bytes

LOGICAL*4 LOGICAL 4 bytes

LOGICAL*8 LOGICAL 8 bytes

BYTE Small INTEGER 1 byte

INTEGER*1 Same as BYTE 1 byte

INTEGER*2 Short INTEGER 2 bytes

INTEGER*4 INTEGER 4 bytes

INTEGER*8 INTEGER 8 bytes

REAL*4 REAL 4 bytes

REAL*8 DOUBLE PRECISION 8 bytes

COMPLEX*8 COMPLEX 8 bytes

COMPLEX*16 DOUBLE COMPLEX 16 bytes

Fortran Data Types

24

The function size specification C*8 overrides the CHARACTER*4 specification. Logical data items can be
used with any operation where a similar sized integer data item is permissible and vice versa. The logical
data item is treated as an integer or the integer data item is treated as a logical of the same size and no
type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array subscripts, in
computed GOTOs, in array bounds and in alternate returns. The floating point data item is converted to
an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The type of an
expression is determined by the rank of its elements. The following table shows the ranks of the various
data types, from lowest to highest.

Table 2-4: Data Type Ranks

The data type of a value produced by an operation on two arithmetic elements of different data types is
the data type of the highest-ranked element in the operation. The exception to this rule is that an
operation involving a COMPLEX*8 element and a REAL*8 element produces a COMPLEX*16 result. In
this operation, the COMPLEX*8 element is converted to a COMPLEX*16 element, which consists of two
REAL*8 elements, before the operation is performed.

Data Type Rank

LOGICAL 1 (lowest)

LOGICAL*8 2

INTEGER*2 3

INTEGER*4 4

INTEGER*8 5

REAL*4 6

REAL*8 (Double precision) 7

COMPLEX*8 (Complex) 8

COMPLEX*16 (Double complex) 9 (highest)

Constants

25

In most cases, a logical expression will have a LOGICAL*4 result. In cases where the hardware supports
LOGICAL*8 and if the expression is LOGICAL*8, the result may be LOGICAL*8.

Constants

A constant is an unchanging value that can be determined at compile time. It takes a form
corresponding to one of the data types. The PGI Fortran compilers support decimal (INTEGER and
REAL), unsigned binary, octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an
arithmetic assignment statement, is supported. These constants assume a data type that conforms to the
context in which they appear.

Integer Constants

The form of a decimal integer constant is:

[s]d1d2...dn [_ kind-parameter]

where s is an optional sign and di is a digit in the range 0 to 9. The optional _kind-parameter is a
Fortran 90/95 feature supported only by PGF95 and PGHPF, and specifies a supported kind. The value of
an integer constant must be within the range for the specified kind.

The value of an integer constant must be within the range -2147483648 to 2147483647 inclusive (-231
to (231 - 1)). Integer constants assume a data type of INTEGER*4 and have a 32-bit storage
requirement.

The –i8 compilation option causes all data of type INTEGER to be promoted to an 8 byte INTEGER. The
–i8 option does not override an explicit data type extension size specifier (for example INTEGER*4). The
range, data type and storage requirement change if the –i8 flag is specified (this flag is not supported on
all targets). With the –i8 flag, the range for integer constants is -263 to (263 - 1)), and in this case the
value of an integer constant must be within the range -9223372036854775808 to
9223372036854775807. If the constant does not fit in an INTEGER*4 range, the data type is INTEGER*8
and the storage requirement is 64 bits.

Below are several examples of integer constants.

Fortran Data Types

26

+2

-36

437

-36_SHORT

369_I2

Binary, Octal and Hexadecimal Constants

The PGI compilers and Fortran 90/95 support various types of constants besides decimal constants.
Fortran allows unsigned binary, octal, or hexadecimal constants in DATA statements. PGI compilers
support these constants in DATA statements, and additionally, support some of these constants outside of
DATA statements. For more information on support of these constants, refer to “Fortran Binary, Octal
and Hexadecimal Constants” on page 33.

Real Constants

Real constants have two forms, scaled and unscaled. An unscaled real constant consists of a signed or
unsigned decimal number (a number with a decimal point). A scaled real constant takes the same form
as an unscaled constant, but is followed by an exponent scaling factor of the form:

E+digits [_ kind-parameter]

Edigit [_ kind-parameter]

E-digits [_ kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The first two
forms above are equivalent, that is, a scaling factor without a sign is assumed to be positive. The
following table shows several real constants.

Constants

27

Table 2-5: Example of Real Constants

Double Precision Constants

A double precision constant has the same form as a scaled REAL constant except that the E is replaced by
D and the kind parameter is not permitted. For example:

D+digits

Ddigit

D-digits

The following table shows several double precision constants.

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-.003 signed unscaled single precision constant

-.003_LOW signed unscaled constant with kind LOW

-1.0 signed unscaled single precision constant

6.1E2_LOW is equivalent to 610.0 with kind LOW

+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH

6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

Fortran Data Types

28

Table 2-6: Double Precision Constants

Complex Constants

A complex constant is held as two real or integer constants separated by a comma and surrounded by
parentheses. The first real number is the real part and the second real number is the imaginary part.
Together these values represent a complex number. Integer values supplied as parameters for a
COMPLEX constant are converted to REAL numbers. Below are several examples:

(18,-4)

(3.5,-3.5)

(6.1E2,+2.3E3)

Double Complex Constants

A complex constant is held as two double constants separated by a comma and surrounded by
parentheses. The first double is the real part and the second double is the imaginary part. Together these
values represent a complex number. Below is an example:

(6.1D2,+2.3D3)

Logical Constants

A logical constant is one of:

.TRUE. [_ kind-parameter]

.FALSE.[_ kind-parameter]

The logical constants .TRUE. and .FALSE. are by default defined to be the four-byte values -1 and 0
respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE.

otherwise1.

Constant Value

6.1D2 is equivalent to 610.0

+2.3D3 is equivalent to 2300.0

-3.5D-1 is equivalent to -0.35

+4D4 is equivalent to 40000

Constants

29

Below are several examples:

.TRUE.

.FALSE.

.TRUE._BIT

The abbreviations T and F can be used in place of .TRUE. and .FALSE. in data initialization statements
and in NAMELIST input.

Character Constants

Character string constants may be delimited using either an apostrophe (') or a double quote ("). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use two
apostrophes together to include an apostrophe as part of the expression. If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote or
backslash escape. Within character constants, blanks are significant. For further information on the use
of the backslash character, refer to –Mbackslash in the PGI User’s Guide.

A character constant is one of:

[kind-parameter_] "[characters]"

[kind-parameter_] '[characters]'

Below are several examples of character constants.

'abc'

'abc '

'ab''c'

"Test Word"

GREEK_"µ"

A zero length character constant is written as '' or "".

If a character constant is used in a numeric context, for example as the expression on the right side of
an arithmetic assignment statement, it is treated as a Hollerith constant. The rules for typing and sizing
character constants used in a numeric context are described in “Hollerith Constants” on page 35.

1. The option –Munixlogical defines a logical expression to be TRUE if its value is non-zero, and FALSE otherwise; also,

the internal value of .TRUE. is set to one. This option is not available on all target systems.

Fortran Data Types

30

PARAMETER Constants

The PARAMETER statement permits named constants to be defined. Refer to the description of the
PARAMETER statement found in Chapter 3, “Fortran Statements”, for more details on defining
constants.

Derived Types

A derived type is a type made up of components whose type is either intrinsic or another derived type. The
TYPE and END TYPE keywords define a derived type. For example, the following derived type declaration
defines the type PERSON and the array CUSTOMER of type PERSON:

! Declare a structure to define a person derived type

TYPE PERSON

 INTEGER ID

 LOGICAL LIVING

 CHARACTER(LEN=20) FIRST, LAST, MIDDLE

 INTEGER AGE

END TYPE PERSON

TYPE (PERSON) CUSTOMER(10)

A derived type statement definition is called a derived-type statement (the statements between TYPE
PERSON and END TYPE PERSON in the previous example. The definition of a variable of the new type is
called a TYPE statement (CUSTOMER in the previous example); note the use of parentheses in the TYPE
statement.

The % character accesses the components of a derived type. For example:

CUSTOMER(1)%ID = 11308

Arrays

Arrays in Fortran are not data types, but are data objects of intrinsic or derived type with special
characteristics. A dimension statement provides a data type with one or more dimensions. There are
several differences between Fortran 90/95 and traditional FORTRAN 77 arrays.

Note: Fortran 90/95 supports all FORTRAN 77 array semantics.

Arrays

31

An array is a group of consecutive, contiguous storage locations associated with a symbolic name which
is the array name. Each individual element of storage, called the array element, is referenced by the
array name modified by a list of subscripts. Arrays are declared with type declaration statements,
DIMENSION statements and COMMON statements; they are not defined by implicit reference. These
declarations will introduce an array name and establish the number of dimensions and the bounds and
size of each dimension. If a symbol, modified by a list of subscripts is not defined as an array, then it will
be assumed to be a FUNCTION reference with an argument list.

Fortran 90/95 arrays are “objects” and operations and expressions involving arrays may apply to every
element of the array in an unspecified order. For example, in the following code, where A and B are
arrays of the same shape (conformable arrays), the following expression adds six to every element of B
and assigns the results to the corresponding elements of A:

A = B + 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections of
arrays may be used and passed as well. Arrays of derived type are also valid. In addition, allocatable
arrays may be created with deferred shapes (number of dimensions is specified at declaration, but the
actual bounds and size of each dimension are determined when the array is allocated while the program
is running).

An Array Declaration Element

An array declaration has the following form:

name([lb:]ub[,[lb:]ub]...)

where name is the symbolic name of the array, lb is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound, ub must be greater than the
lower bound lb. The values lb and ub may be negative. The bound lb is taken to be 1 if it is not specified.
The difference (ub-lb+1) specifies the number of elements in that dimension. The number of lb,ub pairs
specifies the rank of the array. Assuming the array is of a data type that requires N bytes per element, the
total amount of storage of the array is:

N*(ub-lb+1)*(ub-lb+1)*...

The dimension specifiers of an array subroutine argument may themselves be subroutine arguments or
members of COMMON.

Fortran Data Types

32

Deferred Shape Arrays

Deferred-shape arrays are those arrays whose shape can be changed by an executable statement.
Deferred-shape arrays are declared with a rank, but with no bounds information. They assume their
shape when either an ALLOCATE statement or a REDIMENSION statement is encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:

REAL A(:, :)

Subscripts

A subscript is used to specify an array element for access. An array name qualified by a subscript list has
the following form:

name(sub[,sub]...)

where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower and
upper bounds. Arrays are stored as a linear sequence of values in memory and are held such that the
first element is in the first store location and the last element is in the last store location. In a multi-
dimensional array the first subscript varies more rapidly than the second, the second more rapidly than
the third, and so on (column major order).

Character Substring

A character substring is a contiguous portion of a character variable and is of type character. A character
substring can be referenced, assigned values and named. It can take either of the following forms:

character_variable_name(x1:x2)

character_array_name(subscripts)(x1:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-hand one.
These are known as substring expressions. In substring expressions x1 must be both greater than or
equal to 1 and less than x2 and x2 must be less than or equal to the length of the character variable or
array element.

For example:

J(2:4)

Fortran Pointers and Targets

33

the characters in positions 2 to 4 of character variable J.

K(3,5)(1:4)

the characters in positions 1 to 4 of array element K(3,5).

A substring expression can be any valid integer expression and may contain array elements or function
references.

Fortran Pointers and Targets

Fortran pointers are similar to allocatable arrays. Pointers are declared with a type and a rank; they do
not actually represent a value, however, but represent a value's address. Fortran 90/95 has a specific
assignment operator, =>, for use in pointer assignments.

Fortran Binary, Octal and Hexadecimal Constants

The PGI Fortran compilers support two representations for binary, octal, and hexadecimal numbers: the
standard Fortran 90/95 representation and the PGI extension representation. Refer to the next section
for details on the alternate representation.

Fortran supports binary, octal and hexadecimal constants in DATA statements. The form of a binary
constant is:

B'b1b2...bn'

B"b1b2...bn"

where b i is either 0 or 1.

The form of an octal constant is:

O'c1c2...cn'

O"c1c2...cn"

where c i is in the range 0 through 7.

The form of a hexadecimal constant is:

Z'a1a2...an'

Z"a1a2...an"

or

Fortran Data Types

34

'a1a2...an'X

"a1a2...an"X

where a is in the range 0 through 9 or a letter in the range A through F or a through f (case mixing is
allowed).

Octal and Hexadecimal Constants - Alternate Form §

The PGF95 compiler supports additional extensions.The PGF95 and PGHPF compilers support additional
extensions. This is an alternate form for octal constants, outside of DATA statements. The form for an
octal constant is:

'c1c2...cn'O

The form of a hexadecimal constant is:

'a1a2...an'X

where ci is a digit in the range 0 to 7 and ai is a digit in the range 0 to 9 or a letter in the range A to F or
a to f (case mixing is allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded on the
left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

• A constant is always either 32 or 64 bits in size and is typeless. Sign-extension and type-conversion
are never performed. All binary operations are performed on 32-bit or 64-bit quantities. This
implies that the rules to follow are only concerned with mixing 32-bit and 64-bit data.

• When a constant is used with an arithmetic binary operator (including the assignment operator)
and the other operand is typed, the constant assumes the type and size of the other operand.

• When a constant is used in a relational expression such as .EQ., its size is chosen from the operand
having the largest size. This implies that 64-bit comparisons are possible.

• When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or COMPL
function, a 32-bit operation is performed if no argument is more than 32 bits in size; otherwise, a
64-bit operation is performed. The size of the result corresponds to the chosen operation.

• When a constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

Hollerith Constants

35

• When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant. Array
subscripting is an example.

• When a constant is used in a context other than those mentioned above, an INTEGER*4 data type
is assumed. Logical expressions and binary arithmetic operations with other untyped constants are
examples.

• When the required data type for a constant implies that the length needed is more than the
number of digits specified, the leftmost digits have a value of zero. When the required data type for
a constant implies that the length needed is less than the number of digits specified, the constant is
truncated on the left. Truncation of nonzero digits is allowed.

In the example below, the constant I (of type INTEGER*4) and the constant J (of type INTEGER*2) will
have hex values 1234 and 4567, respectively. The variable D (of type REAL*8) will have the hex value
x4000012345678954 after its second assignment:

I = '1234'X ! Leftmost Pad with zero

J = '1234567'X ! Truncate Leftmost 3 hex digits

D = '40000123456789ab'X

D = NEQV(D,'ff'X) ! 64-bit Exclusive Or

Hollerith Constants

The form of a Hollerith constant is:

nHc1c2...cn

where n specifies the positive number of characters in the constant and cannot exceed 2000 characters.
A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith constants
are untyped arrays of INTEGER*4. The last word of the array is padded on the right with blanks if
necessary. Hollerith constants cannot assume a character data type and cannot be used where a
character value is expected. The data type of a Hollerith constant used in a numeric expression is
determined by the following rules:

• Sign-extension is never performed.

• The byte size of the Hollerith constant is determined by its context and is not strictly limited to 32
or 64 bits like hexadecimal and octal constants.

• When the constant is used with a binary operator (including the assignment operator), the data
type of the constant assumes the data type of the other operand.

Fortran Data Types

36

• When a specific data type is required, that type is assumed for the constant. When an integer or
logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required, REAL*4 is
assumed (array subscripting is an example of the use of a required data type).

• When a constant is used as an argument to certain generic functions (AND, OR, EQV, NEQV, SHIFT,
and COMPL), a 32-bit operation is performed if no argument is larger than 32 bits; otherwise, a
64-bit operation is performed. The size of the result corresponds to the chosen operation.

• When a constant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER*4 array. Character constants are passed by descriptor only.

• When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces are
appended to the constant on the right. When the length of the constant is greater than the length
implied by the data type, the constant is truncated on the right.

Structures

A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the following
form:

STRUCTURE [/structure_name/][field_namelist]

 field_declaration

 [field_declaration]

 ...

 [field_declaration]

END STRUCTURE

Where:

structure_name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

field_namelist is a list of fields having the structure of the associated structure
declaration. A field_namelist is allowed only in nested structure
declarations.

field_declaration can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Structures

37

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields
also provides a C-like "struct" building capability and allows convenient inter-language
communications.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
because records use periods to separate fields, it is not legal to use relational operators (for example,
.EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions (.AND., .NOT., .OR.) as field
names in structure declarations.

Fields in a structure are aligned as required by hardware; therefore a structure's storage requirements
are machine-dependent. Because explicit padding of records is not necessary, the compiler recognizes
the %FILL intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.

Records

A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the following
form:

RECORD /structure_name/record_namelist

 [,/structure_name/record_namelist]

 ...

 [,/structure_name/record_namelist]

where:

structure_name is the name of a previously declared structure.

record_namelist is a list of one or more variable or array names separated by commas.

You create memory storage for a record by specifying a structure name in the RECORD statement. You
define the field values in a record either by defining them in the structure declaration or by assigning
them with executable code.

You can access individual fields in a record by combining the parent record name, a period (.), and the
field name (for example, recordname.fieldname). For records, a scalar reference means a reference to a
name that resolves to a single typed data item (for example, INTEGER), while an aggregate reference
means a reference that resolves to a structured data item.

Fortran Data Types

38

Scalar field references may appear wherever normal variable or array elements may appear with the
exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate references may
only appear in aggregate assignment statements, unformatted I/O statements, and as parameters to
subprograms.

The following is an example of RECORD and STRUCTURE usage.

STRUCTURE /person/ ! Declare a structure

defining a person

 INTEGER id

 LOGICAL living

 CHARACTER*5 first, last, middle

 INTEGER age

END STRUCTURE

 ! Define population to be an array where each element is

 ! of type person. Also define a variable, me, of type

 ! person.

RECORD /person/ population(2), me

 ...

me.age = 34 ! Assign values for the variable me

to

me.living = .TRUE. ! some of the fields.

me.first = 'Steve'

me.id = 542124822

 ...

population(1).last = 'Jones' ! Assign the "last" field

of

 ! element 1 of array population.

population(2) = me ! Assign all values of record

 ! "me" to the record

 ! population(2)

UNION and MAP Declarations

A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration defining a data
area that can be shared intermittently during program execution by one or more fields or groups of
fields. It declares groups of fields that share a common location within a structure. Each group of fields
within a union declaration is declared by a MAP declaration, with one or more fields per MAP
declaration.

Structures

39

Union declarations are used when one wants to use the same area of memory to alternately contain two
or more groups of fields. Whenever one of the fields declared by a union declaration is referenced in a
program, that field and any other fields in its map declaration become defined. Then, when a field in
one of the other map declarations in the union declaration is referenced, the fields in that map
declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate map
declaration.

The format of a UNION statement is described in the following example:

UNION

 map_declaration

 [map_declaration]

 ...

 [map_declaration]

END UNION

The format of the map_declaration is as follows:

MAP

 field_declaration

 [field_declaration]

 ...

 [field_declaration]

END MAP

where field_declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed
data field within a union.

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal
to initialize multiple map declarations in a single union.

Field alignment within multiple map declarations is performed as previously defined in structure
declarations.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for
alignment purposes.

Fortran Data Types

40

Manipulating data using union declarations is similar to what happens using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language C. The
main difference is that the C language requires one to associate a name with each "map" (union).
Fortran field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE, MAP and UNION usage. The size of each element
of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP, the employee
map (24 bytes).

STRUCTURE /account/

 INTEGER typetag ! Tag to determine defined map.

 UNION

 MAP ! Structure for an employee

 CHARACTER*12 ssn ! Social Security Number

 REAL*4 salary

 CHARACTER*8 empdate ! Employment date

 END MAP

 MAP ! Structure for a customer

 INTEGER*4 acct_cust

 REAL*4 credit_amt

 CHARACTER*8 due_date

 END MAP

 MAP ! Structure for a supplier

 INTEGER*4 acct_supp

 REAL*4 debit_amt

 BYTE num_items

 BYTE items(12) ! Items supplied

 END MAP

 END UNION

END STRUCTURE

RECORD /account/ recarr(1000)

Data Initialization

Data initialization is allowed within data type declaration statements. This is an extension to the Fortran
language. Data is initialized by placing values bounded by slashes immediately following the symbolic
name (variable or array) to be initialized. Initialization of fields within structure declarations is
allowed, but initialization of unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type declarations
and in DATA statements. Truncation and padding occur for constants that differ in size from the declared
data item (as specified in the discussion of constants).

Pointer Variables

41

Pointer Variables

The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran 90/95
POINTER specification statement or attribute, declares a scalar variable to be a pointer variable (of data
type INTEGER), and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:

POINTER (p1, v1) [, (p2, v2) ...]

v1 and v2 are pointer-based variables. A pointer-based variable can be of any type,
including STRUCTURE. A pointer-based variable can be dimensioned in a
separate type, in a DIMENSION statement, or in the POINTER statement.
The dimension expression may be adjustable, where the rules for
adjustable dummy arrays regarding any variables which appear in the
dimension declarators apply.

p1 and p2 are the pointer variables corresponding to v1 and v2. A pointer variable
may not be an array. The pointer is an integer variable containing the
address of a pointer-based variable. The storage located by the pointer
variable is defined by the pointer-based variable (for example, array, data
type, etc.). A reference to a pointer-based variable appears in Fortran
statements like a normal variable reference (for example, a local variable,
a COMMON block variable, or a dummy variable). When the based
variable is referenced, the address to which it refers is always taken from
its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.

The pointer is defined in one of the following ways:

• By assigning the value of the LOC function.

• By assigning a value defined in terms of another pointer variable.

• By dynamically allocating a memory area for the based variable. If a pointer-based variable is
dynamically allocated, it may also be freed.

The following code illustrates the use of pointers:

Fortran Data Types

42

REAL XC(10)

COMMON IC, XC

POINTER (P, I)

POINTER (Q, X(5))

P = LOC(IC)

I = 0 ! IC gets 0

P = LOC(XC)

Q = P + 20 ! same as LOC(XC(6))

X(1) = 0 ! XC(6) gets 0

ALLOCATE (X) ! Q locates an allocated memory area

Restrictions

The following restrictions apply to the POINTER statement:

• No storage is allocated when a pointer-based variable is declared.

• If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

• A pointer-based variable may not appear in the argument list of a SUBROUTINE or FUNCTION and
may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

• A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If a
pointer-based variable is an adjustable array, it is assumed that the variables in the dimension
declarators are defined with an integer value at the time the SUBROUTINE or FUNCTION is called.
For a variable which appears in a pointer-based variable's adjustable declarator, modifying its
value during the execution of the SUBROUTINE or FUNCTION does not modify the bounds of the
dimensions of the pointer-based array.

• A pointer-based variable is assumed not to overlap with another pointer-based variable.

Origin of Statement

43

3 Fortran Statements
This chapter describes each of the Fortran statements supported by the PGI Fortran compilers. Each
description includes a brief summary of the statement, a syntax description, a complete description and
an example. The statements are listed in alphabetical order. The first section lists terms that are used
throughout the chapter.

Definition of Terms

character scalar memory reference
is a character variable, a character array element, or a character member of a structure.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a structure.

logical scalar memory reference
is a logical variable, a logical array element, or a logical member of a structure.

obsolescent
The statement is unchanged from the FORTRAN 77 definition but has a better replacement
in Fortran 95.

Origin of Statement

At the top of each reference page is an indication of the origin of the statement.

HeadingExplanation

77 FORTRAN 77 statements that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

90/95 This statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from
its original FORTRAN 77 definition and is supported by the PGF95 and PGHPF compilers.

HPF The statement has its origin in the HPF standard.

§ The statement is an extension to the Fortran language.

CMF Indicates a CM Fortran feature (CM Fortran is a version of Fortran that was produced by
Thinking Machines Corporation for parallel computers).

Fortran Statements

44

Statements

ACCEPT § 77

The ACCEPT statement has the same syntax as the PRINT statement and causes formatted input to be
read on standard input. ACCEPT is identical to the READ statement with a unit specifier of asterisk (*).

Syntax

ACCEPT f [,iolist]

ACCEPT namelist

f format-specifier, a * indicates list directed input.

iolist is a list of variables to be input.

namelist is the name of a namelist specified with the NAMELIST statement.

Examples

 ACCEPT *, IA, ZA

 ACCEPT 99, I, J, K

 ACCEPT SUM

99 FORMAT(I2, I4, I3)

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

accept sum

and is roughly equivalent to

character*4 ch

ch = '()'

accept ch

See Also

READ, PRINT

Statements

45

ALLOCATABLE 90

The ALLOCATABLE specification statement (attribute) specifies that an array with fixed rank but
deferred shape is available for a future ALLOCATE statement. An ALLOCATE statement allocates space
for the allocatable array.

Syntax

ALLOCATABLE [::] array-name [(deferred-array-spec)]

 [, array-name [(deferred-array-spec)]]...

array-name is the name of the allocatable array.

deferred-array-spec is a : character.

Example

REAL SCORE(:), NAMES(:,:)

REAL, ALLOCATABLE, DIMENSION(:,:,:) :: TEST

ALLOCATABLE SCORE, NAMES

INTEGER, ALLOCATABLE :: REC1(: ,: , :)

See Also

ALLOCATE, DEALLOCATE

ALLOCATE 90

The ALLOCATE statement is an extension to FORTRAN 77 but is part of the Fortran 90/95 standard. It
allocates storage for each pointer-based variable and allocatable array which appears in the
statement. ALLOCATE also declares storage for deferred-shape arrays.

Syntax

ALLOCATE (allocation-list [, STAT= var])

allocation-list is:

allocate-object [allocate-shape-spec-list]

allocate-object is:

variable-name

structure-component

allocate-shape-spec-list is:

Fortran Statements

46

[allocate-lower-bound :] allocate-upper-bound

var is an integer variable, integer array element or an integer member of a STRUCTURE (that
is, an integer scalar memory reference). This variable is assigned a value depending on
the success of the ALLOCATE statement.

name is a pointer-based variable or name of an allocatable COMMON enclosed in slashes.

Description

For a pointer-based variable, its associated pointer variable is defined with the address of the allocated
memory area. If the specifier STAT= is present, successful execution of the ALLOCATE statement causes
the status variable to be defined with a value of zero. If an error occurs during execution of the
statement and the specifier STAT= is present, the status variable is defined to have the integer value
one. If an error occurs and the specifier STAT= is not present, program execution is terminated.

A dynamic, or allocatable COMMON block is a common block whose storage is not allocated until an
explicit ALLOCATE statement is executed. Note: Allocatable COMMON blocks are an extension to
FORTRAN 77 supported only by PGF77 compiler, and not by the PGF95 or PGHPF compilers.

For an ALLOCATABLE array, the array is allocated with the executable ALLOCATE statement.

Examples

COMMON P, N, M

POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y

ALLOCATE (/ALL/, A, STAT=IS)

PRINT *, IS

X(5) = A(2, 1)

DEALLOCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS

DEALLOCATE (/ALL/)

For a deferred shape array, the allocate must include the bounds of the array.

REAL, ALLOCATABLE :: A(:), B(:)

ALLOCATE (A(10), B(SIZE(A)))

REAL A(:,:)

N=3

M=1

Statements

47

ALLOCATE (A(1:11, M:N))

INTEGER FLAG, N

REAL, ALLOCATABLE:: B(:,:)

ALLOCATE (B(N,N),STAT=FLAG)

ARRAY CMF

The ARRAY attribute defines the number of dimensions in an array that may be defined and the
number of elements and bounds in each dimension.

Syntax

ARRAY [::] array-name (array-spec)

 [, array-name (array-spec)] ...

array-name is the symbolic name of an array.

array-spec is a valid array specification, either explicit-shape, assumed-shape,
deferred-shape, or assumed size (refer to Chapter 4, “Fortran Arrays”,
for details on array specifications).

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as an
array, and in this case the declarator can use expressions formed from integer variables and constants
to establish the dimensions (adjustable arrays). Note however that these integer variables must be
either arguments or declared in COMMON; they cannot be local. Note that in this case the function of
ARRAY is merely to supply a mapping of the argument to the subroutine code, and not to allocate
storage.

The typing of the array in an ARRAY statement is defined by the initial letter of the array name in the
same way as variable names, unless overridden by an IMPLICIT or type declaration statement. Arrays
may appear in type declaration and COMMON statements but the array name can appear in only one
array declaration.

Example

REAL, ARRAY(3:10):: ARRAY_ONE

INTEGER, ARRAY(3,-2:2):: ARRAY_TWO

Fortran Statements

48

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3 and the upper
bound of 10.

ARRAY_TWO as a matrix of two dimensions having fifteen elements. The first dimension has three
elements and the second has five with bounds from -2 to 2.

ASSIGN 77

(Obsolescent) The assign statement assigns a statement label to a variable. Internal procedures can be
used in place of the assign statement. Other cases where the assign statement is used can be replaced
by using character strings (for different format statements that were formally assigned labels by using
an integer variable as a format specifier).

Syntax

ASSIGN a TO b

a is the statement label.

b is an integer variable.

Description

Executing an ASSIGN statement assigns a statement label to an integer variable. This is the only way
that a variable may be defined with a statement label value. The statement label must be:

• A statement label in the same program unit as the ASSIGN statement.

• The label of an executable statement or a FORMAT statement.

A variable must be defined with a statement label when it is referenced:

• In an assigned GOTO statement.

• As a format identifier in an input/output statement and while so defined must not be referenced
in any other way.

An integer variable defined with a statement label can be redefined with a different statement label,
the same statement label or with an integer value.

Statements

49

Example

 ASSIGN 40 TO K

 GO TO K

40 L = P + I + 56

BACKSPACE 77

When a BACKSPACE statement is executed the file connected to the specified unit is positioned before
the preceding record.

Syntax

BACKSPACE unit

BACKSPACE ([UNIT=]unit [,ERR=errs] [,

IOSTAT=ios])

UNIT=unit unit is the unit specifier.

ERR=s s is an executable statement label for the statement used for processing
an error condition.

IOSTAT=ios ios is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

Description

If there is no preceding record, the position of the file is not changed. A BACKSPACE statement cannot
be executed on a file that does not exist. Do not issue a BACKSPACE statement for a file that is open for
direct or append access.

Examples

BACKSPACE 4

BACKSPACE (UNIT=3)

BACKSPACE (7, IOSTAT=IOCHEK, ERR=50)

BLOCK DATA 77

The BLOCK DATA statement introduces a number of statements that initialize data values in COMMON
blocks. No executable statements are allowed in a BLOCK DATA segment.

Fortran Statements

50

Syntax

BLOCK DATA [name]

 [specification]

END [BLOCK DATA [name]]

name is a symbol identifying the name of the block data and must be unique
among all global names (COMMON block names, program name,
module names). If missing, the block data is given a default name.

Example

 BLOCK DATA

 COMMON /SIDE/ BASE, ANGLE, HEIGHT, WIDTH

 INTEGER SIZE

 PARAMETER (SIZE=100)

 INTEGER BASE(0:SIZE)

 REAL WIDTH(0:SIZE), ANGLE(0:SIZE)

 DATA (BASE(I),I=0,SIZE)/SIZE*-1,-1/,

+ (WIDTH(I),I=0,SIZE)/SIZE*0.0,0.0/

 END

BYTE § 77

The BYTE statement establishes the data type of a variable by explicitly attaching the name of a
variable to a 1-byte integer. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

BYTE name [/clist/],

...

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BYTE declaration statements must not be labeled.

Statements

51

Example

BYTE TB3, SEC, STORE (5,5)

CALL 77

The CALL statement transfers control to a subroutine.

Syntax

CALL subroutine [([actual-arg-list]...])]

subroutine is the name of the subroutine.

argument is the actual argument being passed to the subroutine. The first
argument corresponds to the first dummy argument in the
SUBROUTINE statement and so on.

actual-arg-list has the form:

[keyword =] subroutine-argument.

keyword is a dummy argument name in the
subroutine interface.

subroutine-argument is an actual argument.

Description

Actual arguments can be expressions including: constants, scalar variables, function references and
arrays.

Actual arguments can also be alternate return specifiers. Alternate return specifiers are labels prefixed
by asterisks (*) or ampersands (&). The ampersand is an extension to FORTRAN 77.

Recursive calls are allowed using the –Mrecursive command-line option.

Examples

CALL CRASH ! no arguments

CALL BANG(1.0) ! one argument

CALL WALLOP(V, INT) ! two arguments

CALL ALTRET(I, *10, *20)

SUBROUTINE ONE

DIMENSION ARR (10, 10)

REAL WORK

Fortran Statements

52

INTEGER ROW, COL

PI=3.142857

CALL EXPENS(ARR,ROW,COL,WORK,SIN(PI/2)+3.4)

RETURN

END

CASE 90

The CASE statement begins a case-statement-block portion of a SELECT CASE construct.

Syntax

[case-name :] SELECT CASE (case-expr)

[CASE (selector) [name]

 block] ...

[CASE DEFAULT [case-name]

 block]

END SELECT [case-name]

Example

SELECT CASE (FLAG)

CASE (1, 2, 3)

 TYPE=1

CASE (4:6)

 TYPE=2

CASE DEFAULT

 TYPE=0

END SELECT

Type

Executable

See Also

SELECT CASE

CHARACTER 90

The CHARACTER statement establishes the data type of a variable by explicitly attaching the name of a
variable to a character data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Statements

53

Syntax

The syntax for CHARACTER has two forms, the standard Fortran form and the PGI extended form. This
section describes both syntax forms.

CHARACTER [character-selector] [,

attribute-list ::] entity-list

character-selector the character selector specifies the length of the character string. This
has one of several forms:

([LEN=] type-param-value)

* character-length [,]

Character-selector also permits a KIND specification. Refer to the Fortran 95 Handbook for more
syntax details.

attribute-list is the list of attributes for the character variable.

entity-list is the list of defined entities.

Syntax Extension§

CHARACTER [*len][,] name [dimension] [*len] [/clist/],

...

len is a constant or *. A * is only valid if the corresponding name is a dummy argument.

name is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Character type declaration statements may be used to dimension arrays explicitly in the same way as
the DIMENSION statement. Type declaration statements must not be labeled.

Note: The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type
overrides any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Fortran Statements

54

Examples

CHARACTER A*4, B*6, C

CHARACTER (LEN=10):: NAME

A is 4 and B is 6 characters long and C is 1 character long. NAME is 10 characters long.

CLOSE 77

The CLOSE statement terminates the connection of the specified file to a unit.

Syntax

CLOSE ([UNIT=] u [,ERR= errs] [,DISP[OSE]= sta]

 [,IOSTAT=ios] [,STATUS= sta])

u is the external unit specifier where u is an integer.

errs is an error specifier in the form of a statement label of an executable statement in the
same program unit. If an error condition occurs, execution continues with the statement
specified by errs.

ios is an integer scalar; if this is included ios becomes defined with 0 (zero) if no error
condition exists or a positive integer when there is an error condition. A value of -1
indicates an end-of-file condition with no error. A value of -2 indicates an end-of-record
condition with no error when using non-advancing I/O.

sta is a character expression, where case is insignificant, specifying the file status and the
same keywords are used for the dispose status. Status can be 'KEEP' or 'DELETE' (the
quotes are required). KEEP cannot be specified for a file whose dispose status is SCRATCH.
When KEEP is specified (for a file that exists) the file continues to exist after the CLOSE
statement; conversely DELETE deletes the file after the CLOSE statement. The default value
is KEEP unless the file status is SCRATCH.

Description

A unit may be the subject of a CLOSE statement from within any program unit. If the unit specified
does not exist or has no file connected to it the use of the CLOSE statement has no effect. Provided the
file is still in existence it may be reconnected to the same or a different unit after the execution of a
CLOSE statement. Note that an implicit CLOSE is executed when a program stops.

Statements

55

Example

In the following example, the file on UNIT 6 is closed and deleted.

CLOSE(UNIT=6,STATUS='DELETE')

COMMON 77

The COMMON statement defines global blocks of storage that are either sequential or non sequential.
There are two forms of the COMMON statement, a static form and a dynamic form. Each common
block is identified by the symbolic name defined in the COMMON block.

Syntax

COMMON /[name] /nlist [, /name/nlist]...

name is the name of each common block and is declared between the /.../
delimiters for a named common and with no name for a blank
common.

nlist is a list of variable names where arrays may be defined in DIMENSION
statements or formally declared by their inclusion in the COMMON
block.

Common Block Rules and Behaviors

A common block is a global entity. Any common block name (or blank common) can appear more
than once in one or more COMMON statements in a program unit. The following is a list of rules
associated with common blocks:

Blank Common The name of the COMMON block need not be supplied; without a name,
the common is a BLANK COMMON. In this case the compiler uses a
default name.

Same Names There can be several COMMON block statements of the same name in a
program segment; these are effectively treated as one statement, with
variables concatenated from one COMMON statement of the same name
to the next. This is an alternative to the use of continuation lines when
declaring a common block with many symbols.

 Common blocks with the same name that are declared in different
program units share the same storage area when combined into one
executable program and they are defined using the SEQUENCE attribute.

Fortran Statements

56

HPF In HPF, a common block is non-sequential by default, unless there is an
explicit SEQUENCE directive that specifies the array as sequential. Note
this may require that older FORTRAN 77 programs assuming sequence
association in COMMON statements have SEQUENCE statements for
COMMON variables.

Example

DIMENSION R(10)

COMMON /HOST/ A, R, Q(3), U

This declares a common block called HOST

Note

The different types of declaration used for R (declared in a DIMENSION statement) and Q
(declared in the COMMON statement).

The declaration of HOST in a SUBROUTINE in the same executable program, with a different shape for
its elements would require that the array be declared using the SEQUENCE attribute.

 SUBROUTINE DEMO

!HPF$ SEQUENCE HOST

 COMMON/HOST/STORE(15)

 .

 .

 .

 RETURN

 END

Common Blocks and Subroutines

If the main program has the common block declaration as in the previous example, the COMMON
statement in the subroutine causes STORE(1) to correspond to A, STORE(2) to correspond to R(1),
STORE(3) to correspond to R(2), and so on through to STORE(15) corresponding to the variable U.

Common Block Records and Characters

You can name records within a COMMON block. Because the storage requirements of records are
machine-dependent, the size of a COMMON block containing records may vary between machines.
Note that this may also affect subsequent equivalence associations to variables within COMMON blocks
that contain records.

Statements

57

Both character and non-character data may reside in one COMMON block. Data is aligned within the
COMMON block in order to conform to machine-dependent alignment requirements.

Blank COMMON is always saved. Blank COMMON may be data initialized.

See Also

The SEQUENCE directive.

Syntax Extension – dynamic COMMON§

A dynamic, or allocatable, COMMON block is a common block whose storage is not allocated until an
explicit ALLOCATE statement is executed. PGF77 supports dynamic COMMON blocks, while PGF95
does not.and PGHPF do not.

If the ALLOCATABLE attribute is present, all named COMMON blocks appearing in the COMMON
statement are marked as allocatable. Like a normal COMMON statement, the name of an allocatable
COMMON block may appear in more than one COMMON statement. Note that the ALLOCATABLE
attribute need not appear in every COMMON statement.

The following restrictions apply to the dynamic COMMON statement:

• Before members of an allocatable COMMON block can be referenced, the common block must
have been explicitly allocated using the ALLOCATE statement.

• The data in an allocatable common block cannot be initialized.

• The memory used for an allocatable common block may be freed using the DEALLOCATE
statement.

• If a SUBPROGRAM declares a COMMON block to be allocatable, all other subprograms
containing COMMON statements of the same COMMON block must also declare the COMMON to
be allocatable.

Example (dynamic COMMON)

COMMON, ALLOCATABLE /ALL1/ A, B, /ALL2/ AA,

BB

COMMON /STAT/ D, /ALL1/ C

This declares the following variables:

ALL1 is an allocatable COMMON block whose members are A, B, and C.

Fortran Statements

58

ALL2 is an allocatable COMMON block whose members are AA, and BB.

STAT is a statically-allocated COMMON block whose only member is D.

A reference to a member of an allocatable COMMON block appears in a Fortran statement just like a
member of a normal (static) COMMON block. No special syntax is required to access members of
allocatable common blocks. For example, using the above declarations, the following is a valid pgf77
statement:

AA = B * D

COMPLEX 90

The COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a
variable to a complex data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

The syntax for COMPLEX has two forms, the standard Fortran form and the PGI extended form. This
section describes both syntax forms.

COMPLEX [([KIND =] kind-value

)] [, attribute-list ::] entity-list

COMPLEX permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.

entity-list is the list of defined entities.

Syntax Extension§

COMPLEX name [*n] [dimensions] [/clist/] [,

name] [/clist/] ...

name is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement below for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Statements

59

Description

COMPLEX statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. COMPLEX statements must not be labeled.

Note

The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration
of a type overrides any implicit declaration. An IMPLICIT statement overrides predefined
typing rules.

Example

COMPLEX CURRENT

COMPLEX DIMENSION(8) :: CONV1, FLUX1

The default size of a COMPLEX variable is 8 bytes. With the -r8 option, the default size of a COMPLEX
variable is 16 bytes.

CONTAINS 90

The CONTAINS statement precedes a subprogram, a function or subroutine, that is defined inside a
main program, external subprogram, or module subprogram (internal subprogram). The CONTAINS
statement is a flag indicating the presence of a subroutine or function definition. An internal
subprogram defines a scope for the internal subprogram's labels and names. Scoping is defined by use
and host scoping rules within scoping units. Scoping units have the following precedence for names:

• A derived-type definition.

• A procedure interface body.

• A program unit or a subprogram, excluding contained subprograms.

Syntax

SUBROUTINE X

 INTEGER H, I

 .

 .

 .

 CONTAINS

 SUBROUTINE Y

Fortran Statements

60

 INTEGER I

 I = I + H

 .

 .

 END SUBROUTINE Y

END SUBROUTINE X

Type

Non-executable

See Also

MODULE

CONTINUE 77

The CONTINUE statement passes control to the next statement. It is supplied mainly to overcome the
problem that transfer of control statements are not allowed to terminate a DO loop.

Syntax

CONTINUE

Example

 DO 100 I = 1,10

 SUM = SUM + ARRAY (I)

 IF(SUM .GE. 1000.0) GOTO 200

100 CONTINUE

200 ...

CYCLE 90

The CYCLE statement interrupts a DO construct execution and continues with the next iteration of the
loop.

Syntax

CYCLE [do-construct-name]

Statements

61

Example

DO

 IF (A(I).EQ.0) CYCLE

 B=100/A(I)

 IF (B.EQ.5) EXIT

END DO

See Also

EXIT, DO

DATA 77

The DATA statement assigns initial values to variables before execution.

Syntax

DATA vlist/dlist/[[,]vlist/dlist/]...

vlist is a list of variable names, array element names or array names separated by commas.

dlist is a list of constants or PARAMETER constants, separated by commas, corresponding to
elements in the vlist. An array name in the vlist demands that dlist constants be supplied
to fill every element of the array.

Repetition of a constant is provided by using the form:

n*constant-value

n a positive integer, is the repetition count.

Example

REAL A, B, C(3), D(2)

DATA A, B, C(1), D /1.0, 2.0, 3.0, 2*4.0/

This performs the following initialization:

A = 1.0

B = 2.0

C(1) = 3.0

D(1) = 4.0

D(2) = 4.0

Fortran Statements

62

DEALLOCATE 77

The DEALLOCATE statement causes the memory allocated for each pointer-based variable or
allocatable array that appears in the statement to be deallocated (freed). Deallocate also deallocates
storage for deferred-shape arrays.

Syntax

DEALLOCATE (allocate-object-list [, STAT= var])

Where:

allocate-object-list is a variable name or a structure component.

al is a pointer-based variable or the name of an allocatable COMMON block
enclosed in slashes.

var is the status indicator, an integer variable, integer array element or an
integer member of a structure.

Description

An attempt to deallocate a pointer-based variable or an allocatable COMMON block which was not
created by an ALLOCATE statement results in an error condition.

If the specifier STAT= is present, successful execution of the statement causes var to be defined with
the value of zero. If an error occurs during the execution of the statement and the specifier STAT= is
present, the status variable is defined to have the integer value one. If an error occurs and the specifier
STAT= is not present, program execution is terminated.

Examples

REAL, ALLOCATABLE :: X(:,:)

ALLOCATE (X(10,2))

X=0

DEALLOCATE (X)

COMMON P, N, M

POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y

ALLOCATE (/ALL/, A, STAT=IS)

PRINT *, IS

X(5) = A(2, 1)

Statements

63

DEALLOCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS

DEALLOCATE (/ALL/)

DECODE § 77

The DECODE statement transfers data between variables or arrays in internal storage and translates
that data from character form to internal form, according to format specifiers. Similar results can be
accomplished using internal files with formatted sequential READ statements.

Syntax

DECODE (c, f, b [,IOSTAT= ios] [,

ERR= errs]) [list]

c is an integer expression specifying the number of bytes involved in translation.

f is the format-specifier.

b is a scalar or array reference for the buffer area containing formatted data (characters).

ios is an integer scalar memory reference which is the input/output status specifier: if this is
specified ios becomes defined with zero if no error condition exists or a positive integer
when there is an error condition.

errs an error specifier which takes the form of a statement label of an executable statement in
the same program unit. If an error condition occurs execution continues with the
statement specified by errs.

list is a list of input items.

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

accept sum

and is roughly equivalent to

Fortran Statements

64

character*4 ch

ch = '()'

accept ch

See Also

READ, PRINT

DIMENSION 90

The DIMENSION statement defines the number of dimensions in an array and the number of elements
in each dimension.

Syntax

DIMENSION [::] array-name (array-spec)

 [, array-name (array-spec)] ...

DIMENSION array-name ([lb:]ub[,[lb:]ub]...)

 [,name([lb:]ub[,[lb:]ub]...)]

array-name is the symbolic name of an array.

array-spec is a valid array specification, either explicit-shape, assumed-shape,
deferred-shape, or assumed size (refer for details on array
specifications).

lb:ub is a dimension declarator specifying the bounds for a dimension (the
lower bound lb and the upper bound ub). lb and ub must be integers
with ub greater than lb. The lower bound lb is optional; if it is not
specified, it is taken to be 1.

Description

DIMENSION can be used in a subroutine to establish an argument as an array, and in this case the
declarator can use expressions formed from integer variables and constants to establish the
dimensions (adjustable arrays). Note however that these integer variables must be either arguments
or declared in COMMON; they cannot be local. In this case the function of DIMENSION is merely to
supply a mapping of the argument to the subroutine code, and not to allocate storage.

Statements

65

The typing of the array in a DIMENSION statement is defined by the initial letter of the array name in
the same way as variable names. The letters I,J,K,L,M and N imply that the array is of INTEGER type
and an array with a name starting with any of the letters A to H and O to Z will be of type REAL, unless
overridden by an IMPLICIT or type declaration statement. Arrays may appear in type declaration and
COMMON statements but the array name can appear in only one array declaration.

DIMENSION statements must not be labeled.

Examples

DIMENSION ARRAY1(3:10), ARRAY2(3,-2:2)

This specifies ARRAY1 as a vector having eight elements with the lower bound of 3 and the upper
bound of 10.

ARRAY2 as a matrix of two dimensions having fifteen elements. The first dimension has three
elements and the second has five with bounds from -2 to 2.

CHARACTER B(0:20)*4

This example sets up an array B with 21 character elements each having a length of four characters.
Note that the character array has been dimensioned in a type declaration statement and therefore
cannot subsequently appear in a DIMENSION statement.

DO (Iterative) 90

The DO statement introduces an iterative loop and specifies the loop control index and parameters.
There are two forms of DO statement, block and non-block (FORTRAN 77 style). There are two forms
of block do statements, DO iterative and DO WHILE. Refer to the description of DO WHILE for more
details on this form of DO statement.

Syntax

DO (block)

[do-construct-name :] DO [label] [loop-control]

 [execution-part-construct]

[label] END DO

loop-control is an increment index expression of the form:[index = e1 e2 [, e3]]

label labels the last executable statement in the loop (this must not be a
transfer of control).

Fortran Statements

66

index is the name of a variable called the DO variable.

e1 is an expression which yields an initial value for i.

e2 is an expression which yields a final value for i.

e3 is an optional expression yielding a value specifying the increment value
for i. The default for e3 is 1.

DO (non-block)

DO label [,] index = e1, e2 [,

e3]

label labels the last executable statement in the loop (this must not be a transfer of control).

index is the name of a variable called the DO variable.

e1 is an expression which yields an initial value for i.

e2 is an expression which yields a final value for i.

e3 is an optional expression yielding a value specifying the increment value for i. The default
for e3 is 1.

Description

The DO loop consists of all the executable statements after the specifying DO statement up to and
including the labeled statement, called the terminal statement. The label is optional. If omitted, the
terminal statement of the loop is an END DO statement.

Before execution of a DO loop, an iteration count is initialized for the loop. This value is the number of
times the DO loop is executed, and is:

INT((e2-e1+e3)/e3)

If the value obtained is negative or zero the loop is not executed.

The DO loop is executed first with i taking the value e1, then the value (e1+e3), then the value
(e1+e3+e3), etc.

It is possible to jump out of a DO loop and jump back in, as long as the do index variable has not been
adjusted. In a nested DO loop, it is legal to transfer control from an inner loop to an outer loop. It is
illegal, however, to transfer into a nested loop from outside the loop.

Statements

67

Syntax Extension§

Nested DO loops may share the same labeled terminal statement if required. They may not share an
END DO statement.

Examples

 DO 100 J = -10,10

 DO 100 I = -5,5

100 SUM = SUM + ARRAY (I,J)

 DO

 A(I)=A(I)+1

 IF (A(I).EQ.4) EXIT

 END DO

 DO I=1,N

 A(I)=A(I)+1

 END DO

DO WHILE 77

The DO WHILE statement introduces a logical do loop and specifies the loop control expression.

The DO WHILE statement executes for as long as the logical expression continues to be true when
tested at the beginning of each iteration. If expression is false, control transfers to the statement
following the loop.

Syntax

DO [label[,]] WHILE

expression

The end of the loop is specified in the same way as for an iterative loop, either with a labeled statement
or an END DO.

label labels the last executable statement in the loop (this must not be a
transfer of control).

expression is a logical expression and label.

Description

The logical expression is evaluated. If it is .FALSE., the loop is not entered. If it is .TRUE., the loop is
executed once. Then logical expression is evaluated again, and the cycle is repeated until the
expression evaluates .FALSE.

Fortran Statements

68

Example

DO WHILE (K == 0)

 SUM = SUM + X

END DO

DOUBLE COMPLEX § 77

The DOUBLE COMPLEX statement establishes the data type of a variable by explicitly attaching the
name of a variable to a double complex data type. This overrides the implication of data typing by the
initial letter of a symbolic name.

Syntax

The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity based form, and the
PGI extended form. This section describes both syntax forms.

DOUBLE COMPLEX [, attribute-list ::] entity-list

attribute-list is the list of attributes for the double complex variable.

entity-list is the list of defined entities.

Syntax Extension§

DOUBLE COMPLEX name [/clist/] [,

name] [/clist/]...

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a
symbol may be explicitly declared only once. It is established by type declaration statement, IMPLICIT
statement or by predefined typing rules. Explicit declaration of a type overrides any implicit
declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a DOUBLE COMPLEX variable is 16 bytes. With the -r8 option, the default size of a
DOUBLE COMPLEX variable is also 16 bytes.

Statements

69

Examples

DOUBLE COMPLEX CURRENT, NEXT

DOUBLE PRECISION 90

The DOUBLE PRECISION statement establishes the data type of a variable by explicitly attaching the
name of a variable to a double precision data type. This overrides the implication of data typing by the
initial letter of a symbolic name.

Syntax

The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity based form, and
the PGI extended form. This section describes both syntax forms.

DOUBLE PRECISION [, attribute-list ::] entity-list

attribute-list is the list of attributes for the double precision variable.

entity-list is the list of defined entities.

Syntax Extension§

DOUBLE PRECISION name [/clist/] [,

name] [/clist/]...

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a
symbol may be explicitly declared only once. It is established by type declaration statement, IMPLICIT
statement or by predefined typing rules. Explicit declaration of a type overrides any implicit
declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a DOUBLE PRECISION variable is 8 bytes.

Example

DOUBLE PRECISION PLONG

Fortran Statements

70

ELSE 77

The ELSE statement begins an ELSE block of an IF block and encloses a series of statements that are
conditionally executed.

Syntax

IF logical expression THEN

 statements

ELSE IF logical expression THEN

 statements

ELSE

 statements

END IF

The ELSE section is optional and may occur only once. Other IF blocks may be nested within the
statements section of an ELSE block.

Example

IF (I.LT.15) THEN

 M = 4

ELSE

 M=5

END IF

ELSE IF 77

The ELSE IF statement begins an ELSE IF block of an IF block series and encloses statements that are
conditionally executed.

Syntax

IF logical expression THEN

 statements

ELSE IF logical expression THEN

 statements

ELSE

 statements

END IF

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be
nested within the statements section of an ELSE IF block.

Statements

71

Example

IF (I.GT.70) THEN

 M=1

ELSE IF (I.LT.5) THEN

 M=2

ELSE IF (I.LT.16) THEN

 M=3

END IF

ELSE WHERE 90

The WHERE statement and the WHERE ELSE WHERE construct permit masked assignments to the
elements of an array (or to a scalar, zero dimensional array).

Syntax

WHERE Statement

WHERE (logical-array-expr) array-variable = array-expr

WHERE Construct

WHERE (logical-array-expr)

 array-assignments

[ELSE WHERE

 array-assignments]

END WHERE

Examples

INTEGER SCORE(30)

CHARACTER GRADE(30)

WHERE (SCORE > 60) GRADE = 'P'

WHERE (SCORE > 60)

 GRADE = 'P'

ELSE WHERE

 GRADE = 'F'

END WHERE

ENCODE § 77

The ENCODE statement transfers data between variables or arrays in internal storage and translates
that data from internal to character form, according to format specifiers. Similar results can be
accomplished using internal files with formatted sequential WRITE statements.

Fortran Statements

72

Syntax

ENCODE (c,f,b[,IOSTAT=ios] [,ERR=errs])[list]

c is an integer expression specifying the number of bytes involved in translation.

f is the format-specifier.

b is a scalar or array reference for the buffer area receiving formatted data (characters).

ios is an integer scalar memory reference which is the input/output status specifier: if this is
included, ios becomes defined with zero if no error condition exists or a positive integer
when there is an error condition.

errs an error specifier which takes the form of a statement label of an executable statement in
the same program. If an error condition occurs execution continues with the statement
specified by errs.

list a list of output items.

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

accept sum

and is roughly equivalent to

character*4

ch

ch = '()'

accept ch

See Also

READ, PRINT

END 77

The END statement terminates a segment of a Fortran program. There are several varieties of the END
statement. Each is described below.

Statements

73

END Syntax

END

Description

The END statement terminates a module. The END statement has the same effect as a RETURN
statement in a SUBROUTINE or FUNCTION, or the effect of a STOP statement in a PROGRAM program
unit. END may be the last statement in a compilation or it may be followed by a new program unit or
module.

END DO Syntax

The END DO statement terminates a DO or DO WHILE loop.

END DO

Description

The END DO statement terminates an indexed DO or DO WHILE statement which does not contain a
terminal-statement label.

The END DO statement may also be used as a labeled terminal statement if the DO or DO WHILE
statement contains a terminal-statement label.

END FILE Syntax

END FILE u

END FILE ([UNIT=]u, [,IOSTAT =ios] [,ERR=errs])

u is the external unit specifier where u is an integer.

IOSTAT=ios an integer scalar memory reference which is the input/output specifier:
if this is included in list, ios becomes defined with zero if no error
condition exists or a positive integer when there is an error condition.

ERR=errs an error specifier which takes the form of a statement label of an
executable statement in the same program. If an error condition occurs
execution continues with the statement specified by errs.

Fortran Statements

74

Description

When an END FILE statement is executed an endfile record is written to the file as the next record. The
file is then positioned after the endfile record. Note that only records written prior to the endfile record
can be read later.

A BACKSPACE or REWIND statement must be used to reposition the file after an END FILE statement
prior to the execution of any data transfer statement. A file is created if there is an END FILE statement
for a file connected but not in existence.

For example:

END FILE(20)

END FILE(UNIT=34, IOSTAT=IOERR, ERR=140)

END IF Syntax

The END IF statement terminates an IF ELSE or ELSE IF block.

Syntax

END IF

Description

The END IF statement terminates an IF block. There must be a matching block IF statement (at the
same IF level) earlier in the same subprogram.

Syntax Extension – END MAP§

END MAP Syntax

The END MAP statement terminates a MAP declaration.

Syntax

END MAP

Description

See the MAP statement for details.

END SELECT Syntax

The END SELECT statement terminates a SELECT declaration.

Statements

75

Syntax

END SELECT

Example

SELECT CASE (FLAG)

CASE (1, 2, 3)

 TYPE=1

CASE (4:6)

 TYPE=2

CASE DEFAULT

 TYPE=0

END SELECT

Syntax Extension – END STRUCTURE§

END STRUCTURE Syntax

The END STRUCTURE statement terminates a STRUCTURE declaration.

Syntax

END STRUCTURE

Description

See the STRUCTURE statement for details.

Syntax Extension – END UNION§

END UNION

The END UNION statement terminates a UNION declaration.

Syntax

END UNION

Description

See the UNION statement for details.

ENTRY 77

The ENTRY statement allows a subroutine or function to have more than one entry point.

Fortran Statements

76

Syntax

ENTRY name [(variable, variable...)]

name is the symbolic name, or entry name, by which the subroutine or
function may be referenced.

variable is a dummy argument. A dummy argument may be a variable name,
array name, dummy procedure or, if the ENTRY is in a subroutine, an
alternate return argument indicated by an asterisk. If there are no
dummy arguments name may optionally be followed by (). There may
be more than one ENTRY statement within a subroutine or function, but
they must not appear within a block IF or DO loop.

Description

The name of an ENTRY must not be used as a dummy argument in a FUNCTION, SUBROUTINE or
ENTRY statement, nor may it appear in an EXTERNAL statement.

Within a function a variable name which is the same as the entry name may not appear in any
statement that precedes the ENTRY statement, except in a type statement.

If name is of type character the names of each entry in the function and the function name must be of
type character. If the function name or any entry name has a length of (*) all such names must have
a length of (*); otherwise they must all have a length specification of the same integer value.

A name which is used as a dummy argument must not appear in an executable statement preceding
the ENTRY statement unless it also appears in a FUNCTION, SUBROUTINE or ENTRY statement that
precedes the executable statement. Neither must it appear in the expression of a statement function
unless the name is also a dummy argument of the statement function, or appears in a FUNCTION or
SUBROUTINE statement, or in an ENTRY statement that precedes the statement function statement.

If a dummy argument appears in an executable statement, execution of that statement is only
permitted during the execution of a reference to the function or subroutine if the dummy argument
appears in the dummy argument list of the procedure name referenced.

When a subroutine or function is called using the entry name, execution begins with the statement
immediately following the ENTRY statement. If a function entry has no dummy arguments the
function must be referenced by name() but a subroutine entry without dummy arguments may be
called with or without the parentheses after the entry name.

Statements

77

An entry may be referenced from any program unit except the one in which it is defined.

The order, type, number and names of dummy arguments in an ENTRY statement can be different
from those used in the FUNCTION, SUBROUTINE or other ENTRY statements in the same program
unit but each reference must use an actual argument list which agrees in order, number and type with
the dummy argument list of the corresponding FUNCTION, SUBROUTINE or ENTRY statement. When
a subroutine name or an alternate return specifier is used as an actual argument there is no need to
match the type.

Entry names within a FUNCTION subprogram need not be of the same data type as the function name,
but they all must be consistent within one of the following groups of data types:

BYTE, INTEGER*2, INTEGER*4, LOGICAL*1,

LOGICAL*2, LOGICAL*4, REAL*4, REAL*8,

COMPLEX*8

COMPLEX*16

CHARACTER

If the function is of character data type, all entry names must also have the same length specification
as that of the function.

Example

FUNCTION SUM(TALL,SHORT,TINY)

 .

SUM=TALL-(SHORT+TINY)

RETURN

ENTRY SUM1(X,LONG,TALL,WIDE,NARROW)

 .

 .

SUM1=(X*LONG)+(TALL*WIDE)+NARROW

RETURN

ENTRY SUM2(SHORT,SMALL,TALL,WIDE)

 .

 .

SUM2=(TALL-SMALL)+(WIDE-SHORT)

RETURN

END

When the calling program calls the function SUM it can do so in one of three ways depending on
which ENTRY point is desired.

For example if the call is:

Fortran Statements

78

Z=SUM2(LITTLE,SMALL,BIG,HUGE)

the ENTRY point is SUM2.

If the call is:

Z=SUM(T,X,Y)

the ENTRY point is SUM and so on.

EQUIVALENCE 77

The EQUIVALENCE statement allows two or more named regions of data memory to share the same
start address. Arrays that are subject to the EQUIVALENCE statement in HPF are treated as sequential
and any attempt at non-replicated data distribution or mapping is ignored for such arrays.

Syntax

EQUIVALENCE (list)[,(list)...]

list is a set of identifiers (variables, arrays or array elements) which are to
be associated with the same address in data memory. The items in a list
are separated by commas, and there must be at least two items in each
list. When an array element is chosen, the subscripts must be integer
constants or integer PARAMETER constants.

Description

The statement can be used to make a single region of data memory have different types, so that for
instance the imaginary part of a complex number can be treated as a real value. It can also be used to
make arrays overlap, so that the same region of store can be dimensioned in several different ways.
Records and record fields cannot be specified in EQUIVALENCE statements.

Syntax Extension§

An array element may be identified with a single subscript in an EQUIVALENCE statement even though
the array is defined to be a multidimensional array. Also, EQUIVALENCE of character and non-
character data is allowed as long as misalignment of non-character data does not occur.

Example

COMPLEX NUM

REAL QWER(2)

EQUIVALENCE (NUM,QWER(1))

Statements

79

In the above example, QWER(1) is the real part of NUM and QWER(2) is the imaginary part.
EQUIVALENCE statements are illegal if there is any attempt to make a mapping of data memory
inconsistent with its linear layout.

EXIT 90

The EXIT statement interrupts a DO construct execution and continues with the next statement after
the loop.

Syntax

EXIT [do-construct-name]

Example

DO

 IF (A(I).EQ.0) CYCLE

 B=100/A(I)

 IF (B.EQ.5) EXIT

END DO

See Also

CYCLE, DO

EXTERNAL 77

The EXTERNAL statement identifies a symbolic name as an external or dummy procedure. This
procedure can then be used as an actual argument.

Syntax

EXTERNAL proc [,proc]..

proc is the name of an external procedure, dummy procedure or block data
program unit. When an external or dummy procedure name is used as
an actual argument in a program unit it must appear in an EXTERNAL
statement in that program unit.

Description

If an intrinsic function appears in an EXTERNAL statement an intrinsic function of the same name
cannot then be referenced in the program unit. A symbolic name can appear only once in all the
EXTERNAL statements of a program unit.

Fortran Statements

80

EXTRINSIC HPF

The EXTRINSIC statement identifies a symbolic name as an external or dummy procedure that is
written in some language other than HPF.

Syntax

EXTRINSIC (extrinsic-kind-keyword) procedure name

extrinsic-kind-keyword is the name of an extrinsic interface supported. The currently supported
value is F77_LOCAL.

procedure name is either a subroutine-statement or a function-statement defining a
name for an external and extrinsic procedure.

Description

The EXTRINSIC procedure can then be used as an actual argument once it is defined. The call to an
EXTRINSIC procedure should be semantically equivalent to the execution of an HPF procedure in that
on return from the procedure, all processors are still available, and all data and templates will have
the same distribution and alignment as when the procedure was called.

See Also

For a complete description of the PGHPF extrinsic facility, along with examples, refer to the PGHPF
User’s Guide.

FORALL F95

The FORALL statement and the FORALL construct provide a parallel mechanism to assign values to the
elements of an array.

Syntax

FORALL (forall-triplet-spec-list [, scalar-mask-expr])

forall-assignment

or

FORALL (forall-triplet-spec-list [, scalar-mask-expr])

forall-body

[forall-body]...

END FORALL

Statements

81

where forall-body is one of:

forall-assignment

where-statement

where-construct

forall-statement

forall-construct

Description

The FORALL statement is computed in four stages:

First, compute the valid set of index values. Second, compute the active set of index values, taking into
consideration the scalar-mask-expr. If no scalar-mask-expr is present, the valid set is the same as the
active set of index values. Third, for each index value, the right-hand side of the body of the FORALL is
computed. Finally, the right-hand side is assigned to the left-hand side, for each index value.

Examples

FORALL (I = 1:3) A(I) = B(I)

FORALL(I = 1:L, A(I) == 0.0) A(I) = R(I)

FORALL (I = 1:3)

 A(I) = D(I)

 B(I) = C(I) * 2

END FORALLFORALL (I = 1:5)

 WHERE (A(I,:) /= 0.0)

 A(I,:) = A(I-1,:) + A(I+1,:)

 ELSEWHERE

 B(I,:) = A(6-I,:)

 END WHERE

END FORALL

FORMAT 77

The FORMAT statement specifies format requirements for input or output.

Syntax

label FORMAT (list-items)

list-items can be any of the following, separated by commas:

• Repeatable editor commands which may or may not be preceded
by an integer constant which defines the number of repeats.

Fortran Statements

82

• Nonrepeatable editor commands.

• A format specification list optionally preceded by an integer
constant which defines the number of repeats.

Each action of format control depends on the next edit code and the next item in the input/output list
where one is used. If an input/output list contains at least one item there must be at least one
repeatable edit code in the format specification. An empty format specification () can only be used if
no list items are specified; in such a case one input record is skipped or an output record containing
no characters is written. Unless the edit code or the format list is preceded by a repeat specification, a
format specification is interpreted from left to right. Where a repeat specification is used the
appropriate item is repeated the required number of times.

Description

Refer to for more details on using the FORMAT statement.

Examples

 WRITE (6,90) NPAGE

90 FORMAT('1PAGE NUMBER ',I2,16X,'SALES REPORT, Cont.')

produces:

 PAGE NUMBER 10 SALES REPORT, Cont.

The following example shows use of the tabulation specifier T:

 PRINT 25

25 FORMAT (T41,'COLUMN 2',T21,'COLUMN 1')

produces:

 COLUMN

1 COLUMN 2

 DIMENSION A(6)

 DO 10 I = 1,6

10 A(I) = 25.

 TYPE 100,A

100 FORMAT(' ',F8.2,2PF8.2,F8.2) ! ' '

C ! gives single spacing

produces:

Statements

83

25.00

2500.00 2500.00

2500.00 2500.00 2500.00

Note that the effect of the scale factor continues until another scale factor is used.

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

accept sum

and is roughly equivalent to

character*4

ch

ch = '()'

accept ch

See Also

READ, PRINT

FUNCTION 77

The FUNCTION statement introduces a program unit; the statements that follow all apply to the
function itself and are laid out in the same order as those in a PROGRAM program unit.

Syntax

[function-prefix] FUNCTION name [*n] ([argument [,argument]...])

.

.

.

END [FUNCTION [function-name]]

function-prefix is one of:

[type-spec] RECURSIVE

[RECURSIVE] type-spec

Fortran Statements

84

where type-spec is a valid type specification. Type will explicitly apply a
type to the function. If the function is not explicitly typed then the
function type is taken from the initial letter and is dictated by the usual
default.

name is the name of the function and must be unique among all the program
unit names in the program. name must not clash with any local,
COMMON or PARAMETER names.

*n is the optional length of the data type.

argument is a symbolic name, starting with a letter and containing only letters and
digits. An argument can be of type REAL, INTEGER, DOUBLE
PRECISION, CHARACTER, LOGICAL, COMPLEX, or BYTE, etc.

Description

The statements and names apply only to the function, except for subroutine or function references
and the names of COMMON blocks. The function must be terminated by an END statement.

A function produces a result; this allows a function reference to appear in an expression, where the
result is assumed to replace the actual reference. The symbolic name of the function must appear as a
variable in the function, unless the RESULT keyword is used. The value of this variable, on exit from
the function, is the result of the function. The function result is undefined if the variable has not been
defined.

The type of a FUNCTION refers to the type of its result.

Recursion is allowed if the –Mrecursive option is used on the command-line and the RECURSIVE
prefix is included in the function definition.

Examples

 FUNCTION FRED(A,B,C)

 REAL X

 .

 END

 FUNCTION EMPTY() ! Note parentheses

 END

 PROGRAM FUNCALL

 .

 SIDE=TOTAL(A,B,C)

 .

Statements

85

 END

 FUNCTION TOTAL(X,Y,Z)

 .

 END

 FUNCTION AORB(A,B)

 IF(A-B)1,2,3

1 AORB = A

 RETURN

2 AORB = B

 RETURN

3 AORB = A + B

 RETURN

 END

See Also

PURE, RECURSIVE, RESULT

GOTO (Assigned)

(Obsolescent) The assigned GOTO statement transfers control so that the statement identified by the
statement label is executed next. Internal procedures can be used in place of the assign statement used
with an assigned GO TO.

Syntax

GOTO integer-variable-name[[,] (list)]

integer-variable-name must be defined with the value of a statement label of an executable
statement within the same program unit. This type of definition can
only be done by the ASSIGN statement.

list consists of one or more statement labels attached to executable
statements in the same program unit. If a list of statement labels is
present, the statement label assigned to the integer variable must be in
that list.

Fortran Statements

86

Examples

 ASSIGN 50 TO K

 GO TO K(50,90)

90 G=D**5

 .

 .

50 F=R/T

GOTO (Computed) 77

The computed GOTO statement allows transfer of control to one of a list of labels according to the
value of an expression.

Syntax

GOTO (list) [,] expression

list is a list of labels separated by commas.

expression selects the label from the list to which to transfer control. Thus a value
of 1 implies the first label in the list, a value of 2 implies the second label
and so on. An expression value outside the range will result in transfer
of control to the statement following the computed GOTO statement.

Example

 READ *, A, B

 GO TO (50,60,70)A

 WRITE (*, 10) A, B

10 FORMAT (' ', I3, F10.4, 5X, 'A must be 1, 2

 + or 3')

 STOP

50 X=A**B ! Come here if A has the

value 1

 GO TO 100

60 X=(A*56)*(B/3) ! Come

here if A is 2

 GO TO 100

70 X=A*B ! Come here if A has the value 3

100 WRITE (*, 20) A, B, X

20 FORMAT (' ', I3, F10.4, 5X, F10.4)

Statements

87

GOTO (Unconditional) 77

The GOTO statement unconditionally transfers control to the statement with the label label. The
statement label label must be declared within the code of the program unit containing the GOTO
statement and must be unique within that program unit.

Syntax

GOTO label

label is a statement label

Example

 TOTAL=0.0

30 READ *, X

 IF (X.GE.0) THEN

 TOTAL=TOTAL+X

 GOTO 30

 END IF

IF (Arithmetic) 77

(Obsolescent) The arithmetic IF statement transfers control to one of three labeled statements. The
statement chosen depends upon the value of an arithmetic expression.

Syntax

IF (arithmetic-expression) label-1, label-2, label-3

Control transfers to label-1, label-2 or label-3 if the result of the evaluation of the arithmetic-
expression is less than zero, equal to zero or greater than zero respectively.

Example

IF X 10, 20, 30

If X is less than zero then control is transferred to label 10. If X equals zero then control is transferred
to label 20. If X is greater than zero then control is transferred to label 30.

IF (Block) 77

The block IF statement consists of a series of statements that are conditionally executed.

Fortran Statements

88

Syntax

IF logical expression THEN

 statements

ELSE IF logical expression THEN

 statements

ELSE

 statements

END IF

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be
nested within the statements section of an ELSE IF block.

The ELSE section is optional and may occur only once. Other IF blocks may be nested within the
statements section of an ELSE block.

Example

IF (I.GT.70) THEN

 M=1

ELSE IF (I.LT.5) THEN

 M=2

ELSE IF (I.LT.16) THEN

 M=3

END IF

IF (I.LT.15) THEN

 M = 4

ELSE

 M=5

END IF

IF (Logical) 77

The logical IF statement executes or does not execute a statement based on the value of a logical
expression.

Syntax

IF (logical-expression) statement

logical-expression is evaluated and if it is true the statement is executed. If it is false, the
statement is not executed and control is passed to the next executable
statement.

Statements

89

statement can be an assignment statement, a CALL statement or a GOTO
statement.

Examples

IF(N .LE. 2) GOTO 27

IF(HIGH .GT. 1000.0 .OR. HIGH .LT. 0.0) HIGH=1000.0

IMPLICIT 77

The IMPLICIT statement redefines the implied data type of symbolic names from their initial letter.
Without the use of the IMPLICIT statement all names that begin with the letters I,J,K,L,M or N are
assumed to be of type integer and all names beginning with any other letters are assumed to be real.

Syntax

IMPLICIT spec (a[,a]...) [,spec

(a[,a]...)]

IMPLICIT NONE

spec is a data type specifier.

a is an alphabetic specification expressed either as a or a1-a2, specifying an alphabetically
ordered range of letters.

Description

IMPLICIT statements must not be labeled.

Symbol names may begin with a dollar sign ($) or underscore (_) character, both of which are of type
REAL by default. In an IMPLICIT statement, these characters may be used in the same manner as
other characters, but they cannot be used in a range specification.

The IMPLICIT NONE statement specifies that all symbolic names must be explicitly declared, otherwise
an error is reported. If IMPLICT NONE is used, no other IMPLICIT can be present.

Examples

IMPLICIT REAL (L,N)

IMPLICIT INTEGER (S,W-Z)

IMPLICIT INTEGER (A-D,$,_)

Fortran Statements

90

INCLUDE § 77

The INCLUDE statement directs the compiler to start reading from another file.

Note

The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text
libraries or the module_name pathname qualifier that exists in the VAX/VMS version of the
INCLUDE statement.

Syntax

INCLUDE 'filename [/[NO]LIST]'

INCLUDE "filename [/[NO]LIST]"

The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a program
unit as long as Fortran's statement-ordering restrictions are not violated.

§The qualifiers /LIST and /NOLIST can be used to control whether the include file is expanded in the
listing file (if generated).

Either single or double quotes may be used.

If the final component of the file pathname is /LIST or /NOLIST, the compiler will assume it is a
qualifier, unless an additional qualifier is supplied.

The filename and the /LIST or /NOLIST qualifier may be separated by blanks.

The include file is searched for in the following directories:

• Each –I directory specified on the command-line.

• The directory containing the file that contains the INCLUDE statement (the current working
directory.)

• The standard include area.

Example

INCLUDE '/mypath/list /list'

This line includes a file named /mypath/list and expands it in the listing file, if a listing file is used.

Statements

91

INQUIRE 77

An INQUIRE statement has two forms and is used to inquire about the current properties of a
particular file or the current connections of a particular unit. INQUIRE may be executed before,
during or after a file is connected to a unit.

Syntax

INQUIRE (FILE=filename, list)

INQUIRE ([UNIT=]unit,list)

In addition list may contain one of each of the following specifiers in any order, following the unit
number if the optional UNIT specifier keyword is not supplied.

ACCESS=acc acc returns a character expression specifying the access method for the
file as either DIRECT or SEQUENTIAL. The default is SEQUENTIAL.

ACTION=acc acc is a character expression specifying the access types for the
connection. Either READ, WRITE, or READWRITE.

BLANK= blnk blnk is a character expression which returns the value NULL or ZERO or
UNDEFINED. NULL causes all blank characters in numeric formatted
input fields to be ignored with the exception of an all-blank field which
has a value of zero. ZERO causes all blanks other than leading blanks to
be treated as zeros. This specifier must only be used when a file is
connected for formatted input/output.

DELIM= del_char del_char
is a character expression which returns the value APOSTROPHE,
QUOTE, NONE or UNDEFINED. These values specify the character
delimiter for list-directed or namelist formatted data transfer
statements.

DIRECT= dir_char dir_char is a character reference which returns the value YES if DIRECT
is one of the allowed access methods for the file, NO if not and
UNKNOWN if it is not known if DIRECT is included.

ERR= errs errs is an error specifier which returns the value of a statement label of
an executable statement within the same program. If an error condition
occurs execution continues with the statement specified by errs.

Fortran Statements

92

EXIST= value value is a logical variable or logical array element which becomes
.TRUE. if there is a file/unit with the name or .FALSE. otherwise.

FILE= fin fin is a character expression whose value is the file name expression, the
name of the file connected to the specified unit.

FORM= fm fm is a character expression specifying whether the file is being
connected for FORMATTED or UNFORMATTED input/output. The default
is UNFORMATTED.

FORMATTED= fmt fmt is a character memory reference which takes the value YES if
FORMATTED is one of the allowed access methods for the file, NO if not
and UNKNOWN if it is not known if FORMATTED is included.

IOSTAT= ios ios input/output status specifier where ios is an integer reference: if this
is included in list, ios is defined as 0 if no error condition occurred and a
positive integer when there is an error condition.

NAME= fn fn is a character scalar memory reference which is assigned the name of
the file when the file has a name, otherwise it is undefined

NAMED= nmd nmd is a logical scalar memory reference which becomes .TRUE. if the
file has a name, otherwise it becomes .FALSE.

NEXTREC= nr nr is an integer scalar memory reference which is assigned the value
n+1, where n is the number of the record read or written. It takes the
value 1 if no records have been read or written. If the file is not
connected or its position is indeterminate nr is undefined.

NUMBER= num num is an integer scalar memory reference or integer array element
assigned the value of the external unit number of the currently
connected unit. It becomes undefined if no unit is connected.

OPENED= od od is a logical scalar memory reference which becomes .TRUE. if the
file/unit specified is connected (open) and .FALSE. if the file is not
connected (.FALSE.).

PAD= pad_char pad_char is a character expression specifying whether to use blank
padding. Values for pad_char are YES or NO: yes specifies blank padding
is used, no requires that input records contain all requested data.

Statements

93

POSITION= pos_char pos_char is a character expression specifying the file position. Values
are ASIS, REWIND or APPEND. For a connected file, on OPEN ASIS leaves
the position in the current position, REWIND rewinds the file and
APPEND places the current position at the end of the file, immediately
before the end-of-file record.

READ= rl rl is a character reference which takes the value YES if UNFORMATTED is
one of the allowed access methods for file, NO if not, or UNKNOWN if it is
not known if UNFORMATTED is included.

READWRITE= rl rl is a character scalar memory reference which takes the value YES if
UNFORMATTED is one of the allowed access methods for the file, NO if
not and UNKNOWN if it is not known if UNFORMATTED is included.

RECL= rcll rcl is an integer expression defining the record length in a file connected
for direct access. When sequential input/output is specified this is the
maximum record length. This specifier must only be given when a file is
connected for direct access.

SEQUENTIAL= seq seq a character scalar memory reference which takes the value YES if
UNFORMATTED is one of the allowed access methods for the file, NO if
not and UNKNOWN if it is not known if UNFORMATTED is included.

UNFORMATTED= unf unf a character scalar memory reference which takes the value YES if
UNFORMATTED is one of the allowed access methods for the file, NO if
not and UNKNOWN if it is not known if UNFORMATTED is included.

WRITE= rl rl a character scalar memory reference which takes the value YES, NO,
or UNKNOWN. These values indicate that WRITE is allowed, not allowed,
or indeterminate for the specified file, respectively.

Description

When an INQUIRE by file statement is executed the following specifiers will only be assigned values if
the file name is acceptable: nmd, fn, seq, dir, fmt and unf. num is defined, and acc, fm, rcl, nr and
blnk may become defined only if od is defined as .TRUE..

When an INQUIRE by unit statement is executed the specifiers num, nmd, fn, acc, seq, dir, fm, fmt,
unf, rcl, nr and blnk are assigned values provided that the unit exists and a file is connected to that
unit. Should an error condition occur during the execution of an INQUIRE statement all the specifiers
except ios become undefined.

Fortran Statements

94

INTEGER 77

The INTEGER statement establishes the data type of a variable by explicitly attaching the name of a
variable to an integer data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

The syntax for INTEGER has two forms, a standard FORTRAN 77 or 90/95 attributed form, and the PGI
extended form. This section describes both syntax forms.

INTEGER [([KIND = kind-value

)][, attribute-list ::] entity-list

INTEGER permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.

entity-list is the list of defined entities.

Syntax Extension§

INTEGER [*n] [,] name [*n] [dimensions] [/clist/]...

n is an optional size specification.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Integer type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. INTEGER statements must not be labeled. The default size of an INTEGER
variable is 4 bytes. With the -Mnoi4 option, the default size of an INTEGER variable is 2 bytes.

Note

The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration
of a type overrides any implicit declaration. An IMPLICIT statement overrides predefined
typing rules.

Statements

95

Example

INTEGER TIME, SECOND, STORE (5,5)

INTENT 90

The INTENT specification statement (attribute) specifies intended use of a dummy argument. This
statement (attribute) may not be used in a main program's specification statement.

Syntax

INTENT (intent-spec) [::] dummy-arg-list

intent-spec is one of:

• IN

• OUT

• INOUT

dummy-arg-list is the list of dummy arguments with the specified intent.

Description

With intent specified as IN, the subprogram argument must not be redefined by the subprogram.

With intent specified as OUT, the subprogram should use the argument to pass information to the
calling program.

With intent specified as INOUT, the subprogram may use the value passed through the argument, but
should also redefine the argument to pass information to the calling program.

See Also

OPTIONAL

Example

SUBROUTINE IN_OUT(R1,I1)

 REAL, INTENT (IN)::R1

 INTEGER, INTENT(OUT)::I1

 I1=R1

END SUBROUTINE IN_OUT

Fortran Statements

96

INTERFACE 90

The INTERFACE statement block makes an implicit procedure an explicit procedure where the dummy
parameters and procedure type are known to the calling module. This statement is also used to
overload a procedure name.

Syntax

INTERFACE [generic-spec]

 [interface-body]...

 [MODULE PROCEDURE procedure-name-list]...

END INTERFACE

where generic-spec is one of the following:

generic-name

OPERATOR (defined operator)

ASSIGNMENT (=)

and the interface body specifies the interface for a function or a subroutine:

function-statement

 [specification-part]

END FUNCTION [function name]

subroutine-statement

 [specification-part]

END FUNCTION [subroutine name]

See Also

END INTERFACE

Example

INTERFACE

 SUBROUTINE IN_OUT(R1,I1)

 REAL, INTENT (IN)::R1

 INTEGER, INTENT(OUT)::I1

 END SUBROUTINE IN_OUT

END INTEFACE

INTRINSIC 77

An INTRINSIC statement identifies a symbolic name as an intrinsic function and allows it to be used
as an actual argument.

Statements

97

Syntax

INTRINSIC func [,func]

func is the name of an intrinsic function such as SIN, COS, etc.

Description

Do not use any of the following functions in INTRINSIC statements:

• type conversions:

INT, IFIX, IDINT, FLOAT, SNGL, REAL, DBLE, CMPLX, ICHAR,

CHAR

• lexical relationships:

LGE, LGT, LLE, LLT

• values:

MAX, MAX0, AMAX1, DMAX1, AMAX0, MAX1, MIN, MIN0, AMIN1,

DMIN1, AMIN0, MIN1

When a specific name of an intrinsic function is used as an actual argument in a program unit it must
appear in an INTRINSIC statement in that program unit. If the name used in an INTRINSIC statement
is also the name of a generic intrinsic function, it retains its generic properties. A symbolic name can
appear only once in all the INTRINSIC statements of a program unit and cannot be used in both an
EXTERNAL and INTRINSIC statement in a program unit.

The following example illustrates the use of INTRINSIC and EXTERNAL:

EXTERNAL MYOWN

INTRINSIC SIN, COS

.

.

CALL TRIG (ANGLE,SIN,SINE)

.

CALL TRIG (ANGLE,MYOWN,COTANGENT)

.

CALL TRIG (ANGLE,COS,SINE)

SUBROUTINE TRIG (X,F,Y)

Y=F(X)

RETURN

END

Fortran Statements

98

FUNCTION MYOWN

MYOWN=COS(X)/SIN(X)

RETURN

END

In this example, when TRIG is called with a second argument of SIN or COS the function reference
F(X) references the intrinsic functions SIN and COS; however when TRIG is called with MYOWN as the
second argument F(X) references the user function MYOWN.

LOGICAL 77

The LOGICAL statement establishes the data type of a variable by explicitly attaching the name of a
variable to an integer data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

The syntax for LOGICAL has two forms, a standard FORTRAN 77 and 90/95 attributed form, and the
PGI extended form. This section describes both syntax forms.

LOGICAL [([KIND = kind-value

)] [, attribute-list ::] entity-list

LOGICAL permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.

entity-list is the list of defined entities.

Syntax Extension§

LOGICAL [*n] [,] name [*n] [dimensions] [/clist/]

 [, name] [*n][dimensions] [/clist/]...

n is an optional size specification.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Statements

99

Description

Logical type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a
symbol may be explicitly declared only once. It is established by type declaration statement, IMPLICIT
statement or by predefined typing rules. Explicit declaration of a type overrides any implicit
declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a LOGICAL variable is 4 bytes. With the -Mnoi4 option, the default size of a LOGICAL
variable is 2 bytes.

Example

LOGICAL TIME, SECOND, STORE(5,5)

MAP § 77

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate
map declaration. Field alignment within multiple map declarations is performed as previously defined
in structure declarations.

Syntax

MAP

 field_declaration

 [field_declaration]

 ...

 [field_declaration]

END MAP

field_declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union
declaration, or the declaration of a typed data field within a union.

Description

Data can be initialized in field declaration statements in union declarations. However, it is illegal to
initialize multiple map declarations in a single union.

Fortran Statements

100

The size of the shared area for a union declaration is the size of the largest map defined for that
union. The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved
for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements. However,
union declarations are probably more similar to union declarations for the language C. The main
difference is that the language C requires one to associate a name with each map (union). Fortran
field names must be unique within the same declaration nesting level of maps.

Example

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each element of
the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP (the employee
map at 24 bytes).

STRUCTURE /account/

 INTEGER typetag ! Tag to determine defined map

 UNION

 MAP ! Structure for an employee

 CHARACTER*12 ssn ! Social Security Number

 REAL*4 salary

 CHARACTER*8 empdate ! Employment date

 END MAP

 MAP ! Structure for a customer

 INTEGER*4 acct_cust

 REAL*4 credit_amt

 CHARACTER*8 due_date

 END MAP

 MAP ! Structure for a supplier

 INTEGER*4 acct_supp

 REAL*4 debit_amt

 BYTE num_items

 BYTE items(12) ! Items supplied

 END MAP

 END UNION

END STRUCTURE

RECORD /account/ recarr(1000)

Statements

101

MODULE 90

(PGF95 and PGHPF only) The MODULE statement specifies the entry point for a Fortran 90/95 module
program unit. A module defines a host environment of scope of the module, and may contain
subprograms that are in the same scoping unit.

Syntax

MODULE [name]

 [specification-part]

 [CONTAINS [module-subprogram-part]]

END [MODULE [module-name]]

name is optional; if supplied it becomes the name of the program module and
must not clash with any other names used in the program. If it is not
supplied, a default name is used.

specification-part contains specification statements. See the Fortran 95 Handbook for a
complete description of the valid statements.

module-subprogram-part contains function and subroutine definitions for the module, preceded
by a single CONTAINS keyword.

Modules can be independently compiled and used within programs using the USE statement. Use of
Fortran 90/95 modules causes the compiler to create a filename.mod file in the current directory (a
.mod file). This file contains all the information the compiler needs concerning interface
specifications and the data types for the routines defined in the module. When a program, routine, or
another module encounters the USE statement, the .mod file is read and "included" in the program,
using the scope rules defined in Fortran 90/95 for USE association. If you are using separate modules,
this creates another step in the program development process. When a module is compiled, both a
.mod and an object file are created. The .mod file is used when a USE statement is encountered, and
the object file is used when the program is linked.

For example, if module1.f contains a module with several procedures, and test1.f contains a USE
statement that uses module1, the compilation would involve the steps.

% pgf95 -c module1.f

% pgf95 -o test1 test1.f module1.o

The search for a .mod file includes the following directories:

Each –I directory specified on the command-line.

Fortran Statements

102

The directory containing the file that contains the USE statement (the current working directory.)

The standard include area.

Using the –I command-line option directories can be added to the search path for .mod files.

Example

MODULE MYOWN

 REAL MEAN, TOTAL

 INTEGER, ALLOCATABLE, DIMENSION(:):: A

 CONTAINS

 RECURSIVE INTEGER FUNCTION X(Y)

 .

 .

 .

 END FUNCTION X

END MODULE MYOWN

NAMELIST 90

The NAMELIST statement allows for the definition of namelist groups for namelist-directed I/O.

Syntax

NAMELIST /group-name/ namelist [[,] /group-name/ namelist]...

group-name is the name of the namelist group.

namelist is the list of variables in the namelist group.

Example

In the following example a named group PERS consists of a name, an account, and a value.

CHARACTER*12 NAME

INTEGER*$ ACCOUNT

REAL*4 VALUE

NAMELIST /PERS/ NAME, ACCOUNT, VALUE

NULLIFY 90

The NULLIFY statement disassociates a pointer from its target.

Statements

103

Syntax

NULLIFY (pointer-object-list)

Example

NULLIFY (PTR1)

See Also

ALLOCATE, DEALLOCATE

OPEN 77

The OPEN statement connects an existing file to a unit, creates and connects a file to a unit, creates a
file that is preconnected or changes certain specifiers of a connection between a file and a unit.

Syntax

OPEN (list)

list must contain exactly one unit specifier of the form:

[UNIT=] u

where the UNIT= is optional and the external unit specifier u is an integer.

In addition list may contain one of each of the following specifiers in any order, following the unit
number if the optional UNIT specifier keyword is not supplied.

ACCESS= acc acc is a character expression specifying the access method for file
connection as SEQUENTIAL, DIRECT or STREAM; the default is
SEQUENTIAL.

ACTION= acc acc is a character expression specifying the permitted access types for
connection. One of READ, WRITE, UNKNOWN or READWRITE is allowed.
The default is UNKNOWN .

ASYNCHRONOUS=async async is a character expression specifying whether to allow
asynchronous data transfer on this file connection. One of ‘YES’ or ‘NO’
is allowed.

BLANK=blnk blnk is a character expression which takes the value 'NULL' or 'ZERO'.
'NULL' causes all blank characters in numeric formatted input fields to
be ignored with the exception of an all-blank field which has a value of

Fortran Statements

104

zero. 'ZERO' causes all blanks other than leading blanks to be treated as
zeros. The default is 'NULL.' This specifier must only be used when a file
is connected for formatted input/output.

DELIM= del_char del_char is a character expression which takes the value
'APOSTROPHE', 'QUOTE' or 'NONE'. These values specify the character
delimiter for list-directed or namelist formatted data transfer
statements.

ERR=errs errs is an error specifier; it takes the form of a statement label of an
executable statement within the program. If an error condition occurs
execution continues with the statement specified by errs.

FILE= fin fin is a character expression whose value is the file name expression, the
name of a file to be connected to the specified unit.

FORM=fm fm is a character expression specifying whether the file is being
connected for 'FORMATTED' or 'UNFORMATTED' input/output.

IOSTAT= ios ios is an integer scalar; if this is included ios becomes defined with 0
(zero) if no error condition exists or a positive integer when there is an
error condition. A value of -1 indicates an end-of-file condition with no
error. A value of -2 indicates an end-of-record condition with no error
when using non-advancing I/O.

PAD= pad_char pad_char is a character expression specifying whether to use blank
padding. Acceptable values are YES or NO; yes specifies that blank
padding is used and no requires that input records contain all requested
data.

POSITION= pos_char pos_char is a character expression specifying the file position. Values
are ASIS, REWIND or APPEND. For a connected file, on OPEN ASIS leaves
the position in the current position, REWIND rewinds the file and
APPEND places the current position at the end of the file, immediately
before the end-of-file record.

RECL= rl rl is an integer expression defining the record length in a file connected
for direct access. When sequential input/output is specified this is the
maximum record length.

Statements

105

STATUS= sta sta is a character expression whose value can be: NEW, OLD, SCRATCH,
UNKNOWN or REPLACE. When OLD or NEW is specified a file specifier
must be given. SCRATCH must not be used with a named file. The default
status is UNKNOWN which specifies that the file's existence is unknown,
which limits the error checking when opening the file. With status OLD,
the file must exist or an error is reported. With status NEW, the file is
created; if the file exists, an error is reported. Status SCRATCH specifies
that the file is removed when closed.

Description

The record length, RECL=, must be specified if a file is connected for direct access and optionally one
of each of the other specifiers may be used. RECL is ignored if the access method is sequential.

The unit specified must exist and once connected by an OPEN statement can be referenced in any
program unit of the executable program. If a file is connected to a unit it cannot be connected to a
different unit by the OPEN statement.

If a unit is connected to an existing file, execution of an OPEN statement for that file is allowed. Where
FILE= is not specified the file to be connected is the same as the file currently connected. If the file
specified for connection to the unit does not exist but is the same as a preconnected file, the properties
specified by the OPEN statement become part of the connection. However, if the file specified is not the
same as the preconnected file this has the same effect as the execution of a CLOSE statement without a
STATUS= specifier immediately before the execution of the OPEN statement. When the file to be
connected is the same as the file already connected only the BLANK= specifier may be different from
the one currently defined.

The sequential and direct access methods access files that contain fixed-length records. The stream
access method, a Fortran 2003 language extension, allows access to files that do not contain fixed-
length records. Stream I/O is enabled by specifying access='STREAM'. Stream I/O may be formatted or
unformatted.

Asynchronous i/o, the ability to return control before the statement has completed, is supported in
certain situations. If ASYNCHRONOUS=’yes’ is specified on the OPEN statement and a READ or WRITE
statement for a particular file connection, a processor may perform an asynchronous data transfer
asynchronously, but is not required to do so. In practice, the underlying operating system controls
much of what can be performed. A file must be seekable to support aysynchronous I/O; i.e. you cannot
perform asynchronous I/O on a non-seekable file such as a fifo. Asynchronous I/O is only supported
for the stream access method.

Fortran Statements

106

Examples

In the following example a new file, BOOK, is created and connected to unit 12 for direct formatted
input/output with a record length of 98 characters. Numeric values will have blanks ignored and E1
will be assigned some positive value if an error condition exists when the OPEN statement is executed;
execution will then continue with the statement labeled 20. If no error condition pertains, E1 is
assigned the value zero (0) and execution continues with the next statement.

 OPEN(12, IOSTAT=E1, ERR=20, FILE='BOOK',

 + BLANK='NULL', ACCESS='DIRECT', RECL=98,

 + FORM='FORMATTED',STATUS='NEW')

The next example shows how to use asynchronous I/O.

 program test

 character*13 b

 b = "hello, world\n"

 open(unit=10,file='u.dat',access='stream',form='unformatted',

&

 asynchronous='yes')

 write (unit=10,asynchronous='yes') b

 ! Do something useful

 wait(10)

 close(10)

 end

Environment Variables

For an OPEN statement which does not contain the FILE= specifier, an environment variable may be
used to specify the file to be connected to the unit. If the environment variable FORddd exists, where
ddd is a 3 digit string whose value is the unit, the environment variable's value is the name of the file
to be opened.

PGI Fortran Extensions§

PGI has extended the OPEN statement as follows:

CONVERT=order order is a character expression specifying the byte order of the file. One
of ‘BIG_ENDIAN’, ‘LITTLE_ENDIAN’, or ‘NATIVE’ is allowed.

The CONVERT specifier allows byte-swapping I/O to be performed on specific logical units. The value
'BIG_ENDIAN' is used to convert big-endian format data files produced by most RISC workstations
and high-end servers to the little-endian format used on Intel Architecture systems on-the-fly during

Statements

107

file reads/writes. This value assumes that the record layouts of unformatted sequential access and
direct access files are the same on the systems. For the values 'LITTLE_ENDIAN' and 'NATIVE’, byte-
swapping is not performed during file reads/writes since the little-endian format is used by the x86
architecture.

VAX/VMS Fortran Extensions§

VAX/VMS introduces a number of extensions to the OPEN statement. Many of these relate only to the
VMS file system and are not supported (e.g., KEYED access for indexed files). The following keywords
for the OPEN statement have been added or augmented as shown below. Refer to Programming in VAX
FORTRAN for additional details on these keywords.

ACCESS The value of 'APPEND' will be recognized and implies sequential access
and positioning after the last record of the file. Opening a file with
append access means that each appended record is written at the end of
the file.

ASSOCIATEVARIABLE This keyword specifies an INTEGER*4 integer scalar memory reference
which is updated to the next sequential record number after each direct
access I/O operation. Applies only to direct access mode.

DISPOSE and DISP These keywords specify the disposition for the file after it is closed.
'KEEP' or 'SAVE' is the default on anything other than
STATUS='SCRATCH' files. 'DELETE' indicates that the file is to be
removed after it is closed. The PRINT and SUBMIT values are not
supported.

NAME This keyword is a synonym for FILE.

READONLY This keyword specifies that an existing file can be read but prohibits
writing to that file. The default is read/write.

RECL=len The record length given is interpreted as the number of words in a
record if the runtime environment parameter FTNOPT is set to "vaxio".
This simplifies the porting of VAX/VMS programs. The default is that len
is given in number of bytes in a record.

TYPE This keyword is a synonym for STATUS.

Fortran Statements

108

OPTIONAL 90

The OPTIONAL specification statement (attribute) specifies dummy arguments that may be omitted or
that are optional.

Syntax

OPTIONAL [::] dummy-arg-list

Examples

OPTIONAL :: VAR4, VAR5

OPTIONAL VAR6, VAR7

INTEGER, OPTIONAL :: VAR8, VAR9

See Also

INTENT

OPTIONS § 77

The OPTIONS statement confirms or overrides certain compiler command-line options.

Syntax

OPTIONS /option [/option ...]

The following table shows what options are available for the OPTIONS statement:

Statements

109

Table 3-1: OPTIONS Statement

The following restrictions apply to the OPTIONS statement:

• The OPTIONS statement must be the first statement in a program unit; it must precede the
PROGRAM, SUBROUTINE, FUNCTION, and BLOCKDATA statements.

• The options listed in the OPTIONS statement override values from the driver command-line for
the program unit (subprogram) immediately following the OPTIONS statement.

• Any abbreviated version of an option that is long enough to identify the option uniquely is a
legal abbreviation for the option.

Option Action Taken

CHECK=ALL Enable array bounds checking

CHECK=[NO]OVERFLOW None (recognized but ignored)

CHECK=[NO]BOUNDS (Disable) Enable array bounds checking

CHECK=[NO]UNDERFLOW None

CHECK=NONE Disable array bounds checking

NOCHECK Disable array bounds checking

[NO]EXTEND_SOURCE (Disable) Enable the –Mextend option

[NO]G_FLOATING None

[NO]F77 (Disable) Enable the –Mstandard option

[NO]I4 (Disable) Enable the –Mi4 option

[NO]RECURSIVE (Disable) Enable the –Mrecursive option

[NO]REENTRANT (Enable) Disable optimizations that may result in
code that is not reentrant.

[NO]STANDARD (Disable) Enable the –Mstandard option

Fortran Statements

110

• Case is not significant, unless the –Mupcase is present on the command line. If it is, each option
must be in lowercase.

PARAMETER 77

The PARAMETER statement gives a symbolic name to a constant.

Syntax

PARAMETER (name = expression[,name = expression...])

expression is an arithmetic expression formed from constant or PARAMETER
elements using the arithmetic operators +, -, *, />. The usual
precedence order can be changed by using parentheses. expression may
include a previously defined PARAMETER.

Examples

PARAMETER (PI = 3.142)

PARAMETER (INDEX = 1024)

PARAMETER (INDEX3 = INDEX * 3)

The following VAX/VMS extensions to the PARAMETER statement are fully supported:

Its list is not bounded with parentheses.

The form of the constant (rather than the implicit or explicit typing of the symbolic name) determines
the data type of the variable.

The form of the alternative PARAMETER statement is:

PARAMETER p=c [,p=c]...

where p is a symbolic name and c is a constant, symbolic constant, or a compile time constant
expression.

PAUSE

(Obsolescent) The PAUSE statement stops the program's execution. The PAUSE statement is
obsolescent because a WRITE statement may send a message to any device, and a READ statement may
be used to wait for a message from the same device.

Statements

111

Syntax

PAUSE [character-expression | digits]

The PAUSE statement stops the program's execution. The program may be restarted later and
execution will then continue with the statement following the PAUSE statement.

POINTER 90

The POINTER specification statement or attribute declares a scalar variable to be a pointer variable
(of type INTEGER), and another variable to be its target pointer-based variable. The target may be a
scalar or an array of any type.

Syntax

POINTER [::] object-name [(deferred-shape-spec-list)]

 [, object-name [(deferred-shape-spec-list)]]

Example

REAL, DIMENSION(:,:), POINTER :: X

POINTER (Cray) § 77

The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable to be a pointer
variable (of type INTEGER), and another variable to be its pointer-based variable.

Syntax

POINTER (p1, v1) [, (p2, v2) ...]

v1 and v2 are pointer-based variables. A pointer-based variable can be of any type,
including STRUCTURE. A pointer-based variable can be dimensioned in
a separate type, in a DIMENSION statement, or in the POINTER
statement. The dimension expression may be adjustable, where the rules
for adjustable dummy arrays regarding any variables which appear in
the dimension declarators apply.

p1 and p2 are the pointer variables corresponding to v1 and v2. A pointer variable
may not be an array. The pointer is an integer variable containing the
address of a pointer-based variable. The storage located by the pointer
variable is defined by the pointer-based variable (for example, array,
data type, etc.). A reference to a pointer-based variable appears in

Fortran Statements

112

Fortran statements like a normal variable reference (for example, a
local variable, a COMMON block variable, or a dummy variable). When
the based variable is referenced, the address to which it refers is always
taken from its associated pointer (that is, its pointer variable is
dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined. The
pointer is defined in one of the following ways:

By assigning the value of the LOC function.

By assigning a value defined in terms of another pointer variable.

By dynamically allocating a memory area for the based variable. If a pointer-based variable is
dynamically allocated, it may also be freed.

Example

REAL XC(10)

COMMON IC, XC

POINTER (P, I)

POINTER (Q, X(5))

P = LOC(IC)

I = 0 ! IC gets 0

P = LOC(XC)

Q = P + 20 ! same as LOC(XC(6))

X(1) = 0 ! XC(6) gets 0

ALLOCATE (X) ! Q locates a dynamically

 ! allocated memory area

Restrictions

• The following restrictions apply to the POINTER statement:

• No storage is allocated when a pointer-based variable is declared.

• If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

• A pointer-based variable may not appear in the argument list of a SUBROUTINE or FUNCTION
and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

Statements

113

• A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If a
pointer-based variable is an adjustable array, it is assumed that the variables in the dimension
declarator(s) are defined with an integer value at the time the SUBROUTINE or FUNCTION is
called. For a variable which appears in a pointer-based variable's adjustable declarator,
modifying its value during the execution of the SUBROUTINE or FUNCTION does not modify the
bounds of the dimensions of the pointer-based array.

• A pointer-based variable is assumed not to overlap with another pointer-based variable.

PRINT 77

The PRINT statement is a data transfer output statement.

Syntax

PRINT format-specifier [, iolist]

or

PRINT namelist-group

formatspecifier a label of a format statement or a variable containing a format string.

iolist is an input/output list that must either be one of the items in an input
list or any other expression. A character expression involving
concatenation of an operand of variable length cannot be included in
an output list, however, unless the operand is the symbolic name of a
constant.

namelist-group the name of the namelist group.

Description

When a PRINT statement is executed the following operations are carried out: data is transferred to

the standard output device from the items specified in the output list and format specification.1 The
data are transferred between the specified destinations in the order specified by the input/output list.
Every item whose value is to be transferred must be defined.

1. If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

Fortran Statements

114

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

print sum

and is roughly equivalent to

character*4 ch

ch = '()'

print ch

See Also

READ, PRINT

PRIVATE 90

The PRIVATE statement specifies entities defined in a module are not accessible outside of the module.
This statement is only valid in a module. The default specification for a module is PUBLIC.

Syntax

PRIVATE [:: [access-id-list]]

Description

Example

MODULE FORMULA

PRIVATE

PUBLIC :: VARA

.

.

.

END MODULE

Type

Non-executable

Statements

115

See Also

PUBLIC, MODULE

PROGRAM 77

The PROGRAM statement specifies the entry point for the linked Fortran program.

Syntax

PROGRAM [name]

.

.

.

END [PROGRAM [program-name]]

name is optional; if supplied it becomes the name of the program module and
must not clash with any other names used in the program. If it is not
supplied, a default name is used.

Description

The program statement specifies the entry point for the linked Fortran program. An END statement
terminates the program.

The END PROGRAM statement terminates a main program unit that begins with the optional
PROGRAM statement. The program name found in the END PROGRAM must match that in the
PROGRAM statement.

Example

PROGRAM MYOWN

REAL MEAN, TOTAL

.

CALL TRIG(A,B,C,MEAN)

.

END

PUBLIC 90

The PUBLIC statement specifies entities defined in a module are accessible outside of the module. This
statement is only valid in a module. The default specification for a module is PUBLIC.

Fortran Statements

116

Syntax

PUBLIC [:: [access-id-list]]

Example

MODULE FORMULA

PRIVATE

PUBLIC :: VARA

.

.

.

END MODULE

Type

Non-executable

See Also

PRIVATE, MODULE

PURE 95

The PURE attribute indicates that a function or subroutine has no side effects. Use of PURE can enable
additional opportunities for optimization, and for the PGHPF compiler indicates that a subroutine or
function can be used in a FORALL statement or construct or within an INDEPENDENT DO loop.

Syntax

PURE [type-specification] FUNCTION

or

type-specification PURE FUNCTION

or

PURE SUBROUTINE

Type

Non-executable

Statements

117

See Also

FUNCTION, SUBROUTINE

READ 90

The READ statement is the data transfer input statement.

Syntax

READ ([unit=] u, format-specifier [,control-information) [iolist]

READ format-specifier [,iolist]

READ ([unit=] u, [NML=] namelist-group [,control-information])

where the UNIT= is optional and the external unit specifier u is an integer.

In addition control-information is an optional control specification which can be any of the following:
may contain one of each of the following specifiers in any order, following the unit number if the
optional UNIT specifier keyword is not supplied.

ASYNCHRONOUS= async async is a character expression specifying whether to allow the data
transfer to be done asynchronously. The value specified may be ‘YES’ or
‘NO’.

FMT= format format is a label of a format statement or a variable containing a format
string.

NML= namelist namelist is a namelist group

ADVANCE= spec spec is a character expression specifying the access method for file
connection as either YES or NO.

END=s s is an executable statement label for the statement used for processing
an end of file condition.

EOR=s s is an executable statement label for the statement used for processing
an end of record condition.

ERR=s s is an executable statement label for the statement used for processing
an error condition.

IOSTAT=ios ios is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

Fortran Statements

118

REC=rn rn is a record number to read and must be a positive integer. This is only
used for direct access files.

SIZE=n n is the number of characters read.

iolist (input list) must either be one of the items in an input list or any other
expression.

Description

When a READ statement is executed, the following operations are carried out:

data is transferred from the standard input device to the items specified in the input and format

specification.1

The data are transferred between the specified destinations in the order specified by the input/output
list.

Every item whose value is to be transferred must be defined.

Example

 READ(2,110) I,J,K

110 FORMAT(I2, I4, I3)

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

accept sum

and is roughly equivalent to

character*4 ch

ch = '()'

accept ch

1. If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

Statements

119

See Also

OPEN, PRINT, WRITE

REAL 90

The REAL statement establishes the data type of a variable by explicitly attaching the name of a
variable to a data type. This overrides the implication of data typing by the initial letter of a symbolic
name.

Syntax

The syntax for REAL has two forms, a standard Fortran 90/95 attributed form, and the PGI extended
form. This section describes both syntax forms.

REAL [([KIND = kind-value

)] [, attribute-list ::] entity-list

REAL permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.

entity-list is the list of defined entities.

Syntax Extension§

REAL [*n] name [*n] [dimensions] [/clist/] [,

name] [*n] [dimensions][/clist/]...

n is an optional size specification.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement below for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

The REAL type declaration statements may be used to dimension arrays explicitly in the same way as
the DIMENSION statement. Type declaration statements must not be labeled.

Fortran Statements

120

Note

The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration
of a type overrides any implicit declaration. An IMPLICIT statement overrides predefined
typing rules.

The default size of a REAL variable is 4 bytes. With the -Mr8 option, the default size of an REAL
variable is 8 bytes.

Example

REAL KNOTS

RECORD § 77

The RECORD statement defines a user-defined aggregate data item.

Syntax

RECORD /structure_name/record_namelist

 [,/structure_name/record_namelist]

 ...

 [,/structure_name/record_namelist]

END RECORD

structure_name is the name of a previously declared structure.

record_namelist is a list of one or more variable or array names separated by commas.

Description

You create memory storage for a record by specifying a structure name in the RECORD statement. You
define the field values in a record either by defining them in the structure declaration or by assigning
them with executable code.

You can access individual fields in a record by combining the parent record name, a period (.), and
the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolves to a structured data item.

Statements

121

Scalar field references may appear wherever normal variable or array elements may appear with the
exception of the COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate references
may only appear in aggregate assignment statements, unformatted I/O statements, and as parameters
to subprograms.

Records are allowed in COMMON and DIMENSION statements.

Example

STRUCTURE /PERSON/ ! Declare a structure

defining a person

 INTEGER ID

 LOGICAL LIVING

 CHARACTER*5 FIRST, LAST, MIDDLE

 INTEGER AGE

END STRUCTURE

 ! Define population to be an array where each element is of

 ! type person. Also define a variable, me, of type person.

RECORD /PERSON/ POPULATION(2), ME

 ...

ME.AGE = 34 ! Assign values for the variable me

to

ME.LIVING = .TRUE. ! some of the fields.

ME.FIRST = 'Steve'

ME.ID = 542124822

 ...

POPULATION(1).LAST = 'Jones' ! Assign the "LAST" field

of

 ! element 1 of array population.

POPULATION(2) = ME ! Assign all the values

of record

 ! "ME" to the record population(2)

RECURSIVE 90

The RECURSIVE statement indicates whether a function or subroutine may call itself recursively.

Syntax

RECURSIVE [type-specification] FUNCTION

or

type-specification RECURSIVE FUNCTION

Fortran Statements

122

or

RECURSIVE SUBROUTINE

Type

Non-executable

See Also

FUNCTION, SUBROUTINE

REDIMENSION § 77

The REDIMENSION statement, a CRAY extension to FORTRAN 77, dynamically defines the bounds of a
deferred-shape array. After a REDIMENSION statement, the bounds of the array become those supplied
in the statement, until another such statement is encountered.

Syntax

REDIMENSION name ([lb:]ub[,[lb:]ub]...)

 [,name([lb:]ub[,[lb:]ub]...)]...

Where:

name is the symbolic name of an array.

[lb:]ub is a dimension declarator specifying the bounds for a dimension (the
lower bound lb and the upper bound ub). lb and ub must be integers
with ub greater than lb. The lower bound lb is optional; if it is not
specified, it is assumed to be 1. The number of dimension declarations
must be the same as the number of dimensions in the array.

Example

REAL A(:, :)

POINTER (P, A)

P = malloc(12 * 10 * 4)

REDIMENSION A(12, 10)

A(3, 4) = 33.

RETURN 77

The RETURN statement causes a return to the statement following a CALL when used in a subroutine,
and returns to the relevant arithmetic expression when used in a function.

Statements

123

Syntax

RETURN

Alternate RETURN

(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran 90/95. Use the
CASE statement where possible in new or updated code. The alternate RETURN statement takes the
following form:

RETURN expression

expression expression is converted to integer if necessary (expression may be of type
integer or real). If the value of expression is greater than or equal to 1
and less than or equal to the number of asterisks in the SUBROUTINE or
subroutine ENTRY statement then the value of expression identifies the
nth asterisk in the actual argument list and control is returned to that
statement.

Example

 SUBROUTINE FIX (A,B,*,*,C)

40 IF (T) 50, 60, 70

50 RETURN

60 RETURN 1

70 RETURN 2

 END

 PROGRAM FIXIT

 CALL FIX(X, Y, *100, *200, S)

 WRITE(*,5) X, S ! Come here if (T) < 0

 STOP

100 WRITE(*, 10) X, Y ! Come here if (T) = 0

 STOP

200 WRITE(*,20) Y, S ! Come here if (T) > 0

REWIND 77

The REWIND statement positions the file at its beginning. The statement has no effect if the file is
already positioned at the start or if the file is connected but does not exist.

Syntax

REWIND unit

REWIND (unit,list)

Fortran Statements

124

unit is an integer value which is the external unit.

list contains the optional specifiers as follows:

UNIT=unit unit is the unit specifier.

ERR=errs errs is an executable statement label for the statement used for
processing an error condition. If an error condition occurs execution
continues with the statement specified by s.

IOSTAT=ios ios is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

Examples

REWIND 5

REWIND(2, ERR=30)

REWIND(3, IOSTAT=IOERR)

SAVE 77

The SAVE statement retains the definition status of an entity after a RETURN or END statement in a
subroutine or function has been executed.

Syntax

SAVE [v [, v]...]

v name of array, variable, or common block (enclosed in slashes)

Description

Using a common-block name, preceded and followed by a slash, ensures that all entities within that
COMMON block are saved. SAVE may be used without a list, in which case all the allowable entities
within the program unit are saved (this has the same effect as using the –Msave command-line
option). Dummy arguments, names of procedures and names of entities within a common block may
not be specified in a SAVE statement. Use of the SAVE statement with local variables ensures the values
of the local variables are retained for the next invocation of the SUBROUTINE or FUNCTION. Within a
main program the SAVE statement is optional and has no effect.

When a RETURN or END is executed within a subroutine or function, all entities become undefined
with the exception of:

• Entities specified by a SAVE statement

Statements

125

• Entities in blank common or named common

• Entities initially defined which have not been changed in any way

Example

PROGRAM SAFE

 .

 CALL KEEP

 .

 SUBROUTINE KEEP

 COMMON /LIST/ TOP, MIDDLE

 INTEGER LOCAL1

 .

 SAVE /LIST/, LOCAL1

SELECT CASE 90

The SELECT CASE statement begins a CASE construct.

Syntax

[case-name:]SELECT CASE (case-expr)

[CASE selector [name]

 block] ...

[CASE DEFAULT [case-name]

 block

END SELECT [case-name]

Example

SELECT CASE (FLAG)

CASE (1, 2, 3)

 TYPE=1

CASE (4:6)

 TYPE=2

CASE DEFAULT

 TYPE=0

END SELECT

SEQUENCE 90

The SEQUENCE statement is a derived type qualifier that specifies the ordering of the storage
associated with the derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements (the preferred method for derived type data sharing is using MODULES).

Fortran Statements

126

Note

There is also an HPF SEQUENCE directive that specifies whether an array, common block, or
equivalence is sequential or non-sequential. Refer to the PGHPF User’s Guide for more
information.

Syntax

TYPE

 [SEQUENCE]

 type-specification...

END TYPE

Example

TYPE RECORD

 SEQUENCE

 CHARACTER NAME(25)

 INTEGER CUST_NUM

 REAL COST

END TYPE

STOP 77

The STOP statement stops the program's execution and precludes any further execution of the
program.

Syntax

STOP [character-expression | digits]

STRUCTURE § 77

The STRUCTURE statement, a DEC extension to FORTRAN 77, defines an aggregate data type.

Syntax

STRUCTURE [/structure_name/][field_namelist]

 field_declaration

 [field_declaration]

 ...

 [field_declaration]

END STRUCTURE

Statements

127

structure_name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

field_namelist is a list of fields having the structure of the associated structure
declaration. A field_namelist is allowed only in nested structure
declarations.

field_declaration can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Description

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields
also provides a C-like "struct" building capability and allows convenient inter-language
communications. Note that aligning of structure fields is not supported by VAX/VMS Fortran.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
because records use periods to separate fields, it is not legal to use relational operators (for example,
.EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions (.AND., .NOT., .OR.) as field
names in structure declarations.

Fields in a structure are aligned as required by hardware and a structure's storage requirements are
therefore machine-dependent. Note that VAX/VMS Fortran does no padding. Because explicit padding
of records is not necessary, the compiler recognizes the %FILL intrinsic, but performs no action in
response to it.

Data initialization can occur for the individual fields.

The UNION and MAP statements are supported.

The following is an example of record and structure usage.

STRUCTURE /account/

 INTEGER typetag ! Tag to determine defined map

 UNION

 MAP ! Structure for an employee

 CHARACTER*12 ssn ! Social Security Number

 REAL*4 salary

 CHARACTER*8 empdate ! Employment date

 END MAP

 MAP ! Structure for a customer

Fortran Statements

128

 INTEGER*4 acct_cust

 REAL*4 credit_amt

 CHARACTER*8 due_date

 END MAP

 MAP ! Structure for a supplier

 INTEGER*4 acct_supp

 REAL*4 debit_amt

 BYTE num_items

 BYTE items(12) ! Items supplied

 END MAP

 END UNION

END STRUCTURE

RECORD /account/ recarr(1000)

SUBROUTINE 77

The SUBROUTINE statement introduces a subprogram unit. The statements that follow should be laid
out in the same order as a PROGRAM module.

Syntax

[RECURSIVE] SUBROUTINE name &

 [(argument[,argument...])] &

 [specification-part]

 [execution-part]

 [internal-subspart]

END [SUBROUTINE [name]]

name is the name of the subroutine being declared and must be unique
among all the subroutine and function names in the program. name
should not clash with any local, COMMON, PARAMETER or ENTRY
names.

argument is a symbolic name, starting with a letter and containing only letters and
digits. The type of argument can be REAL, INTEGER, DOUBLE
PRECISION, CHARACTER, COMPLEX, or BYTE, etc.

specification-part is the specification of data types for the subroutine.

execution-part contains the subprogram's executable statements.

internal-subs-part contains subprograms defined within the subroutine.

Statements

129

Description

A SUBROUTINE must be terminated by an END statement. The statements and names in the
subprogram only apply to the subroutine except for subroutine or function references and the names
of COMMON blocks. Dummy arguments may be specified as * which indicates that the SUBROUTINE
contains alternate returns.

Recursion is allowed if the –Mrecursive option is used on the command-line and the RECURSIVE
prefix is included in the function definition.

 Example

SUBROUTINE DAXTIM (A, X, Y, N, M, ITER, FP, TOH)

 INTEGER*4 N, M, ITER

 REAL*8 A, X(N,M), Y(N,M), FP, TOH

.

.

.

END SUBROUTINE DAXTIM

See Also

PURE, RECURSIVE

TARGET 90

The TARGET specification statement (attribute) specifies that a data type may be the object of a
pointer variable (e.g., pointed to by a pointer variable). Likewise, types that do not have the TARGET
attribute cannot be the target of a pointer variable.

Syntax

TARGET [::] object-name [(array-spec)]

 [, object-name [(array-spec)]]...

See Also

ALLOCATABLE, POINTER

THEN 77

The THEN statement is part of a block IF statement and surrounds a series of statements that are
conditionally executed.

Fortran Statements

130

Syntax

IF logical expression THEN

 statements

ELSE IF logical expression THEN

 statements

ELSE

 statements

ENDIF

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be
nested within the statements section of an IF block.

Example

IF (I.GT.70) THEN

 M=1

ELSE IF (I.LT.5) THEN

 M=2

ELSE IF (I.LT.16) THEN

 M=3

ENDIF

IF (I.LT.15) THEN

 M = 4

ELSE

 M=5

ENDIF

TYPE 77

The TYPE statement begins a derived type data specification or declares variables of a specified user-
defined type.

Syntax Type Declaration

TYPE (type-name) [, attribute-list ::] entity-list

Syntax Derived Type Definition

TYPE [[access-spec] ::] type-name

 [private-sequence-statement] ...

component-definition-statement

 [component-definition-statement]...

END TYPE [type-name]

Statements

131

FORTRAN 77 Type Statement

TYPE

The TYPE statement has the same syntax and effect as the PRINT statement. Refer to the PRINT
statement for a full description.

UNION § 77

A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration defining a
data area that can be shared intermittently during program execution by one or more fields or groups
of fields. It declares groups of fields that share a common location within a structure. Each group of
fields within a union declaration is declared by a map declaration, with one or more fields per map
declaration.

Union declarations are used when one wants to use the same area of memory to alternately contain
two or more groups of fields. Whenever one of the fields declared by a union declaration is referenced
in a program, that field and any other fields in its map declaration become defined. Then, when a field
in one of the other map declarations in the union declaration is referenced, the fields in that map
declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate
map declaration. The format of a UNION statement is as follows:

Syntax

UNION

 map_declaration

 [map_declaration]

 ...

 [map_declaration]

END UNION

The format of the map_declaration is as follows:

MAP

 field_declaration

 [field_declaration]

 ...

 [field_declaration]

END MAP

Fortran Statements

132

field_declaration where field declaration is a structure declaration or RECORD statement
contained within a union declaration, a union declaration contained
within a union declaration, or the declaration of a typed data field
within a union.

Description

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal
to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that
union. The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved
for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements. However,
union declarations are probably more similar to union declarations for the language C. The main
difference is that the language C requires one to associate a name with each map (union). Fortran
field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each element of
the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP (the employee
map at 24 bytes).

STRUCTURE /account/

 INTEGER typetag ! Tag to determine defined map.

 UNION

 MAP ! Structure for an employee

 CHARACTER*12 ssn ! Social Security Number

 REAL*4 salary

 CHARACTER*8 empdate ! Employment date

 END MAP

 MAP ! Structure for a customer

 INTEGER*4 acct_cust

 REAL*4 credit_amt

 CHARACTER*8 due_date

 END MAP

 MAP ! Structure for a supplier

 INTEGER*4 acct_supp

 REAL*4 debit_amt

 BYTE num_items

 BYTE items(12) ! Items supplied

Statements

133

 END MAP

 END UNION

END STRUCTURE

RECORD /account/ recarr(1000)

USE 90

The USE statement gives a program unit access to the public entities or to the named entities in the
specified module.

Syntax

USE module-name [, rename-list]

USE module-name, ONLY: [only-list]

Description

A module-name file has an associated compiled .mod file that is included when the module is used.
The .mod file is searched for in the following directories:

Each –I directory specified on the command-line.

The directory containing the file that contains the USE statement (the current working directory.)

The standard include area.

Examples

USE MOD1

USE MOD2, TEMP => VAR

USE MOD3, ONLY: RESULTS, SCORES => VAR2

Type

Non-executable

See Also

MODULE

VOLATILE § 77

The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks that it
identifies.

Fortran Statements

134

Syntax

VOLATILE nitem [, nitem ...]

nitem is the name of a variable, an array, or a common block enclosed in
slashes.

Description

If nitem names a common block, all members of the block are volatile. The volatile attribute of a
variable is inherited by any direct or indirect equivalences, as shown in the example.

Example

COMMON /COM/ C1, C2

VOLATILE /COM/, DIR ! /COM/ and

DIR are volatile

EQUIVALENCE (DIR, X) ! X is volatile

EQUIVALENCE (X, Y) ! Y is volatile

WHERE 90

The WHERE statement and the WHERE END WHERE construct permit masked assignments to the
elements of an array (or to a scalar, zero dimensional array).

Syntax

WHERE Statement

WHERE (logical-array-expr) array-variable = array-expr

WHERE Construct

WHERE (logical-array-expr)

 array-assignments

[ELSE WHERE

 array-assignments]

END WHERE

Description

This construct allows for conditional assignment to an array based on the result of a logical array
expression. The logical array expression and the array assignments must involve arrays of the same
shape.

Statements

135

Examples

INTEGER SCORE(30)

CHARACTER GRADE(30)

WHERE (SCORE > 60) GRADE = 'P'

WHERE (SCORE > 60)

 GRADE = 'P'

ELSE WHERE

 GRADE = 'F'

END WHERE

WRITE 90

The WRITE statement is a data transfer output statement.

Syntax

WRITE ([unit=] u, [,control-information) [iolist]

WRITE ([unit=] u, [NML=] namelist-group [,control-information])

where the UNIT= is optional and the external unit specifier u is an integer. This may also be a *
indicating list-directed output.

In addition to the unit specification, control-information are optional control specifications, and may
be any of those listed in the following (there are some limits on the allowed specifications depending
on the type of output, for example, non-advancing, direct and sequential):

ADVANCE=spec spec is a character expression specifying the access method for the write.
YES indicates advancing formatted sequential data transfer. NO
indicates non-advancing formatted sequential data transfer.

ASYNCHRONOUS= async async is a character expression specifying whether to allow the data
transfer to be done asynchronously. The value specified may be ‘YES’ or
‘NO’.

ERR=s s is an executable statement label for the statement used for processing
an error condition.

[FMT=]format format is a label of a format statement or a variable containing a format
string.

IOSTAT=ios ios is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

Fortran Statements

136

[NML=] namelist namelist is a namelist group

REC=rn rn is a record number to read and must be a positive integer. This is only
used for direct access files.

 iolist iolist must either be one of the items in an input list or any other
expression. However a character expression involving concatenation of
an operand of variable length cannot be included in an output list
unless the operand is the symbolic name of a constant.

Description

When a WRITE statement is executed the following operations are carried out: data is transferred to

the standard output device from the items specified in the output list and format specification.1 The
data are transferred between the specified destinations in the order specified by the input/output list.
Every item whose value is to be transferred must be defined.

Example

 WRITE (6,90) NPAGE

90 FORMAT('1PAGE NUMBER ',I2,16X,'SALES REPORT, Cont.')

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum

sum = 4h()

accept sum

and is roughly equivalent to

character*4 ch

ch = '()'

accept ch

1. If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

Statements

137

See Also

READ, PRINT

Fortran Statements

138

Array Types

139

4 Fortran Arrays
Fortran arrays are any object with the dimension attribute. In Fortran 90/95, arrays may be very
different from arrays in older versions of Fortran. Arrays can have values assigned as a whole without
specifying operations on individual array elements, and array sections can be accessed. Also, allocatable
arrays that are created dynamically are available as part of the Fortran 90/95 standard. This chapter
describes some of the features of Fortran 90/95 arrays.

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, and in HPF, arrays may be
very different from arrays in older versions of Fortran. Arrays can have values assigned as a whole
without specifying operations on individual array elements, and array sections can be accessed. Also,
allocatable arrays that are created dynamically are available as part of the Fortran 90/95 and HPF
standards. Arrays in HPF play a central role in data distribution and data alignment (refer to this
chapter and The High Performance Fortran Handbook for details on working with arrays in HPF). This
chapter describes some of the features of Fortran 90/95 and HPF arrays.

The following example illustrates valid array operations.

REAL(10,10) A,B,C

A=12!Assign 12 to all elements of A

B=3!Assign 3 to all elements of B

C=A+B!Add each element of A to each of B

Array Types

Fortran supports four types of arrays: explicit-shape arrays, assumed-shape arrays, deferred-shape
arrays and assumed-size arrays. Both explicit-shape arrays and deferred shape arrays are valid in a main
program. Assumed shape arrays and assumed size arrays are only valid for arrays used as dummy
arguments. Deferred shape arrays, where the storage for the array is allocated during execution, must be
declared with either the ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’s dimension is the number
of elements in the dimension. The array rank is the number of dimensions in the array, up to a
maximum of seven. The shape is the vector representing the extents for all dimensions. The size is the
product of the extents. For some types of arrays, all of these properties are determined when the array is
declared. For other types of arrays, some of these properties are determined when the array is allocated
or when a procedure using the array is entered. For arrays that are dummy arguments, there are several
special cases.

Fortran Arrays

140

Allocatable arrays are arrays that are declared but for which no storage is allocated until an allocate
statement is executed when the program is running. Allocatable arrays provide Fortran 90/95 and HPF
programs with dynamic storage. Allocatable arrays are declared with a rank specified with the ":"
character rather than with explicit extents, and they are given the ALLOCATABLE attribute.

Explicit Shape Arrays

Explicit shape arrays are those arrays familiar to FORTRAN 77 programmers. Each dimension is
declared with an explicit value. There are two special cases of explicit arrays. In a procedure, an explicit
array whose bounds are passed in from the calling program is called an automatic-array. The second
special case, also found in a procedure, is that of an adjustable-array which is a dummy array where the
bounds are passed from the calling program.

Assumed Shape Arrays

An assumed shape array is a dummy array whose bounds are determined from the actual array.
Intrinsics called from the called program can determine sizes of the extents in the called program’s
dummy array.

Deferred Shape Arrays

A deferred shape array is an array that is declared, but not with an explicit shape. Upon declaration, the
array's type, its kind, and its rank (number of dimensions) are determined. Deferred shape arrays are of
two varieties, allocatable arrays and array pointers.

Assumed Size Arrays

An assumed size array is a dummy array whose size is determined from the corresponding array in the
calling program. The array’s rank and extents may not be declared the same as the original array, but its
total size (number of elements) is the same as the actual array. This form of array should not need to be
used in new Fortran programs.

Array Specification

141

Array Specification

Arrays may be specified in either of two types of data type specification statements, attribute-oriented
specifications or entity-oriented specifications. Arrays may also optionally have data assigned to them
when they are declared. This section covers the basic form of entity-based declarations for the various
types of arrays. Note that all the details of array passing for procedures are not covered here; refer to The
Fortran 95 Handbook for complete details on the use of arrays as dummy arguments.

Explicit Shape Arrays

Explicit shape arrays are defined with a specified rank, each dimension must have an upper bound
specified, and a lower bound may be specified. Each bound is explicitly defined with a specification of the
form:

[lower-bound:] upper-bound

An array has a maximum of seven dimensions. The following are valid explicit array declarations:

INTEGER NUM1(1,2,3)!Three dimensions

INTEGER NUM2(-12:6,100:1000)!Two dimensions with !lower and upper

bounds

INTEGER NUM3(0,12,12,12)!Array of size 0

INTEGER NUM3(M:N,P:Q,L,99)!Array with 4 dimensions

Assumed Shape Arrays

An assumed shape array is always a dummy argument. An assumed shape array has a specification of
the form:

[lower-bound] :

The number of colons (:) determines the array’s rank. An assumed shape array cannot be an
ALLOCATABLE or POINTER array.

Deferred Shape Arrays

An deferred shape array is an array pointer or an allocatable array. An assumed shape array has a
specification determines the array's rank and has the following form for each dimension:

:

For example:

Fortran Arrays

142

INTEGER, POINTER::NUM1(:,:,:,:)

INTEGER, ALLOCATABLE::NUM2(:)

Assumed Size Arrays

An assumed size array is a dummy argument with an assumed size. The array’s rank and bounds are
specified with a declaration that has the following form:

[explicit-shape-spec-list ,][lower-bound

:]*

For example:

SUBROUTINE YSUM1(M,B,C)

 INTEGER M

 REAL, DIMENSION(M,4,5,*) :: B,C

Array Subscripts and Access

There are a variety of ways to access an array in whole or in part. Arrays can be accessed, used, and
assigned to as whole arrays, as elements, or as sections. Array elements are the basic access method, for
example:

INTEGER, DIMENSION(3,11) :: NUMB

NUMB(3,1)=5

This assigns the value 5 to element 3,1 of NUMB

The array NUMB may also be accessed as an entire array:

NUMB=5

This assigns the value 5 to all elements of NUMB.

Array Sections and Subscript Triplets

Another possibility for accessing array elements is the array section. An array section is an array accessed
by a subscript that represents a subset of the entire array's elements and is not an array element. An
array section resulting from applying a subscript list may have a different rank than the original array.
An array section's subscript list consists of subscripts, subscript triplets, and/or vector subscripts. For
example using a subscript triplet and a subscript:

Array Subscripts and Access

143

NUMB(:,3)=6

assigns the value 6 to all elements of NUMB with the second dimension of value 3 (NUMB(1,3),
NUMB(2,3), NUMB(3,3)). This array section uses the array subscript triplet and a subscript to access
three elements of the original array. This array section could also be assigned to a rank one array with
three elements, for example:

INTEGER(3,11) NUMB

INTEGER(3) NUMC

NUMB(:,3)=6

NUMC=NUMB(:,3)

Note that NUMC is rank 1 and NUMB is rank 2. This array section assignment illustrates how NUMC, an
the array section of NUMB, has a shape that due to the use of the subscript 3, is of a different rank than
the original array.

The general form for an array's dimension with a vector subscript triplet is:

[subscript] : [subscript] [:stride]

The first subscript is the lower bound for the array section, the second is the upper bound and the third is
the stride. The stride is by default one. If all values except the : are omitted, then all the values for the
specified dimensions are included in the array section. For example, using NUMB above:

NUMB(1:3:2,3)=7

assigns the value 7 to the elements NUMB(1,3) and NUMB(3,3).

Array Sections and Vector Subscripts

Vector-valued subscripts specify an array section by supplying a set of values defined in a one
dimensional array (vector) for a dimension or several dimensions of an array section. For example:

INTEGER J(2), I(2)

INTEGER NUMB(3,6)

I=(/1,2/)

J=(/2,3/)

NUMB(J,I)=7

This array section uses the vectors I and J to assign the value 7 to the elements NUMB(2,1), NUMB(2,2),
NUMB(3,1), NUMB(3,2).

Fortran Arrays

144

Array Constructors

An array constructor can be used to assign values to an array. Array constructors form one-dimensional
vectors to supply values to a one-dimensional array, or one dimensional vectors and the RESHAPE
function to supply values to arrays with more than one dimension.

Array constructors can use a form of implied DO similar to that in a DATA statement. For example:

INTEGER DIMENSION(4):: K = (/1,2,7,11/)

INTEGER DIMENSION(20):: J = (/(I,I=1,40,2)/)

CM Fortran Extensions

The ARRAY Attribute §

The PGHPF compiler provides several extensions for handling arrays. The compiler handles the CM
Fortran attribute ARRAY. The ARRAY attribute is similar to the DIMENSION attribute. Refer to for more
details on the ARRAY statement.

Array Constructors Extensions §

The PGHPF compiler supports an extended form of the array constructor specification. In addition to the
(/ ../) specification for array constructors, PGHPF supports the notation where [and] begin and end,
respectively, an array constructor.

In addition, an array constructor item may be a 'subscript triplet' in the form of an array section where
the values are assigned to the array:

lower-bound : upper-bound [: <stride>]

For the values i : j : k the array would be assigned values i, i+k, i+2k, ..., j. If k is not present, stride is
assumed to be 1.

For example:

INTEGER, DIMENSION(20):: K = [1:40:2]

File Access Methods

145

5 Input and Output Formatting
Input, output, and format statements provide the means for transferring data to or from files. Data is
transferred as records to or from files. A record is a sequence of data which may be values or characters
and a file is a sequence of such records. A file may be internal, that is, held in memory, or external such
as those held on disk. To access an external file a formal connection must be made between a unit, for
example a disk file, and the required file. An external unit must be identified either by a positive integer
expression, the value of which indicates a unit, or by an asterisk (*) which identifies a standard input or
output device.

This chapter describes the types of input and output available and provides examples of input, output
and format statements. There are four types of input/output used to transfer data to or from files:
unformatted, formatted, list directed, and namelist.

unformatted data is transferred between the item(s) in the input/output list (iolist) and the current
record in the file. Exactly one record may be read or written.

formatted data is edited to conform to a format specification, and the edited data is transferred between
the item or items in the iolist, and the file. One or more records may be read or written. Non-advancing
formatted data transfers are a variety of formatted I/O where a portion of a data record is transferred
with each input/output statement.

list directed input/output is an abbreviated form of formatted input/output that does not use a format
specification. Depending on the type of the data item or data items in the iolist, data is transferred to or
from the file, using a default, and not necessarily accurate format specification.

namelist input/output is a special type of formatted data transfer; data is transferred between a named
group (namelist group) of data items and one or more records in a file.

File Access Methods

You can access files using one of two methods, sequential access, or direct access (random access). The
access method is determined by the specifiers supplied when the file is opened using the OPEN statement.
Sequential access files are accessed one after the other, and are written in the same manner. Direct
access files are accessed by specifying a record number for input, and by writing to the currently
specified record on output.

Input and Output Formatting

146

Files may contain one of two types of records, fixed length records or variable length records. To specify
the size of the fixed length records in a file, use the RECL specifier with the OPEN statement. RECL sets

the record length in bytes.1 RECL can only be used when access is direct.

A record in a variable length formatted file is terminated with \n. A record in a variable length
unformatted file is preceded and followed by a word indicating the length of the record.

Standard Preconnected Units

Certain input and output units are predefined, depending on the value of compiler options. The PGI
Fortran compilers –Mdefaultunit option tells the compiler to treat "*" as a synonym for standard input
for reading and standard output for writing. When the option is –Mnodefaultunit, the compiler treats
"*" as a synonym for unit 5 on input and unit 6 on output.

Opening and Closing Files

The OPEN statement establishes a connection to a file. OPEN allows you to do any of the following

• Connect an existing file to a unit.

• Create and connect a file to a unit.

• Create a file that is preconnected.

• Establish the access method and record format for a connection.

OPEN has the form:

OPEN (list)

where list contains a unit specifier of the form:

[UNIT=] u

where u, an integer, is the external unit specifier.

1. The units depend on the value of the FORTRANOPT environment variable. If the value is vaxio, then the record length

is in units of 32-bit words. If FORTRANOPT is not defined, or its value is something other than vaxio, then the record

length is always in units of bytes.

Opening and Closing Files

147

In addition list may contain one of each of the specifiers shown in Table 5-1 , “OPEN Specifiers”.

Direct Access Files

If a file is connected for direct access using OPEN with ACCESS='DIRECT', the record length must be
specified using RECL=, and optionally one of each of the other specifiers may be used.

Any file opened for direct access must be via fixed length records.

In the following example a new file, book.dat, is created and connected to unit 12 for direct formatted
input/output with a record length of 98 characters. Numeric values will have blanks ignored and the
variable E1 will be assigned some positive value if an error condition exists when the OPEN statement is
executed; execution will then continue with the statement labeled 20. If no error condition pertains, E1
is assigned the value 0 and execution continues with the statement following the OPEN statement.

OPEN(12,IOSTAT=E1,ERR=20,FILE='book.dat',BLANK='NULL',

+ACCESS='DIRECT',RECL=98,FORM='FORMATTED',STATUS='NEW')

Closing a File

Close a unit by specifying the CLOSE statement from within any program unit. If the unit specified does
not exist or has no file connected to it, the CLOSE statement has no effect.

Provided the file is still in existence, it may be reconnected to the same or a different unit after the
execution of a CLOSE statement. An implicit CLOSE is executed when a program stops.

The CLOSE statement terminates the connection of the specified file to a unit.

CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs]

[,STATUS= sta] [,DISPOSE= sta] [,DISP= sta])

CLOSE takes the status values IOSTAT, ERR, and STATUS, similar to those described in Table 5-1 , “OPEN
Specifiers”. In addition, CLOSE allows the DISPOSE or DISP specifier which can take a status value sta
which is a character string, where case is insignificant, specifying the file status (the same keywords are
used for the DISP and DISPOSE status). Status can be KEEP or DELETE. KEEP cannot be specified for a
file whose dispose status is SCRATCH. When KEEP is specified (for a file that exists) the file continues to
exist after the CLOSE statement, conversely DELETE deletes the file after the CLOSE statement. The
default value is KEEP unless the file status is SCRATCH.

Input and Output Formatting

148

Table 5-1: OPEN Specifiers

Specifier Description

ACCESS=acc Where acc is a character string specifying the access method for file con-
nection as DIRECT (random access) or SEQUENTIAL. The default is
SEQUENTIAL.

ACTION=act Where act is a character string specifying the allowed actions for the file
and is one of READ, WRITE, or READWRITE.

BLANK=blnk Where blnk is a character string which takes the value NULL or ZERO:
NULL causes all blank characters in numeric formatted input fields to be
ignored with the exception of an all-blank field which has a value of
zero. ZERO causes all blanks other than leading blanks to be treated as
zeros. The default is NULL. This specifier must only be used when a file is
connected for formatted input/output.

DELIM=del Specify the delimiter for character constants written by a list-directed or
namelist-formatted statement. The options are APOSTROPHE, QUOTE,
and NONE.

ERR=errs An error specifier which takes the form of a statement label of an execut-
able statement in the same program. If an error condition occurs, exe-
cution continues with the statement specified by errs.2

FILE=fin Where fin is a character string defining the file name to be connected to
the specified unit.

FORM=fm Where fm is a character string specifying whether the file is being con-
nected for FORMATTED or UNFORMATTED output respectively. The
default is FORMATTED.

IOSTAT=ios Input/output status specifier where ios is an integer scalar memory ref-
erence. If this is included in list, ios becomes defined with 0 if no error

exists or a positive integer when there is an error condition.1

PAD=padding Specifies whether or not to use blank padding for input items. The pad-
ding values are YES and NO. The value NO requires that the input record
and the input list format specification match.

Data Transfer Statements

149

A unit may be the subject of a CLOSE statement from within any module. If the unit specified does not
exist or has no file connected to it, the use of the CLOSE statement has no effect. Provided the file is still
in existence it may be reconnected to the same or a different unit after the execution of a CLOSE
statement. Note that an implicit CLOSE is executed when a program stops.

In the following example the file on UNIT 6 is closed and deleted.

CLOSE(UNIT=6,STATUS='DELETE')

Data Transfer Statements

Once a unit is connected, either using a preconnection, or by executing an OPEN statement, data
transfer statements may be used. The available data transfer statements include: READ, WRITE, and
PRINT. The general form for these data transfer statements is shown in Chapter 3, “Fortran Statements”;
refer to that section for details on the READ, WRITE and PRINT statements and their valid I/O control
specifiers.

POSITION=pos Specifies the position of an opened file. ASIS indicates the file position
remains unchanged. REWIND indicates the file is to be rewound, and
APPEND indicates the file is to positioned just before an end-of-file
record, or at its terminal point.

RECL=rl Where rl is an integer which defines the record length in a file connected
for direct access and is the number of characters when formatted input/
output is specified. This specifier must only be given when a file is con-
nected for direct access.

STATUS=sta The file status where sta is a character expression: it can be NEW, OLD,
SCRATCH, REPLACE or UNKNOWN. When OLD or NEW is specified a file
specifier must be given. SCRATCH must not be used with a named file.
The default is UNKNOWN.

1. If IOSTAT and ERR are not present, the program terminates if an error occurs.

Specifier Description

Input and Output Formatting

150

Unformatted Data Transfer

Unformatted data transfer allows data to be transferred between the current record and the items
specified in an input/output list. Use OPEN to open a file for unformatted output:

OPEN (2, FILE='new.dat', FORM='UNFORMATTED')

The unit specified must be an external unit.

After data is transferred, the file is positioned after the last record read or written, if there is no error
condition or end-of-file condition set. Unformatted data transfer cannot be carried out if the file is
connected for formatted input/output.

The following example shows an unformatted input statement:

READ (2, ERR=50) A, B

On output to a file connected for direct access, the output list must not specify more values than can fit
into a record. If the values specified do not fill the record the rest of the record is undefined.

On input, the file must be positioned so that the record read is either:

An unformatted record or an endfile record.

The number of values required by the input list in the input statement must be less than or equal to the
number of values in the record being read. The type of each value in the record must agree with that of
the corresponding entity in the input list. However one complex value may correspond to two real list
entities or vice versa. If the input list item is of type CHARACTER, its length must be the same as that of
the character value

In the event of an error condition, the position of the file is indeterminate.

Formatted Data Transfer

During formatted data transfer, data is edited to conform to a format specification, and the edited data is
transferred between the items specified in the input or output statement’s iolist and the file; the current
record is read or written and, possibly, so are additional records. On input, the file must be positioned so
that the record read is either a formatted record or an endfile record. Formatted data transfer is
prohibited if the file is connected for unformatted input/output.

Formatted Data Transfer

151

For variable length record formatted input, each newline character is interpreted as a record separator.
On output, the I/O system writes a newline at the end of each record. If a program writes a newline itself,
the single record containing the newline will appear as two records when read or backspaced over. The
maximum allowed length of a record in a variable length record formatted file is 2000 characters.

Implied DO List Input Output List

An implied DO list takes the form

(iolist,do-var=var1,var2,var3)

where the items in iolist are either items permissible in an input/output list or another implied DO list.
The value do-var is an INTEGER, REAL or DOUBLE PRECISION variable and var1, var2 and var3 are
arithmetic expressions of type INTEGER, REAL or DOUBLE PRECISION. Generally, do-var, var1, var2 and
var3 are of type INTEGER. Should iolist occur in an input statement, the do-var cannot be used as an
item in iolist. If var3 and the preceding comma are omitted, the increment takes the value 1. The list
items are specified once for each iteration of the DO loop with the DO-variable being substituted as
appropriate.

REAL C(6),D(6)

DATA OXO,(C(I),I=7,9),TEMP,(D(J),J=1,2)/4*0.0,3*10.0/

In the above example OXO, C(7), C(8) and C(9) are set to 0.0 with TEMP, D(1) and D(2) being set to
10.0. In the next example:

READ *,A,B,(R(I),I=1,4),S

has the same effect as

READ *,A,B,R(1),R(2),R(3),R(4),S

Format Specifications

Format requirements may be given either in an explicit FORMAT statement or alternatively, as fields
within an input/output statement (as values in character variables, arrays or other character
expressions within the input/output statement).

When a format identifier in a formatted input/output statement is a character array name or other
character expression, the leftmost characters must be defined with character data that constitute a
format specification when the statement is executed. A character format specification is enclosed in
parentheses. Blanks may precede the left parenthesis. Character data may follow the right-hand

Input and Output Formatting

152

parenthesis and has no effect on the format specification. When a character array name is used as a
format identifier, the length of the format specification can exceed the length of the first element of the
array; a character array format specification is considered to be an ordered concatenation of all the
array elements. When a character array element is used as a format identifier the length must not
exceed that of the element used.

The FORMAT statement has the form:

FORMAT (list-of-format-requirements)

The list of format requirements can be any of the following, separated by commas:

• Repeatable editor commands which may or may not be preceded by an integer constant which
defines the number of repeats.

• Non-repeatable editor commands.

• A format specification list enclosed in parentheses, optionally preceded by an integer constant
which defines the number of repeats.

Each action of format control depends on a FORMAT specified edit code and the next item in the input/
output list used. If an input/output list contains at least one item, there must be at least one repeatable
edit code in the format specification. An empty format specification FORMAT() can only be used if no list
items are specified. In such a case, one input record is skipped or an output record containing no
characters is written. Unless the edit code or the format list is preceded by a repeat specification, a format
specification is interpreted from left to right. When a repeat specification is used, the appropriate item is
repeated the required number of times.

Each repeatable edit code has a corresponding item in the iolist; however when a list item is of type
complex two edit codes of F, E, D or G are required. The edit codes P, X, T, TL, TR, S, SP, SS, H, BN, BZ, /, :
and apostrophe act directly on the record and have no corresponding item in the input/output list.

The file is positioned after the last character read or written when the edit codes I, F, E, D, G, L, A, H or
apostrophe are processed. If the specified unit is a printer then the first character of the record is used to
control the vertical spacing as shown in the following table:

Formatted Data Transfer

153

Table 5-2: Format Character Controls for a Printer

A Format Control – Character Data

The A specifier transfers characters. The A can optionally be followed by a field width w. When w is not
specified, the width is determined by the size of the data item.

On output, if l is the length of the character item and w is the field width, then the following rules apply:

• If w > l,w – l blanks before the character.

• If w < l, leftmost w characters.

On input, if l is the length of the character I/O item and w is the field width, then the following rules
apply:

• If w > l, rightmost l characters from the input filed.

• If w < l, leftmost w characters from the input filed and followed by l – w blanks.

You can also use the A format specifier to process data types other than CHARACTER. For types other
than CHARACTER, the number of characters supplied for input/output will equal the size in bytes of the
data allocated to the data type. For example, an INTEGER*4 value is represented with 4 characters and a
LOGICAL*2 is represented with 2 characters.

The following shows a simple example that reads two CHARACTER arrays from the file data.src:

 CHARACTER STR1*8, STR2*12

 OPEN(2, FILE='data.src')

 READ(2, 10) STR1, STR2

10 FORMAT (A8, A12)

Character Vertical Spacing

Blank One line

0 Two lines

1 To first line on next page

+ No advance

Input and Output Formatting

154

B Format Control – Binary Data

The B field descriptor transfers binary values and can be used with any integer data type. The edit
descriptor has the form:

Bw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) binary characters only (0 or 1). An all
blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the B field descriptor transfers the binary values of the corresponding I/O list element, right-
justified, to an external field that is w characters long. If the value to be transmitted does not fill the
field, leading spaces are inserted; if the value is too large for the field, the entire field is filled with
asterisks. If m is present, the external field consists of at least m digits, and is zero-filled on the left if
necessary. Note that if m is zero, and the internal representation is zero, the external field is blank-filled.

D Format Control – Real Double Precision Data with Exponent

The D specifier transfers real values for double precision data with a representation for an exponent. The
form of the D specifier is:

Dw.d

where w is the field width and d the number of digits in the fractional part.

For input, the same conditions apply as for the F specifier described later in this chapter.

For output, the scale factor k controls the decimal normalization. The scale factor k is the current scale
factor specified by the most recent P format control; if one hasn't been specified, the default is zero (0).
If -d < k <= 0, the output file contains leading zeros and d-|k| significant digits after the decimal
point. If 0 < k < d+2, there are exactly |k| significant digits to the left of the decimal point and d-
k+1 significant digits to the right of the decimal point. Other values of k are not allowed.

For example:

 DOUBLE PRECISION VAL1

 VAL1 = 141.8835

 WRITE(*, 20) VAL1

20 FORMAT (D10.4)

Formatted Data Transfer

155

produces the following:

0.1418D+03

E Format Control – Real Single Precision Data with Exponent

The E specifier transfers real values for single precision data with an exponent. The E format specifier
has two basic forms:

Ew.d

Ew.dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits to be
printed in the exponent part.

For input the same conditions apply as for F editing. For output the scale factor controls the decimal
normalization as in the D specifier.

EN Format Control

The EN specifier transfers real values using engineering notation.

ENw.d

ENw.dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits to be
printed in the exponent part.

On output, the number is in engineering notation where the exponent is divisible by 3 and the absolute
value of the significand is 1000 > |significand | 1. This format is the same as the E format descriptor,
except for restrictions on the size of the exponent and the significand.

ES Format Control

The ES specifier transfers real values in scientific notation. The ES format specifier has two basic forms:

ESw.d

ESw.dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits to be
printed in the exponent part.

For output, the scale factor controls the decimal normalization as in the D specifier.

Input and Output Formatting

156

On output, the number is presented in scientific notation, where the absolute value of the significand is
10> | significand | 1.

F Format Control - Real Single Precision Data

The F specifier transfers real values. The form of the F specifier is:

Fw.d

where w is the field width and d is the number of digits in the fractional part.

On input, if the field does not contain a decimal digit or an exponent, right-hand d digits, with leading
zeros, are interpreted as being the fractional part.

On output, a leading zero is only produced to the left of the decimal point if the value is less than one.

G Format Control

The G format specifier provides generalized editing of real data. The G format has two basic forms:

Gw.d

Gw.dEe

The specifier transfers real values; it acts like the F format control on input and depending on the value’s
magnitude, like E or F on output. The magnitude of the data determines the output format. For details
on the actual format used, based on the magnitude, refer to the ANSI FORTRAN Standard (Section
13.5.9.2.3 G Editing).

I Format Control – Integer Data

The I format specifier transfers integer values. The I format specifier has two basic forms:

Iw

Iw.m

where w is the field width and m is the minimum filed width on output, including leading zeros. If
present, m must not exceed width w.

On input, the external field to be input must contain (unsigned) decimal characters only. An all blank
field is treated as a value of zero. If the value of the external field exceeds the range of the corresponding
list element, an error occurs.

Formatted Data Transfer

157

On output, the I format descriptor transfers the decimal values of the corresponding I/O list element,
right-justified, to an external field that is w characters long. If the value to be transmitted does not fill
the field, leading spaces are inserted; if the value is too large for the field, the entire field is filled with
asterisks. If m is present, the external field consists of at least m digits, and is zero-filled on the left if
necessary. Note that if m is zero, and the internal representation is zero, the external field is blank-filled.

L Format Control – Logical Data

The L format control transfers logical data of field width w:

Lw

On input, the list item will become defined with a logical value; the field consists of optional blanks,
followed by an optional decimal point followed by T or F. The values .TRUE. or .FALSE. may also appear
in the input field

The output field consists of w-1 blanks followed by T or F as appropriate.

Quote Format Control

Quote editing prints a character constant. The format specifier writes the characters enclosed between
the quotes and cannot be used on input. The field width is that of the characters contained within quotes
(you can also use apostrophes to enclose the character constant).

To write an apostrophe (or quote), use two consecutive apostrophes (or quotes).

For example:

 WRITE (*, 101)

101 FORMAT ('Print an apostrophe '' and end.')

Produces:

Print an apostrophe ' and end.

Similarly, you can use quotes, for example:

 WRITE (*, 102)

102 FORMAT ("Print a line with a "" and end.")

Produces:

Print a line with a " and end.

Input and Output Formatting

158

BN Format Control – Blank Control

The BN and BZ formats control blank spacing. BN causes all embedded blanks except leading blanks in
numeric input to be ignored, which has the effect of right-justifying the remainder of the field. Note that
a field of all blanks has the value zero. Only input statements and I, F, E, D and G editing are affected.

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros. Only input
statements and I, F, E, D and G editing are affected.

H Format Control – Hollerith Control

The H format control writes the n characters following the H in the format specification and cannot be
used on input.

The basic form of this format specification is:

nHc1cn...

where n is the number of characters to print and c1 through cn are the characters to print.

O Format Control Octal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with an integer data
type. They have the form:

Ow[.m] and Zw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only.
An all blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively, of the
corresponding I/O list element, right-justified, to an external field that is w characters long. If the value
to be transmitted does not fill the field, leading spaces are inserted; if the value is too large for the field,
the entire field is filled with asterisks. If m is present, the external field consists of at least m digits, and is
zero-filled on the left if necessary. Note that if m is zero, and the internal representation is zero, the
external field is blank-filled.

Formatted Data Transfer

159

P Format Specifier – Scale Control

The P format specifier

kP

is the scale factor format which is applied as follows.

• With F, E, D and G editing on input and F editing on output, the external number equals the
internal number multiplied by 10**k . If there is an exponent in the field on input, editing with F,
E, D and G the scale factor has no effect.

• On output with E and D editing, the basic real constant part of the number is multiplied by 10**k
and the exponent reduced by k ; with G editing the effect of the scale factor is suspended unless the
size of the datum to be edited is outside the range permitted for F editing. If E editing is required,
the scale factor has the same effect as with E output editing.

The following is an example using a scale factor.

DIMENSION

A(6)

DO 10 I = 1,6

10A(I) = 25.

TYPE 100,A

100FORMAT(' ',F8.2,2PF8.2,F8.2)

produces:

25.00

2500.00 2500.00 2500.00 2500.00 2500.00

Note that the effect of the scale factor continues until another scale factor is used.

Q Format Control - Quantity

The Q edit descriptor calculates the number of characters remaining in the input record and stores that
value in the next I/O list item. On output, the Q descriptor skips the next I/O item.

S Format Control – Sign Control

The S format specifier restores the default processing for writing a plus; the default is SS processing.

Input and Output Formatting

160

SP forces the processor to write a plus in any position where an optional plus is found in numeric output
fields, this only affects output statements.

SS stops the processor from writing a plus in any position where an optional plus is found in numeric
output fields, this only affects output statements.

T , TL and X Format Controls – Spaces and Tab Controls

The T specifier controls which portion of a record in an iolist value is read from or written to a file. The
general form, which specifies that the nth value is to be written to or from a record, is as follows:

Tn

The TL form specifies the relative position to the left of the data to be read or written:

TLn

and specifies that the nth character to the left of the current position is to be written to or from the
record. If the current position is less than or equal to n, the transmission will begin at position one of the
record.

The TR form specifies the relative position to the right of the data to be read or written:

TRn

and specifies that the nth character to the right of the current position is to be written to or from the
record.

The X control specifies a number of characters to skip forward and that the next character to be written
to or from is n characters forward from the current position:

nX

The following example uses the X format specifier:

 NPAGE = 19

 WRITE (6, 90) NPAGE

90 FORMAT('1PAGE NUMBER ,I2, 16X, 'SALES REPORT, Cont.')

produces:

PAGE NUMBER 19 SALES REPORT, Cont.

The following example shows use of the T format specifier:

Formatted Data Transfer

161

 PRINT 25

25 FORMAT (T41,'COLUMN 2',T21,'COLUMN 1')

produces:

 COLUMN 1 COLUMN 2

Z Format Control Hexadecimal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with any integer data
type. They have the form:

Ow[.m] and Zw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only.
An all-blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively, of the
corresponding I/O list element, right-justified, to an external field that is w characters long. If the value
to be transmitted does not fill the field, leading spaces are inserted; if the value is too large for the field,
the entire field is filled with asterisks. If m is present, the external field consists of at least m digits, and is
zero-filled on the left if necessary. Note that if m is zero, and the internal representation is zero, the
external field is blank-filled.

Slash Format Control / – End of Record

The slash (/) control indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the rest of the current record is skipped and the file
positioned at the start of the next record.

On output a new record is created which becomes the last and current record. For an internal file
connected for direct access, the record is filled with blank characters. For a direct access file, the record
number is increased by one and the file is positioned at the start of the record.

Multiple slashes are permitted, thus multiple records are skipped.

Input and Output Formatting

162

The : Format Specifier – Format Termination

The (:) control terminates format control if there are no more items in the input/output list. It has no
effect if there are any items left in the list.

$ Format Control

The $ field descriptor allows the programmer to control carriage control conventions on output. It is
ignored on input. For example, on terminal output, it can be used for prompting.

The form of the $ field descriptor is:

$

Variable Format Expressions ,<expr>

Variable format expressions are supported. They provide a means for substituting run-time expressions
for the field width, other parameters for the field and edit descriptors in a FORMAT statement (except for
the H field descriptor and repeat counts).

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they are
encountered in the scan of a format. If the value of a variable used in the expression changes during the
execution of the I/O statement, the new value is used the next time the format item containing the
expression is processed.

Non-advancing Input and Output

Non-advancing input/output is character-oriented and applies to sequential access formatted external
files. The file position is after the last character read or written and not automatically advanced to the
next record.

For non-advancing input/output, use the ADVANCE='NO' specifier. Two other specifiers apply to non-
advancing IO: EOR applies when end of record is detected and SIZE returns the number of characters
read.

List-directed formatting

163

List-directed formatting

List-directed formatting is an abbreviated form of input/output that does not require the use of a format
specification. The type of the data is used to determine how a value is read/written. On output, it will not
always be accurate enough for certain ranges of values. The characters in a list-directed record
constitute a sequence of values which cannot contain embedded blanks except those permitted within a
character string. To use list-directed input/output formatting, specify a * for the list of format
requirements. For example, the following example uses list-directed output:

READ(1, *) VAL1, VAL2

List-directed input

The form of the value being input must be acceptable for the type of item in the iolist. Blanks must not
be used as zeros nor be embedded in constants except in a character constant or within a type complex
form contained in parentheses.

Input and Output Formatting

164

Table 5-3: List Directed Input Values

A null value has no effect on the definition status of the corresponding iolist item. A null value cannot
represent just one part of a complex constant but may represent the entire complex constant. A slash
encountered as a value separator stops the execution of that input statement after the assignment of the
previous value. If there are further items in the list, they are treated as if they are null values.

Commas may be used to separate the input values. If there are consecutive commas, or if the first non-
blank character of a record is a comma, the input value is a null value. Input values may also be
repeated.

In the following example of list-directed formatting, assume that

A= -1.5

K= 125

and all other variables are undefined. When the statement below reads in the list from the input file:

READ * I, J, X, Y, Z, A, C, K

where the file contains the following record:

10,-14,25.2,-76,313,,29/

Input List Type Form

Integer A numeric input field.

Real A numeric input field suitable for F editing with no frac-
tional part unless a decimal point is used.

Double precision Same as for real.

Complex An ordered pair of numbers contained within parentheses
as shown (real part, imaginary part).

Logical A logical field without any slashes or commas.

Character A non-empty character string within apostrophes. A char-
acter constant can be continued on as many records as
required. Blanks, slashes and commas can be used.

List-directed formatting

165

The variables are assigned the following values by the list-directed input/output mechanism:

I=10

J=-14

X=25.2

Y=-76.0

Z=313.0

A=-1.5

C=29

K=125.

Note that the value for A does not change because the input record is null (consecutive commas). No
input is read for K, so it assumes null and K retains its previous value (the / terminates the input).

List-directed output

List directed input/output is an abbreviated form of formatted input/output that does not require the use
of a format specification. Depending on the type of the data item or data items in the iolist, data is
transferred to or from the file, using a default, and not necessarily accurate format specification. The
data type of each item appearing in the iolist is formatted according to the rules in the following table:

Input and Output Formatting

166

Table 5-4: Default List Directed Output Formatting

The length of a record is less than 80 characters; if the output of an item would cause the length to
exceed 80 characters, a new record is created.

Issues to note when using list-directed output:

• New records may begin as necessary.

• Logical output constants are T for true and F for false.

Data Type Default Formatting

BYTE I5

INTEGER*2 I7

INTEGER*4 I12

INTEGER*8 I24

LOGICAL*1 I5 (L21)

1. This format is applied when the option –Munixlogical is selected when

compiling.

LOGICAL*2 L2

LOGICAL*4 L2

LOGICAL*8 L2

REAL*4 G15.7e2

REAL*8 G25.16e3

COMPLEX*8 (G15.7e2, G15.7e2)

COMPLEX*16 (G25.16e3, G25.16e3)

CHAR *n An

Namelist Groups

167

• Complex constants are contained within parentheses with the real and imaginary parts separated
by a comma.

• Character constants are not delimited by apostrophes and have each internal apostrophe (if any
are present) represented externally by one apostrophe.

• Each output record begins with a blank character to provide carriage control when the record is
printed.

• A typeless value output with list-directed I/O is output in hexadecimal form by default. There is no
other octal or hexadecimal capability with list-directed I/O.

Commas in External Field

Use of the comma in an external field eliminates the need to "count spaces" to have data match format
edit descriptors. The use of a comma to terminate an input field and thus avoid padding the field is fully
supported.

Namelist Groups

The NAMELIST statement allows for the definition of namelist groups. A namelist group allows for a
special type of formatted input/output, where data is transferred between a named group of data items
defined in a NAMELIST statement and one or more records in a file.

The general form of a namelist statement is:

NAMELIST /group-name/ namelist [[,] /group-name/ namelist]...

where:

group-name is the name of the namelist group.

namelist is the list of variables in the namelist group.

Namelist Input

Namelist input is accomplished using a READ statement by specifying a namelist group as the input
item. The following statement shows the format:

 READ ([unit=] u, [NML=] namelist-group [,control-information])

One or more records are processed which define the input for items in the namelist group.

Input and Output Formatting

168

The records are logically viewed as follows:

$group-nameitem=value[,item=value].... $ [END]

The following rules describe these input records:

1. The start or end delimiter ($) may be an ampersand (&).

2. The start delimiter must begin in column 2 of a record.

3. The group-name begins immediately after the start delimiter.

4. The spaces or tabs may not appear within the group-name, within any item, or within any
constants.

5. The value may be constants as are allowed for list directed input, or they may be a list of constants
separated by commas (,). A list of items is used to assign consecutive values to consecutive
elements of an array.

6. Spaces or tabs may precede the item, the = and the constants.

7. Array items may be subscripted.

8. Character items may be substringed.

Namelist Output

Namelist output is accomplished using a READ statement by specifying a namelist group as the output
item. The following statement shows the format:

WRITE ([unit=] u, [NML=] namelist-group [,control-information])

The records output are logically viewed as follows:

$group-name

item = value

$ [END]

The following rules describe these output records:

1. One record is output per value.

2. Multiple values are separated by a comma (,).

Namelist Groups

169

3. Values are formatted according to the rules of the list-directed write. Exception: character items
are delimited by an apostrophe (').

4. An apostrophe (') or a quote (") in the value is represented by two consecutive apostrophes or
quotes.

Input and Output Formatting

170

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

171

6 Fortran Intrinsics
This chapter lists the FORTRAN 77 and Fortran 90/95 intrinsics and subroutines, intrinsics defined in
the HPF Language Specification, and CM Fortran intrinsics. Color-coding is used to highlight the
different Fortran versions. The colors used are as follows:

• FORTRAN 77 is shown in black

• Fortran 90/95 is shown in blue

• HPF is shown in red

• CM Fortran is shown in green

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

The tables in this section contain the FORTRAN 77 and Fortran 90/95 intrinsics supported by the PGF77
and PGF95 compilers. Intrinsics are categorized by functionality and alphabetized by generic name
within each table. All FORTRAN 77 intrinsics are supported and are detailed in the ANSI FORTRAN
Standard.

To simplify the tables in this section, two groups of intrinsic types have been given the following
abbreviated group names:

NUMERIC INTEGER, REAL, COMPLEX

NONCHAR LOGICAL, INTEGER, REAL, COMPLEX

Fortran Intrinsics

172

Table 6-1: Numeric Functions

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

ABS Absolute Value 1 NUMERIC NUMERIC

1 IIABS INTEGER*2 INTEGER*2

1 JIABS INTEGER*4 INTEGER*4

1 KIABS INTEGER*8 INTEGER*8

1 ABS REAL*4 REAL*4

1 DABS REAL*8 REAL*8

1 CAB COMPLEX*8 COMPLEX*8

1 CDABS COMPLEX*16 COMPLEX*16

AIMAG Imaginary
Part of Com-
plex Number

1 AIMAG COMPLEX*8 REAL*4

1 DIMAG COMPLEX*16 REAL*8

AINT Truncation 1 AINT REAL*4 REAL*4

1 DINT REAL*8 REAL*8

ANINT Nearest Whole
Number

1 ANINT REAL*4 REAL*4

1 DNINT REAL*8 REAL*8

CEILING Next Whole
Number

1 REAL INTEGER

2 REAL, INTEGER INTEGER

CMPLX Convert to
COMPLEX*8

1 NUMERIC COMPLEX*8

2 INTEGER, INTEGER COMPLEX*8

2 REAL, REAL COMPLEX*8

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

173

CONJG Complex Con-
jugate

1 CONJG COMPLEX*8 COMPLEX*8

1 DCONJG COMPLEX*16 COMPLEX*16

DBLE Convert to
REAL*8

1 NUMERIC REAL*8

1 DFLOTI INTEGER*2 REAL*8

1 DFLOAT INTEGER*4 REAL*8

1 DFLOTJ INTEGER*4 REAL*8

1 DFLOTK INTEGER*8 REAL*8

1 DREAL COMPLEX*16 REAL*8

DCMPLX Convert to
COMPLEX*16

1 NUMERIC COMPLEX*16

2 INTEGER,INTEGER COMPLEX*16

2 REAL, REAL COMPLEX*16

DIM Positive Dif-
ference

2 IIDIM INTEGER*2, INTE-
GER*2

INTEGER*2

2 JIDIM INTEGER*4, INTE-
GER*4

INTEGER*4

2 KIDIM INTEGER*8, INTE-
GER*8

INTEGER*8

2 DIM REAL*4, REAL*4 REAL*4

2 DDIM REAL*8, REAL*8 REAL*8

FLOOR Previous inte-
ger

1 REAL INTEGER

2 REAL, INTEGER INTEGER

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

Fortran Intrinsics

174

IINT Truncation 1 NUMERIC INTEGER*2

1 IINT REAL*4 INTEGER*2

1 IIFIX REAL*4 INTEGER*2

1 IIDINT REAL*8 INTEGER*2

ININT Nearest Inte-
ger [a + .5 *
sign(a)]

1 ININT REAL*4 INTEGER*2

1 IIDNNT REAL*8 INTEGER*2

INT Truncation 1 NUMERIC INTEGER*4

1 JIFIX REAL*4 INTEGER*4

1 IDINT REAL*8 INTEGER*4

INT8 Truncation 1 REAL*4 INTEGER*8

1 KIFIX REAL*4 INTEGER*8

IZEXT Zero-Extend
Function
(Conversion)

1 LOGICAL*1 INTEGER*2

1 LOGICAL*2 INTEGER*2

1 INTEGER*2 INTEGER*2

JINT Truncation 1 NUMERIC INTEGER*4

1 JINT REAL*4 INTEGER*4

1 JIDINT REAL*8 INTEGER*4

JNINT Nearest Inte-
ger [a + .5 *
sign(a)]

1 REAL INTEGER*4

1 JIDNNT REAL*8 INTEGER*4

KNINT Nearest Inte-
ger [a + .5 *
sign(a)]

1 REAL INTEGER*8

1 KIDNNT REAL*8 INTEGER*8

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

175

MAX Maximum n > 1 IMAX0 INTEGER*2 INTEGER*2

n > 1 IMAX1 REAL*4 INTEGER*2

n > 1 AIMAX0 INTEGER*2 REAL*4

n > 1 JMAX0 INTEGER*4 INTEGER*4

n > 1 INTEGER*8 INTEGER*8

n > 1 JMAX1 REAL*4 INTEGER*4

n > 1 KMAX1 REAL*4 INTEGER*8

n > 1 AJMAX0 INTEGER*4 REAL*4

n > 1 AKMAX0 INTEGER*8 REAL*4

n > 1 MAX0 INTEGER*4 INTEGER*4

n > 1 AMAX1 REAL*4 REAL*4

n > 1 DMAX1 REAL*8 REAL*8

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

Fortran Intrinsics

176

MIN Minimum n > 1 IMIN0 INTEGER*2 INTEGER*2

n > 1 IMIN1 REAL*4 INTEGER*2

n > 1 AIMIN0 INTEGER*2 REAL*4

n > 1 JMIN0 INTEGER*4 INTEGER*4

n > 1 INTEGER*8 INTEGER*8

n > 1 JMIN1 REAL*4 INTEGER*4

n > 1 KMIN1 REAL*4 INTEGER*8

n > 1 AJMIN0 INTEGER*4 REAL*4

n > 1 MIN0 INTEGER*4 INTEGER*4

n > 1 AMIN1 REAL*4 REAL*4

n > 1 AKNIN0 INTEGER*8 REAL*4

n > 1 DMIN1 REAL*8 REAL*8

MOD Remainder 2 IMOD INTEGER*2, INTE-
GER*2

INTEGER*2

2 JMOD INTEGER*4, INTE-
GER*4

INTEGER*4

2 KMOD INTEGER*8, INTE-
GER*8

INTEGER*8

2 AMOD REAL*4, REAL*4 REAL*4

2 DMOD REAL*8, REAL*4 REAL*8

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

177

MODULO Fortran 90/95
Modulo

2 INTEGER*2, INTE-
GER*2

INTEGER*2

2 INTEGER*4, INTE-
GER*4

INTEGER*4

2 INTEGER*8, INTE-
GER*8

INTEGER*8

2 REAL*4, REAL*4 REAL*4

2 REAL*8, REAL*4 REAL*8

NINT Nearest Inte-
ger [a + .5 *
sign(a)]

1 REAL INTEGER*4

1 IDNINT REAL*8 INTEGER*4

REAL Convert to
REAL*4

1 NUMERIC REAL*4

1 FLOATI INTEGER*2 REAL*4

1 FLOAT INTEGER*2 REAL*4

1 REAL INTEGER*4 REAL*4

1 FLOATJ INTEGER*4 REAL*4

1 FLOATK INTEGER*8 REAL*4

1 SNGL REAL*8 REAL*4

SIGN Transfer of
Sign

2 IISIGN INTEGER*2 INTEGER*2

2 JISIGN INTEGER*4 INTEGER*4

2 KISIGN INTEGER*8 INTEGER*8

2 SIGN REAL*4 REAL*4

2 DSIGN REAL*8 REAL*8

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

Fortran Intrinsics

178

ZEXT Zero-Extend
Function
(Conversion)

1 JZEXT LOGICAL*1 INTEGER*4

1 LOGICAL*2 INTEGER*4

1 LOGICAL*4 INTEGER*4

1 INTEGER*2 INTEGER*4

1 INTEGER*4 INTEGER*4

Generic
Name Purpose Number

of Args
Specific
Name Argument Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

179

Table 6-2: Mathematical Functions

Generic
Name Purpose Number

of Args
Specific
Name

Argument
Type Result Type

ACOS ArcCosine 1 ACOS REAL*4 REAL*4

1 DACOS REAL*8 REAL*8

ACOSD ArcCosine
(degree)

1 ACOSD REAL*4 REAL*4

1 DACOSD REAL*8 REAL*8

ASIN ArcSine 1 ASIN REAL*4 REAL*4

1 DASIN REAL*8 REAL*8

ASIND ArcSine (degree) 1 ASIND REAL*4 REAL*4

1 DASIND REAL*8 REAL*8

ATAN ArcTangent 1 ATAN REAL*4 REAL*4

1 DATAN REAL*8 REAL*8

ATAN2 ArcTangent 2 ATAN2 REAL*4, REAL*4 REAL*4

2 DATAN2 REAL*8, REAL*8 REAL*8

ATAN2D ArcTangent
(degree)

2 ATAN2D REAL*4, REAL*4 REAL*4

2 DATAN2D REAL*8, REAL*8 REAL*8

ATAND ArcTangent
(degree)

1 ATAND REAL*4 REAL*4

1 DATAND REAL*8 REAL*8

COS Cosine 1 COS REAL*4 REAL*4

1 DCOS REAL*8 REAL*8

1 CCOS COMPLEX*8 COMPLEX*8

1 CDCOS COMPLEX*16 COMPLEX*16

Fortran Intrinsics

180

COSD Cosine (degree) 1 COSD REAL*4 REAL*4

1 DCOSD REAL*8 REAL*8

COSH Hyperbolic Cosine 1 COSH REAL*4 REAL*4

1 DCOSH REAL*8 REAL*8

DPROD Product 2 REAL*4, REAL*4 REAL*8

EXP Exponential 1 EXP REAL*4 REAL*4

1 DEXP REAL*8 REAL*8

1 CEXP COMPLEX*8 COMPLEX*8

1 CDEXP COMPLEX*16 COMPLEX*16

LOG Natural Loga-
rithm

1 ALOG REAL*4 REAL*4

1 DLOG REAL*8 REAL*8

1 CLOG COMPLEX*8 COMPLEX*8

1 CDLOG COMPLEX*16 COMPLEX*16

LOG10 Common Loga-
rithm

1 ALOG10 REAL*4 REAL*4

1 DLOG10 REAL*8 REAL*8

SIN Sine 1 SIN REAL*4 REAL*4

1 DSIN REAL*8 REAL*8

1 CSIN COMPLEX*8 COMPLEX*8

1 CDSIN COMPLEX*16 COMPLEX*16

SIND Sine (degree) 1 SIND REAL*4 REAL*4

1 DSIND REAL*8 REAL*8

Generic
Name Purpose Number

of Args
Specific
Name

Argument
Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

181

SINH Hyperbolic Sine 1 SINH REAL*4 REAL*4

1 DSINH REAL*8 REAL*8

SQRT Square Root 1 SQRT REAL*4 REAL*4

1 DSQRT REAL*8 REAL*8

1 CSQRT COMPLEX*8 COMPLEX*8

1 REAL*8 COMPLEX*16 COMPLEX*16

TAN Tangent 1 TAN REAL*4 REAL*4

1 DTAN REAL*8 REAL*8

TAND Tangent (degree) 1 TAND REAL*4 REAL*4

1 DTAND REAL*8 REAL*8

TANH Hyperbelic Tan-
gent

1 TANH REAL*4 REAL*4

1 DTANH REAL*8 REAL*8

Generic
Name Purpose Number

of Args
Specific
Name

Argument
Type Result Type

Fortran Intrinsics

182

Table 6-3: Real Manipulation Functions

Table 6-4: Bit Manipulation Functions

Generic Name Purpose Number
of Args Argument Type Result Type

EXPONENT Exponent part 1 REAL INTEGER

FRACTION Fractional part 1 REAL INTEGER

NEAREST Nearest different
machine-represent-
able number

2 REAL, REAL REAL

RRSPACING Reciprocal of rela-
tive spacing

1 REAL REAL

SCALE Value of exponent
part changed by a
specified value

2 REAL, INTEGER REAL

SET_EXPONENT Value of exponent
part set to a speci-
fied value

2 REAL, INTEGER REAL

SPACING Spacing near argu-
ment

1 REAL REAL

Generic
Name Purpose Num.

Args
Specific
Name Argument Type Result Type

AND Logical
AND

2 any1, any*** 'any, any' on
page 186 ***

typeless

BIT_SIZE Precision
(in bits)

1 INTEGER INTEGER

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

183

BTEST Bit Test 2 INTEGER, INTEGER LOGICAL

2 BITEST INTEGER*2, INTEGER*2 LOGICAL*2

2 BJTEST INTEGER*4, INTEGER*4 LOGICAL*4

2 KBTEST INTEGER*8, INTEGER*8 LOGICAL*8

COMPL Logical
Comple-
ment

1 any*** 'any, any*** 'any,
any' on page 186 ***' on
page 186 ***

typeless

EQV Logical
Exclusive
Nor

2 any*** 'any, any*** 'any,
any' on page 186 ***' on
page 186 ***, any*** 'any,
any*** 'any, any' on page 186
***' on page 186 ***

typeless

IAND Logical
AND

2 INTEGER, INTEGER INTE-
GER*2,

INTEGER

2 IIAND INTEGER*2 INTEGER*2

2 JIAND INTEGER*4, INTEGER*4 INTEGER*4

2 KIAND INTEGER*8, INTEGER*8 INTEGER*8

IBCLR Bit Clear 2 INTEGER, INTEGER INTEGER

2 IIBCLR INTEGER*2, INTEGER*2 INTEGER*2

2 JIBCLR INTEGER*4, INTEGER*4 INTEGER*4

2 KIBCLR INTEGER*8, INTEGER*8 INTEGER*8

Generic
Name Purpose Num.

Args
Specific
Name Argument Type Result Type

Fortran Intrinsics

184

IBITS Bit
Extrac-
tion

3 INTEGER, INTEGER, INTE-
GER

INTEGER

3 IIBITS INTEGER*2, INTEGER*2,
INTEGER*2

INTEGER*2

3 JIBITS INTEGER*4, INTEGER*4,
INTEGER*4

INTEGER*4

3 KIBITS INTEGER*8, INTEGER*8,
INTEGER*8

INTEGER*8

IBSET Bit Set 2 INTEGER, INTEGER INTEGER

2 IIBSET INTEGER*2, INTEGER*2 INTEGER*2

2 JIBSET INTEGER*4, INTEGER*4 INTEGER*4

2 KIBSET INTEGER*8, INTEGER*8 INTEGER*8

IEOR Logical
XOR

2 INTEGER, INTEGER INTEGER

2 IIEOR INTEGER*2, INTEGER*2 INTEGER*2

IOR Logical
OR

2 INTEGER, INTEGER INTEGER

2 IIOR INTEGER*2, INTEGER*2 INTEGER*2

2 JIOR INTEGER*4, INTEGER*4 INTEGER*4

2 KIOR INTEGER*8, INTEGER*8 INTEGER*8

ISHFT Logical
Shift

2 INTEGER, INTEGER INTEGER

2 IISHFT INTEGER*2, INTEGER*2 INTEGER*2

2 JISHFT INTEGER*4, INTEGER*4 INTEGER*4

2 KISHFT INTEGER*8, INTEGER*8 INTEGER*8

Generic
Name Purpose Num.

Args
Specific
Name Argument Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

185

ISHFTC Circular
Shift

3 INTEGER, INTEGER INTEGER

3 IISHFTC INTEGER*2, INTEGER*2,
INTEGER*2

INTEGER*2

3 JISHFTC INTEGER*4, INTEGER*4,
INTEGER*4

INTEGER*4

3 KISHFTC INTEGER*8, INTEGER*8,
INTEGER*8

INTEGER*8

LSHIFT Logical
Left Shift

2 INTEGER, INTEGER INTEGER

NEQV Logical
Exclusive
OR

2 any*** 'any, any*** 'any,
any' on page 186 ***' on
page 186 ***, any*** 'any,
any*** 'any, any' on page 186
***' on page 186 ***

typeless

NOT Logical
Comple-
ment

1 INTEGER INTEGER

1 INOT INTEGER*2 INTEGER*2

1 JNOT INTEGER*4 INTEGER*4

1 KNOT INTEGER*8 INTEGER*8

OR Logical
OR

2 any*** 'any, any*** 'any,
any' on page 186 ***' on
page 186 ***, any*** 'any,
any*** 'any, any' on page 186
***' on page 186 ***

typeless

RSHIFT Logical
Right
Shift

2 INTEGER, INTEGER INTEGER

Generic
Name Purpose Num.

Args
Specific
Name Argument Type Result Type

Fortran Intrinsics

186

Table 6-5: Fortran 90/95 Bit Manipulation Subroutine

The functions in the following table are specific to Fortran 90/95 unless otherwise specified.

SHIFT Logical
Shift

2 any2, INTEGER typeless

XOR Logical
Exclusive
OR

2 INTEGER, INTEGER INTEGER

JIEOR INTEGER*4, INTEGER*4 INTEGER*4

1. Arguments to the intrinsics AND, COMPL, EQV, OR, and NEQV may be of any type except for CHARACTER and

COMPLEX.

2. The first argument to the SHIFT intrinsic may be of any type except for CHARACTER and COMPLEX.

Generic
Name Purpose Arguments

MVBITS Copies bit
sequence

INTEGER(IN), INTEGER(IN), INTEGER(IN), INTE-
GER(INOUT), INTEGER(IN)

Generic
Name Purpose Num.

Args
Specific
Name Argument Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

187

Table 6-6: Elemental Character and Logical Functions

Generic
Name Purpose Num.

Args Argument Type Result Type

ACHAR Return charac-
ter in specified
ASCII collating
position.

1 INTEGER CHARACTER

ADJUSTL Left adjust
string

1 CHARACTER CHARACTER

ADJUSTR Right adjust
string

1 CHARACTER CHARACTER

CHAR
(f77)

Return charac-
ter with speci-
fied ASCII value.

1 LOGICAL*1 CHARACTER

1 INTEGER CHARACTER

IACHAR Return position
of character in
ASCII collating
sequence.

1 CHARACTER INTEGER

ICHAR Return position
of character in
the character
set’s collating
sequence.

1 CHARACTER INTEGER

INDEX Return starting
position of sub-
string within
first string.

2 CHARACTER, CHARACTER INTEGER

3 CHARACTER, CHARACTER, LOGICAL INTEGER

LEN_TRIM Return length of
string minus
trailing blanks.

1 CHARACTER INTEGER

Fortran Intrinsics

188

LGE Lexical compar-
ison

2 CHARACTER, CHARACTER LOGICAL

LGT Lexical compar-
ison

2 CHARACTER, CHARACTER LOGICAL

LLE Lexical compar-
ison

2 CHARACTER, CHARACTER LOGICAL

LLT Lexical compar-
ison

2 CHARACTER, CHARACTER LOGICAL

LOGICAL Logical conver-
sion

1 LOGICAL LOGICAL

2 LOGICAL, INTEGER LOGICAL

SCAN Scan string for
characters in set

2 CHARACTER, CHARACTER INTEGER

3 CHARACTER, CHARACTER, LOGICAL INTEGER

VERIFY Determine if
string contains
all characters in
set

2 CHARACTER, CHARACTER INTEGER

3 CHARACTER, CHARACTER, LOGICAL INTEGER

Generic
Name Purpose Num.

Args Argument Type Result Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

189

Table 6-7: Fortran 90/95 Vector/Matrix Functions

Table 6-8: Fortran 90/95 Array Reduction Functions

Generic Name Purpose Number
of Args Argument Type Result Type

DOT_PRODUCT Perform dot
product on two
vectors

2 NONCHAR*K, NONCHAR*K NONCHAR*K

MATMUL Perform matrix
multiply on two
matrices

2 NONCHAR*K, NONCHAR*K NONCHAR*K

Generic
Name Purpose Number

of Args Argument Type Result
Type

ALL Determine if all
array values are
true

1 LOGICAL LOGICAL

2 LOGICAL, INTEGER LOGICAL

ANY Determine if any
array value is
true

1 LOGICAL LOGICAL

2 LOGICAL, INTEGER LOGICAL

COUNT Count true val-
ues in array

1 LOGICAL INTEGER

2 LOGICAL, INTEGER INTEGER

Fortran Intrinsics

190

MAXLOC Determine posi-
tion of array ele-
ment with
maximum value

1 INTEGER INTEGER

2 INTEGER, LOGICAL INTEGER

2 INTEGER, INTEGER INTEGER

3 INTEGER, INTEGER, LOGICAL INTEGER

1 REAL INTEGER

2 REAL, LOGICAL INTEGER

2 REAL, INTEGER INTEGER

3 REAL, INTEGER, LOGICAL INTEGER

MAXVAL Determine max-
imum value of
array elements

1 INTEGER INTEGER

2 INTEGER, LOGICAL INTEGER

2 INTEGER, INTEGER INTEGER

3 INTEGER, INTEGER, LOGICAL INTEGER

1 REAL REAL

2 REAL, LOGICAL REAL

2 REAL, INTEGER REAL

3 REAL, INTEGER, LOGICAL REAL

Generic
Name Purpose Number

of Args Argument Type Result
Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

191

MINLOC Determine posi-
tion of array ele-
ment with
minimum value

1 INTEGER INTEGER

2 INTEGER, LOGICAL INTEGER

2 INTEGER, INTEGER INTEGER

3 INTEGER, INTEGER, LOGICAL INTEGER

1 REAL INTEGER

2 REAL, LOGICAL INTEGER

2 REAL, INTEGER INTEGER

3 REAL, INTEGER, LOGICAL INTEGER

MINVAL Determine mini-
mum value of
array elements

1 INTEGER INTEGER

2 INTEGER, LOGICAL INTEGER

2 INTEGER, INTEGER INTEGER

3 INTEGER, INTEGER, LOGICAL INTEGER

1 REAL REAL

2 REAL, LOGICAL REAL

2 REAL, INTEGER REAL

3 REAL, INTEGER, LOGICAL REAL

PRODUCT Calculate the
product of the
elements of an
array

1 NUMERIC NUMERIC

2 NUMERIC, LOGICAL NUMERIC

2 NUMERIC, INTEGER NUMERIC

3 NUMERIC, INTEGER, LOGICAL NUMERIC

Generic
Name Purpose Number

of Args Argument Type Result
Type

Fortran Intrinsics

192

SUM Calculate the
sum of the ele-
ments of an
array

1 NUMERIC NUMERIC

2 NUMERIC, LOGICAL NUMERIC

2 NUMERIC, INTEGER NUMERIC

3 NUMERIC, INTEGER, LOGICAL NUMERIC

Generic
Name Purpose Number

of Args Argument Type Result
Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

193

Table 6-9: Fortran 90/95 String Construction Functions

Table 6-10: Fortran 90/95 Array Construction/Manipulation Functions

Generic
Name Purpose Number

of Args Argument Type Result Type

REPEAT Concatenate copies
of a string

2 CHARACTER, INTEGER CHARACTER

TRIM Remove trailing
blanks from a string

1 CHARACTER CHARACTER

Generic
Name Purpose Number

of Args Argument Type Result
Type

CSHIFT Perform cir-
cular shift on
array

2 ARRAY, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

3 ARRAY, INTEGER, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

Fortran Intrinsics

194

EOSHIFT Perform end-
off shift on
array

2 ARRAY, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

3 ARRAY, INTEGER, any*** 'any, any,
LOGICAL' on page 196 ***

ARRAY***
'any, any,
LOGICAL'
on page
196 ***

3 ARRAY, INTEGER, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

4 ARRAY, INTEGER, any*** 'any, any,
LOGICAL' on page 196 ***, INTEGER

ARRAY***
'any, any,
LOGICAL'
on page
196 ***

MERGE Merge two
arguments
based on logi-
cal mask

3 any, any1, LOGICAL any***
'any, any,
LOGICAL'
on page
196 ***

Generic
Name Purpose Number

of Args Argument Type Result
Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

195

PACK Pack array
into rank-one
array

2 ARRAY, LOGICAL ARRAY***
'any, any,
LOGICAL'
on page
196 ***

3 ARRAY, LOGICAL, VECTOR*** 'any,
any, LOGICAL' on page 196 ***

ARRAY***
'any, any,
LOGICAL'
on page
196 ***

RESHAPE Change the
shape of an
array

2 ARRAY, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

3 ARRAY, INTEGER, ARRAY*** 'any, any,
LOGICAL' on page 196 ***

ARRAY***
'any, any,
LOGICAL'
on page
196 ***

3 ARRAY, INTEGER, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

4 ARRAY, INTEGER, ARRAY*** 'any, any,
LOGICAL' on page 196 ***, INTEGER

ARRAY***
'any, any,
LOGICAL'
on page
196 ***

Generic
Name Purpose Number

of Args Argument Type Result
Type

Fortran Intrinsics

196

SPREAD Replicates an
array by add-
ing a dimen-
sion

3 any, INTEGER, INTEGER ARRAY***
'any, any,
LOGICAL'
on page
196 ***

TRANS-
POSE

Transpose an
array of rank
two

1 ARRAY ARRAY***
'any, any,
LOGICAL'
on page
196 ***

UNPACK Unpack a
rank-one
array into an
array of mul-
tiple dimen-
sions

3 VECTOR, LOGICAL, ARRAY*** 'any,
any, LOGICAL' on page 196 ***

ARRAY***
'any, any,
LOGICAL'
on page
196 ***

1. Must be of the same type as the first argument.

Generic
Name Purpose Number

of Args Argument Type Result
Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

197

Table 6-11: Fortran 90/95 General Inquiry Functions

Table 6-12: Fortran 90/95 Numeric Inquiry Functions

Generic
Name Purpose Number

of Args Argument Type Result
Type

ASSOCIATED Determine association
status

12 POINTERPOINTER, TAR-
GET

LOGICAL-
LOGICAL

KIND Determine argument’s
kind

1 any intrinsic type INTEGER

PRESENT Determine presence of
optional argument

1 any LOGICAL

Generic Name Purpose Number
of Args Argument Type Result

Type

DIGITS Determine num-
ber of significant
digits

1 INTEGER INTEGER

1 REAL INTEGER

EPSILON Smallest represent-
able number

1 REAL REAL

HUGE Largest represent-
able number

1 INTEGER INTEGER

1 REAL REAL

MAXEXPONENT Value of maxi-
mum exponent

1 REAL INTEGER

MINEXPONENT Value of minimum
exponent

1 REAL INTEGER

PRECISION Decimal precision 1 REAL INTEGER

1 COMPLEX INTEGER

Fortran Intrinsics

198

RADIX Base of model 1 INTEGER INTEGER

1 REAL INTEGER

RANGE Decimal exponent
range

1 INTEGER INTEGER

1 REAL INTEGER

1 COMPLEX INTEGER

SELECTED_INT_KIND Kind type titleme-
ter in range

1 INTEGER INTEGER

SELECTED_REAL_KIN
D

Kind type titleme-
ter in range

1 INTEGER INTEGER

2 INTEGER, INTEGER INTEGER

TINY Smallest represent-
able positive num-
ber

1 REAL REAL

Generic Name Purpose Number
of Args Argument Type Result

Type

FORTRAN 77 and Fortran 90/95 Intrinsics by Category

199

Table 6-13: Fortran 90/95 Array Inquiry Functions

Table 6-14: Fortran 90/95 String Inquiry Function

Table 6-15: Fortran 90/95 Subroutines

Generic
Name Purpose Number

of Args Argument Type Result
Type

ALLOCATED Determine if array is allo-
cated

1 ARRAY LOGICAL

LBOUND Determine lower bounds 1 ARRAY INTEGER

2 ARRAY, INTEGER INTEGER

SHAPE Determine shape 1 any INTEGER

SIZE Determine number of ele-
ments

1 ARRAY INTEGER

2 ARRAY, INTEGER INTEGER

UBOUND Determine upper bounds 1 ARRAY INTEGER

2 ARRAY, INTEGER INTEGER

Generic Name Purpose Number
of Args Argument Type Result Type

LEN Length of string 1 CHARACTER INTEGER

Generic Name Purpose Number
of Args Argument Type

CPU_TIME Returns processor
time

1 REAL (OUT)

Fortran Intrinsics

200

DATE_AND_TIME Returns date and
time

4 (optional) DATE (CHARACTER, OUT)

TIME (CHARACTER, OUT)

ZONE (CHARACTER, OUT)

VALUES (INTEGER, OUT)

RANDOM_NUMBER Generate pseudo-
random numbers

1 REAL (OUT)

RANDOM_SEED Set or query
pseudo-random
number generator

0

1 SIZE (INTEGER, OUT)

1 PUT (INTEGER ARRAY, IN)

1 GET (INTEGER ARRAY, OUT)

SYSTEM_CLOCK Query real time
clock

3 (optional) COUNT (INTEGER, OUT)

COUNT_RATE (INTEGER, OUT)

COUNT_MAX (INTEGER, OUT)

Generic Name Purpose Number
of Args Argument Type

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

201

Table 6-16: Fortran 90/95 Transfer Function

Table 6-17: Miscellaneous Functions

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

This section contains descriptions of each FORTRAN 77 and Fortran 90/95 intrinsic supported by the
PGF77 and PGF95 compilers. Intrinsics and subroutines are listed alphabetically.

This section contains descriptions of each FORTRAN 77 and Fortran 90/95 intrinsic supported by the
PGF77, PGF95 and PGHPF compilers. Intrinsics and subroutines are listed alphabetically.

ABS 77

Determine the absolute value of the supplied argument.

Synopsis

ABS(A)

Generic
Name Purpose Number

of Args Argument Type Result Type

TRANSFER Change type but main-
tain bit representation

23 any, any any1

1. Must be of the same type as the second argument.

3 any, any, INTEGER

Generic
Name Purpose Lang Number

of Args
Argument

Type Result Type

LOC Return address of argu-
ment

F77 1 NUMERIC INTEGER

NULL Assign disassociated sta-
tus

F95 0 POINTER

1 POINTER POINTER

Fortran Intrinsics

202

Argument

The argument A must be of type integer, real, or complex.

Return Value

The return type for integer is integer, for real is real, and for complex is real.

ACHAR 90

Return the character in the ASCII collating position specified by the argument.

Synopsis

ACHAR(I)

Argument

The argument I must be of type integer.

Return Value

A single character.

ACOS 77

Return the arccosine of the specified value.

Synopsis

ACOS(X)

Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in radians.

ACOSD 77

Return the arccosine (in degrees) of the specified value.

Synopsis

ACOSD(X)

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

203

Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in degrees.

ADJUSTL 90

Adjust string to the left, removing all leading blanks and inserting trailing blanks.

Synopsis

ADJUSTL(STR)

Arguments

The argument STR is the string to be adjusted.

Return Value

String of same length and kind as the argument with leading blanks removed and the same number of
trailing blanks added.

ADJUSTR 90

Adjust string to the right, removing all trailing blanks and inserting leading blanks.

Synopsis

ADJUSTR(STR)

Arguments

The argument STR is the string to be adjusted.

Return Value

String of same length and kind as the argument with trailing blanks removed and the same number
of leading blanks added.

AIMAG 77

Determine the value of the imaginary part of a complex number.

Fortran Intrinsics

204

Synopsis

AIMAG(Z)

Arguments

The argument Z must be complex.

Return Value

A real value representing the imaginary part of the supplied argument.

AINT 77

Truncate the supplied value to a whole number.

Synopsis

AINT(A [,KIND])

Arguments

The argument A is of type real. The optional KIND argument is an integer kind.

Return Value

A real value that is equal to the largest integer that is not greater than the supplied argument. If the
KIND argument is present, the result is of that kind.

ALL 90

Determine if all the values in the supplied argument are logical true.

Synopsis

ALL(MASK [,DIM])

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the dimension
of the array MASK to check.

Return Value

If no DIM argument is present, the return value is a logical scalar that is true only if all values of
MASK are true.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

205

If the DIM argument is present and if MASK has rank one, then the return value is the same as
ALL(MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an array
that has rank n-1, where n is the rank of MASK. The return value is defined recursively as the value of
ALL for each extent of the dimension DIM (refer to the Fortran 95 Handbook for a more detailed
explanation).

ALLOCATED 90

Determine if the supplied allocatable array is currently allocated.

Synopsis

ALLOCATED(ARRAY)

Argument

The argument ARRAY is an allocatable array.

Return Value

Returns a logical scalar indicating whether the array is allocated.

AND § 77

Performs a logical AND on corresponding bits of the arguments.

Synopsis

AND(M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

ANINT 77

Return the nearest whole number to the supplied argument.

Fortran Intrinsics

206

Synopsis

ANINT(A [,KIND])

Arguments

The argument A is a real number. The optional argument KIND is a kind parameter.

Return Value

The result is a real. The value is AINT(A+0.5) if A is > 0 and AINT(A-0.5) if A is < 0. If KIND is present,
the result is of type KIND.

ANY 90

Determine if any value in the supplied argument MASK is true.

Synopsis

ANY(MASK [,DIM])

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the dimension
of the array MASK to check.

Return Value

If no DIM argument is present, the return value is a logical scalar that is true if any element of MASK
is true.

If the DIM argument is present and if MASK has rank one, then the return value is the same as
ANY(MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an array
that has rank n-1, where n is the rank of MASK. The return value is defined recursively as the value of
ANY for each extent of the dimension DIM (refer to The Fortran 95 Handbook for a more detailed
explanation)

ASIN 77

Return the arcsine of the specified value.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

207

Synopsis

ASIN(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in radians.

ASIND 77

Return the arcsine (in degrees) of the specified value.

Synopsis

ASIND(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in degrees.

ASSOCIATED 90

Determines the association status of the supplied argument or determines if the supplied pointer is
associated with the supplied target.

Synopsis

ASSOCIATED(POINTER [,TARGET])

Arguments

The POINTER argument is a pointer of any type. The optional argument TARGET is a pointer or a
target. If it is a pointer it must not be undefined.

Return Value

If TARGET is not supplied the function returns logical true if POINTER is associated with a target and
false otherwise.

Fortran Intrinsics

208

If TARGET is present and is a target, then the function returns true if POINTER is associated with
TARGET and false otherwise.

If TARGET is present and is a pointer, then the function returns true if POINTER and TARGET are
associated with the same target and false otherwise.

ATAN 77

Return the arctangent of the specified value.

Synopsis

ATAN(X)

Argument

The argument X must be of type real.

Return Value

The real value representing the arctangent in radians.

ATAN2 77

Return the arctangent of the specified value.

Synopsis

ATAN2(Y, X)

Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in radians. The result is the
principal value of the nonzero complex number (X,Y).

ATAN2D 77

Return the arctangent (in degrees) of the specified value.

Synopsis

ATAN2D(Y, X)

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

209

Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in degrees. The result is the
principal value of the nonzero complex number (X,Y).

ATAND 77

Return the arctangent (in degrees) of the specified value.

Synopsis

ATAND(X)

Argument

The argument X must be of type real.

Return Value

The real value representing the arctangent in degrees.

BIT_SIZE 90

Return the number of bits (the precision) of the integer argument. This function uses the standard
Fortran 90/95 bit model defined in The Fortran 95 Handbook.

Synopsis

BIT_SIZE(I)

Argument

The argument I must be of type integer.

Return Value

Returns an integer.

BTEST 77

Tests the binary value of a bit in a specified position of an integer argument. This function uses the
standard Fortran 90/95 bit model defined in The Fortran 95 Handbook.

Fortran Intrinsics

210

Synopsis

BTEST(I, POS)

Arguments

The argument I must be of type integer. The argument POS must be an integer with a value less than
or equal to the value BIT_SIZE(I).

Return Value

Returns a logical value representing whether the bit in position POS is true or false (0 or 1).

CEILING 90

Return the least integer greater than or equal to the supplied real argument.

Synopsis

CEILING(A [,KIND])

Argument

The argument A is a real value. The optional argument KIND is a kind parameter and was added to
CEILING in Fortran 95.

Return Value

The return value is an integer. If KIND is present, the result is of type KIND.

CHAR 77

Returns the character in the specified collating sequence.

Synopsis

CHAR(I [,KIND])

Arguments

The argument I is of type integer, specifying the character position to return. The argument KIND is
optional.

Return Value

A character.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

211

CMPLX 77

Convert the supplied argument or arguments to complex type.

Synopsis

CMPLX(X [,Y][,KIND])

Arguments

The argument X is of type integer, real, or complex. The optional argument Y is of type integer or real.
If X is complex, Y must not be present. The optional argument KIND is the kind for the return value.

Return Value

Returns a complex number with the value specified by the arguments converted to a real part and a
complex part. If the KIND parameter is not supplied, the KIND is the same as the KIND for the default
complex.

COMPL § 77

Performs a logical complement on the argument.

Synopsis

COMPL(M)

Arguments

The argument M may be of any type except for character and complex.

Return Value

The return value is typeless.

CONJG 77

Return the conjugate of the supplied complex number.

Synopsis

CONJG(Z)

Argument

The argument Z is a complex number.

Fortran Intrinsics

212

Return Value

The return value is the same type and kind as Z.

COS 77

Return the cosine of the specified value.

Synopsis

COS(X)

Argument

The argument X must be of type real or complex.

Return Value

A real value of the same kind as the argument. The return value for a real argument is in radians, or
if complex, the real part is a value in radians.

COSD 77

Return the cosine (in degrees) of the specified value.

Synopsis

COSD(X)

Argument

The argument X must be of type real or complex.

Return Value

A real value of the same kind as the argument. The return value for a real argument is in degrees, or if
complex, the real part is a value in degrees.

COSH 77

Return the hyperbolic cosine of the specified value.

Synopsis

COSH(X)

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

213

Argument

The argument X must be of type real.

Return Value

A real value.

COUNT 90

Return the number of true elements in the supplied logical argument (array), along the specified
dimension if the optional argument is present.

Synopsis

COUNT(MASK [,DIM])

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the dimension
of the array MASK to count.

Return Value

If no DIM argument is present, the return value is an integer that is the count of true values in MASK.

If the DIM argument is present and if MASK has rank one, then the return value is the same as
COUNT(MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an array
that has rank n-1, where n is the rank of MASK. The return value is defined recursively as the value of
COUNT for each extent of the dimension DIM (refer to The Fortran 95 Handbook for a more detailed
explanation).

CPU_TIME 95

This is a non-elemental intrinsic subroutine that returns the processor time. For a more detailed
explanation, refer to Fortran 95 Explained.

Synopsis

call cpu_time (TIME)

Fortran Intrinsics

214

Arguments

The argument TIME is a scalar real that is assigned a processor-dependent approximation of processor
time.

Return Value

The returned value in seconds, or a processor-dependent value if there is no clock.

CSHIFT 90

Perform a circular shift on the specified array.

Synopsis

CSHIFT(ARRAY, SHIFT [,DIM])

Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument SHIFT is an
integer or an array of integers with rank n-1 where n is the rank of ARRAY. The optional argument
DIM is an integer representing the dimension to shift.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

DATE_AND_TIME 90

This is a subroutine that returns the date and time.

Synopsis

DATE_AND_TIME([DATE] [,TIME] [,ZONE] [,VALUES])

Arguments

All of the arguments are optional. The DATE argument is of type default character. It must be at least 8
characters long. The argument returns the value CCYYMMDD where CC is the century, YY is the year,
MM is the month, and DD is the day.

The argument TIME is of type default character. It must be at least 10 characters long. It has the form
hhmmss.sss, where hh is the hour, mm is the minute, and ss.sss is the seconds and milliseconds.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

215

The argument ZONE is of type default character. It must be at least 5 characters long. It has the form
+– hhmm where hh and mm are the hours and minutes that the local time zone differs from
universal time (UTC).

The argument VALUES must be an array of type default integer. It has the following eight values:

VALUES(1)holds the year

VALUES(2)holds the month

VALUES(3)holds the day of the month

VALUES(4)holds the time difference with respect to UTC

VALUES(5)holds the hour of the day

VALUES(6)holds the minutes of the hour

VALUES(7)holds the seconds of the minute

VALUES(8)holds the milliseconds of the second,

 in the range 0 to 999

Return Value

As this is a subroutine, the values are returned in the arguments.

DBLE 77

Convert to double precision real.

Synopsis

DBLE(A)

Argument

The argument A must be of type integer, real, or complex.

Return Value

If A is of type integer or real, the return value is the value converted to a double precision real. If A is of
type complex, the return value is the double precision value of the real part of the complex argument.

DCMPLX 77

Convert the supplied argument or arguments to double complex type.

Synopsis

DCMPLX(X [,Y])

Fortran Intrinsics

216

Arguments

The argument X is of type integer, real, or complex. The optional argument Y is of type integer or real.
If X is complex, Y must not be present.

Return Value

Returns a double complex number with the value specified by the arguments converted to a real part
and a complex part.

DIGITS 90

Returns the number of significant digits in the model representing the argument.

Synopsis

DIGITS(X)

Argument

The argument X is of type integer or real.

Return Value

An integer value representing the number of digits in the model representing the specified kind.

DIM 77

This intrinsic returns the difference X-Y if the value is positive, otherwise it returns 0.

Synopsis

DIM(X, Y)

Arguments

X must be of type integer or real. Y must be of the same type and kind as X.

Return Value

The result is the same type and kind as X with the value X-Y if X>Y, otherwise zero.

DOT_PRODUCT 90

Perform a dot product on two vectors (arrays).

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

217

Synopsis

DOT_PRODUCT(VECTOR_A, VECTOR_B)

Arguments

VECTOR_A must be an array of rank one of type numeric (integer, real, complex) or logical.
VECTOR_B must be numeric if VECTOR_A is numeric, or logical if VECTOR_A is logical. It must have
the same rank and size as ARRAY_A.

Return Value

The dot product. For VECTOR_A of integer or real, the value is SUM(VECTOR_A * VECTOR_B). For
complex, the value is SUM(CONJG(VECTOR_A) * VECTOR_B). For logical, the value is
ANY(VECTOR_A .AND. VECTOR_B).

DPROD 90

Double precision real product.

Synopsis

DPROD(X,Y)

Arguments

Both arguments X and Y must be of type default real.

Return Value

The return value is a double precision real that is the product of X and Y.

EOSHIFT 90

Perform an end-off shift on the specified array.

Synopsis

EOSHIFT(ARRAY, SHIFT [,BOUNDARY] [,DIM])

Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument SHIFT is an
integer or an array of integers with rank n-1 where n is the rank of ARRAY. The optional argument
BOUNDARY is of the same type as the array, it may be scalar or of rank n-1 where n is the rank of

Fortran Intrinsics

218

ARRAY. The optional argument BOUNDARY is the value to fill in the shifted out positions. By default it
has the following values for integer 0, for real 0.0, for complex (0.0,0.0), for logical false, for character
the default is blank characters.

The optional argument DIM represents the dimension of ARRAY to shift.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

EPSILON 90

Return the smallest number representable in the kind of the supplied argument.

Synopsis

EPSILON(X)

Argument

The argument X must be of type real.

Return Value

A very small number in the specified real kind.

EQV § 77

Performs a logical exclusive NOR on the arguments.

Synopsis

COMPL(M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

EXP 77

Exponential function.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

219

Synopsis

EXP(X)

Argument

The argument X must be of type real or complex.

Return Value

The value returned is of the same type as the argument. It has the value ex .

EXPONENT 90

Return the exponent part of a real number.

Synopsis

EXPONENT(X)

Argument

The argument X is a real number.

Return Value

The return value is an integer which has the value of the exponent part of the value of X. If the
exponent is zero, the function returns zero. If the exponent is too large to be defined as an integer, the
result is undefined.

FLOOR 90

Return the greatest integer less than or equal to the supplied real argument.

Synopsis

FLOOR(A [,KIND])

Argument

The argument A is a real value. The optional argument KIND is a kind parameter and was added to
FLOOR in Fortran 95.

Return Value

The return value is an integer. If KIND is present, the result is of type KIND.

Fortran Intrinsics

220

FRACTION 90

Return the fractional part of a real number.

Synopsis

FRACTION(X)

Argument

The argument X is a real number.

Return Value

The return value is an integer which has the value of the fractional part of the value of X. If the
fraction value is zero, the function returns zero.

HUGE 90

Return the largest number representable in the kind of the supplied argument.

Synopsis

HUGE(X)

Argument

The argument X must be of type integer or real.

Return Value

A value of the same type as the argument with the maximum value possible.

IACHAR 90

Returns the position of the character in the ASCII collating sequence.

Synopsis

IACHAR(C)

Argument

The argument C must be of type character.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

221

Return Value

An integer representing the character position.

IAND 77

Perform a bit-by-bit logical AND on the arguments.

Synopsis

IAND(I, J)

Arguments

The arguments I and J must be of type integer of the same kind.

Return Value

The return value is an integer value representing a bit-by-bit logical AND of the bits in the two integer
arguments.

IBCLR 77

Clears one bit to zero.

Synopsis

IBCLR(I, POS)

Arguments

I is an integer. POS is a nonnegative integer less than BIT_SIZE(I).

Return Value

The return value is of the same type as I with a value that is the same as I except the bit in position
POS is set to 0.

IBITS 77

Extracts a sequence of bits.

Synopsis

IBITS(I, POS, LEN)

Fortran Intrinsics

222

Arguments

I is an integer. POS is a nonnegative integer and POS + LEN must be less than or equal to
BIT_SIZE(I). LEN is of type integer and is nonnegative.

Return Value

The return value is of the same type as I with a value that is the sequence of LEN bits in I beginning at
position POS, right-adjusted and with all other bits set to zero.

IBSET 77

Set one bit to one.

Synopsis

IBSET(I, POS)

Arguments

I is an integer. POS is a nonnegative integer less than BIT_SIZE(I).

Return Value

The return value is of the same type as I with a value that is the same as I except the bit in position
POS is set to 1.

ICHAR 90

Returns the position of a character in the character set's collating sequence.

Synopsis

ICHAR(C)

Argument

The argument C must be of type character and length one.

Return Value

An integer representing the character position.

IEOR 77

Perform a bit-by-bit logical exclusive OR on the arguments.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

223

Synopsis

IEOR(I, J)

Argument

The arguments I and J must be of type integer of the same kind.

Return Value

The return value is an integer value representing a bit-by-bit logical exclusive OR of the bits in the two
integer arguments.

IINT § 77

Converts a value to a short integer type.

Synopsis

IINT(A)

Arguments

The argument A is of type integer, real, or complex.

Return Value

The return value is the short integer value of the supplied argument. For a real number, if the absolute
value of the real is less than 1, the return value is 0. If the absolute value is greater than 1, the result is
the largest short integer that does not exceed the real value. If argument is a complex number, the
return value is the result of applying the real conversion to the real part of the complex number.

INDEX 90

Returns the starting position of a substring within a string.

Synopsis

INDEX(STRING, SUBSTRING [,BACK])

Arguments

The argument STRING must be of type character string. The argument SUBSTRING must be of type
character string with the same kind as STRING. The optional argument BACK must be of type logical.

Fortran Intrinsics

224

Return Value

The function returns an integer. If BACK is absent or false, the result is the starting point of the first
matching SUBSTRING within STRING. Zero is returned if no match is found. 1 is returned if the
SUBSTRING has zero length.

If BACK is present with the value true, the result is the last matching substring in string, or zero if no
match is found.

ININT § 77

Returns the nearest short integer to the real argument.

Synopsis

ININT(A)

Arguments

The argument A must be a real.

Return Value

The result is a short integer with value (A + .5 * SIGN(A)).

INT 77

Converts a value to integer type.

Synopsis

INT(A [,KIND])

Arguments

The argument A is of type integer, real, or complex. The optional argument KIND must be a scalar
integer that is a valid kind for the specified type. The KIND argument is not allowed by pgf77.

Return Value

The return value is the integer value of the supplied argument. For a real number, if the absolute
value of the real is less than 1, the return value is 0. If the absolute value is greater than 1, the result is
the largest integer that does not exceed the real value. If the argument is a complex number, the
return value is the result of applying the real conversion to the real part of the complex number.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

225

INT8 § 77

Converts a real value to a long integer type.

Synopsis

INT8(A)

Arguments

The argument A is of type real.

Return Value

The return value is the long integer value of the supplied argument.

IOR 77

Perform a bit-by-bit logical OR on the arguments.

Synopsis

IOR(I, J)

Argument

The arguments I and J must be of type integer of the same kind.

Return Value

The return value is an integer value representing a bit-by-bit logical OR of the bits in the two integer
arguments.

ISHFT 77

Perform a logical shift.

Synopsis

ISHFT(I, SHIFT)

Arguments

I and SHIFT are integer values. The absolute value of SHIFT must be less than or equal to
BIT_SIZE(I).

Fortran Intrinsics

226

Return Value

The return value is of the same type and kind as the argument I. It is the value of the argument I
logically shifted by SHIFT bits. If SHIFT is positive, the shift is to the left. If SHIFT is negative, the shift
is to the right. Zeroes are shifted in at the ends and the bits shifted out are lost.

ISHFTC 77

Perform a circular shift of the rightmost bits.

Synopsis

ISHIFTC(I, SHIFT [,SIZE])

Arguments

I and SHIFT are integer values. The absolute value of SHIFT must be less than or equal to the optional
argument SIZE. If present, SIZE must not exceed the value BIT_SIZE(I); if SIZE is not present, the
function acts as if it were present with the value BIT_SIZE(I).

Return Value

The result is the value of the sub-group of SIZE bits shifted by SHIFT positions within the sub-group,
all other bits remain the same and remain in the same position. If the SIZE argument is not present,
the circular shift is over the complete group of bits and all of the bits are shifted by SHIFT positions. If
SHIFT is positive, the shift is to the left. If SHIFT is negative, the shift is to the right.

IZEXT § 77

Zero-extend the argument.

Synopsis

IZEXT(A)

Arguments

The argument A is of type logical or integer.

Return Value

The return value is a zero-extended short integer of the argument.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

227

JINT § 77

Converts a value to an integer type.

Synopsis

JINT(A)

Arguments

The argument A is of type integer, real, or complex.

Return Value

The return value is the integer value of the supplied argument. For a real number, if the absolute
value of the real is less than 1, the return value is 0. If the absolute value is greater than 1, the result is
the largest integer that does not exceed the real value. If argument is a complex number, the return
value is the result of applying the real conversion to the real part of the complex number.

JNINT § 77

Returns the nearest integer to the real argument.

Synopsis

JNINT(A)

Arguments

The argument A must be a real.

Return Value

The result is an integer with value (A + .5 * SIGN(A)).

KIND 90

Returns the kind of the supplied argument.

Synopsis

KIND(X)

Argument

The argument X is of any intrinsic type.

Fortran Intrinsics

228

Return Value

The result is an integer representing the kind type parameter of X.

KNINT § 77

Returns the nearest integer to the real argument.

Synopsis

KNINT(A)

Arguments

The argument A must be a real.

Return Value

The result is a long integer with value (A + .5 * SIGN(A)).

LBOUND 90

Returns the lower bounds of an array, or the lower bound for the specified dimension.

Synopsis

LBOUND(ARRAY [,DIM])

Arguments

The argument ARRAY is an array of any type. The optional argument DIM is a scalar that has the
value of a valid dimension of the array (valid dimensions are between the values 1 and n where n is
the rank of the array).

Return Value

The return value is an integer, or an array of rank one and size n, where n is the rank of the argument
ARRAY. For the function with a DIM argument, the return value is the value of the lower bound in the
specified dimension. For the function with no DIM supplied, the return value is an array with all the
lower bounds of ARRAY.

LEN 90

Returns the length of the supplied string.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

229

Synopsis

LEN(STRING)

Argument

The argument STRING is a character string or an array.

Return Value

The return value is an integer that represents the length of the scalar string supplied, or the length of
an element of STRING if STRING is an array.

LEN_TRIM 90

Returns the length of the supplied string minus the number of trailing blanks.

Synopsis

LEN_TRIM(STRING)

Arguments

The argument STRING is a character string.

Return Value

The return value is an integer that represents the length of the scalar string minus the number of
trailing blanks, if any.

LGE 90

Test the supplied strings to see if the first string STRING_A is lexically greater than or equal to the
second string STRING_B. A string is lexically greater than another string if the first string follows the
second string alphabetically.

Synopsis

LGE(STRING_A, STRING_B)

Argument

The arguments STRING_A and STRING_B are of type default character.

Fortran Intrinsics

230

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

LGT 90

Test the supplied strings to see if the first string STRING_A is lexically greater than the second string
STRING_B. A string is lexically greater than another string if the first string follows the second string
alphabetically.

Synopsis

LGT(STRING_A, STRING_B)

Argument

The arguments STRING_A and STRING_B are of type default character.

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

LLE 90

Test the supplied strings to see if the first string STRING_A is lexically less than or equal to the second
string STRING_B. A string is lexically less than another string if the first string precedes the second
string alphabetically.

Synopsis

LLE(STRING_A, STRING_B)

Argument

The arguments STRING_A and STRING_B are of type default character.

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

231

LLT 90

Test the supplied strings to see if the first string STRING_A is lexically less than the second string,
STRING_B. A string is lexically less than another string if the first string precedes the second string
alphabetically.

Synopsis

LLT(STRING_A, STRING_B)

Argument

The arguments STRING_A and STRING_B are of type default character.

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

LOC 77

Return the 32-bit address of a data item.

Synopsis

LOC(X)

Argument

The argument X is of type integer, real or complex.

Return Value

The return value is an integer representing the address of the argument.

LOG 77

Function returns the natural logarithm.

Synopsis

LOG(X)

Fortran Intrinsics

232

Argument

The argument X is of type real or complex. If X is real, it must be greater than 0. If X is complex, it
must not be equal to zero.

Return Value

The return value is the natural log (base e) of X.

LOG10 77

Function returns the common logarithm.

Synopsis

LOG10(X)

Argument

The argument X is of type real and must be greater than 0.

Return Value

The return value is the common log (base 10) of X.

LOGICAL 90

Convert a logical value to the specified logical kind.

Synopsis

LOGICAL(L [,KIND])

Arguments

The argument L is the logical value to convert. The optional argument KIND must be a scalar integer
that is a valid kind for the specified type.

Return Value

Returns a logical value equal to the logical value L. If KIND is specified, the kind type parameter of the
return value is that of KIND, otherwise it is default logical.

LSHIFT § 77

Perform a logical shift to the left.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

233

Synopsis

LSHIFT(I, SHIFT)

Arguments

I and SHIFT are integer values.

Return Value

The return value is of the same type and kind as the argument I. It is the value of the argument I
logically shifted left by SHIFT bits.

MATMUL 90

Perform a matrix multiply of numeric or logical matrices.

Synopsis

MATMUL(MATRIX_A, MATRIX_B)

Arguments

The argument MATRIX_A must be numeric (integer, real, or complex) or logical, and have a rank of
one or two. The argument MATRIX_B must be numeric (integer, real, or complex) or logical, and have
a rank of one or two. If MATRIX_A has rank one, then MATRIX_B must have rank 2. If MATRIX_B has
rank one, then MATRIX_A must have rank 2. The size of the first dimension of MATRIX_B must equal
the size of the last dimension of MATRIX_A.

Return Value

A matrix representing the value of the matrix multiplied arguments. There are three possible result
shapes: MATRIX_A(n,m) and MATRIX_B(m,k) gives a result (n,k) matrix. MATRIX_A(m) and
MATRIX_B(m,k) gives a result (k), MATRIX_A(n,m) and MATRIX_B(m) gives a result(n).

MAX 77

Return the maximum value of the supplied arguments.

Synopsis

MAX(A1, A2 [,A3,...])

Fortran Intrinsics

234

Arguments

Any arguments after the first two are optional. The arguments must all have the same kind and they
must be integer or real.

Return Value

The return value is the same as the type and kind of the arguments. It has the value of the largest
argument.

MAXEXPONENT 90

Returns the value of the maximum exponent for the type and the kind supplied.

Synopsis

MAXEXPONENT(X)

Argument

The argument X must be a scalar or an array of type real.

Return Value

The return value is an integer. It contains the value of the largest exponent in the specified kind.

MAXLOC 90

Determine the first position in the specified array that has the maximum value of the values in the
array. The test elements may be limited by a dimension argument or by a logical mask argument.

Synopsis

MAXLOC(ARRAY [,DIM] [,MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM, added in
Fortran 95, is of type integer. The optional argument MASK must be of type logical and must have the
same shape as ARRAY. If only two arguments are supplied, the type of the second argument is used to
determine if it represents DIM or MASK.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

235

Return Value

The return value is an integer array of rank 1with size equal to the number of dimensions in ARRAY.
The return values represent the positions of the first element in each dimension that is the maximum
value of that dimension.

If the MASK parameter is present, the return value is the position of the first value that has the
maximum value of values in ARRAY, and that also has a true value in the corresponding MASK array.

When the DIM argument is supplied, the return value is an array that has a value of MAXLOC applied
recursively along the DIM dimensions of the array.

MAXVAL 90

Return the maximum value of the elements of the argument array. The test elements may be limited
by a dimension argument or by a logical mask argument.

Synopsis

MAXVAL(ARRAY [,DIM] [,MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM is a scalar
that has the value of a valid dimension of the array (valid dimensions are between the values 1 and n
where n is the rank of the array). The optional argument MASK must be of type logical and must have
the same shape as ARRAY. Fortran 95 has extended MAXVAL such that if only two arguments are
supplied, the type of the second argument is used to determine if it represents DIM or MASK.

Return Value

The return value is a scalar if no DIM argument is present, or has a rank of n-1 and has a shape
specified by all of the dimensions except the DIM argument dimension.

The return value is the value of the largest element of the array if no optional parameters are supplied.
If only the MASK parameter is supplied with the array, then the return value is the value that is the
maximum of the true elements of MASK.

When the DIM argument is supplied, the return value is an array that has a value of MAXVAL applied
recursively along the DIM dimensions of the array.

Fortran Intrinsics

236

MERGE 90

This function merges two arguments based on the value of a logical mask.

Synopsis

MERGE(TSOURCE, FSOURCE, MASK)

Arguments

TSOURCE is the source that is merged if the mask is true. FSOURCE is the source that is merged if the
mask is false. TSOURCE and FSOURCE must be of the same type and must have the same type
parameters (if they are arrays they must be conformable). MASK must be of type logical.

Return Value

The result has the same type and type parameters as the source arrays.

MIN 77

Return the minimum value of the supplied arguments.

Synopsis

MIN(A1, A2 [,A3,...])

Arguments

Any arguments after the first two are optional. The arguments must all have the same kind and they
must be integer or real.

Return Value

The return value is the same as the type and kind of the arguments. It has the value of the smallest
argument.

MINEXPONENT 90

Returns the value of the minimum exponent for the type and the kind supplied.

Synopsis

MINEXPONENT(X)

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

237

Argument

The argument X has type real and may be a scalar or an array.

Return Value

The return value is an integer. It contains the value of the smallest exponent in the specified kind.

MINLOC 90

Return the position of the element with the minimum value of the elements of the argument array.
The test elements may be limited by a dimension argument or by a logical mask argument.

Synopsis

MINLOC(ARRAY [,DIM] [,MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM, added in
Fortran 95, is of type integer. The optional argument MASK must be of type logical and must have the
same shape as ARRAY. If only two arguments are supplied, the type of the second argument is used to
determine if it represents DIM or MASK.

Return Value

The return value is an integer array of rank 1 and has a size equal to the number of dimensions in
ARRAY. The return value is the position of the first element that is the minimum value of the array.

If the MASK parameter is present, the return value is the position of the first value that has the
minimum value of values in ARRAY, and that also has a true value in the corresponding MASK array.

When the DIM argument is supplied, the return value is an array that has a value of MINLOC applied
recursively along the DIM dimensions of the array.

MINVAL 90

Return the minimum value of the elements of the argument array. The test elements may be limited
by a dimension argument or by a logical mask argument.

Synopsis

MINVAL(ARRAY [,DIM] [,MASK])

Fortran Intrinsics

238

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM is a scalar
that has the value of a valid dimension of the array (valid dimensions are between the values 1 and n
where n is the rank of the array). The optional argument MASK must be of type logical and must have
the same shape as ARRAY. Fortran 95 has extended MINVAL such that if only two arguments are
supplied, the type of the second argument is used to determine if it represents DIM or MASK.

Return Value

The return value is a scalar if no DIM argument is present, or has a rank of n-1 and has a shape
specified by all of the dimensions except the DIM argument dimension.

The return value is the value of the largest element of the array if no optional parameters are supplied.
If only the MASK parameter is supplied with the array, then the return value is the value that is the
minimum of the true elements of MASK.

When the DIM argument is supplied, the return value is an array that has a value of MINVAL applied
recursively along the DIM dimensions of the array.

MOD 77

Find the remainder.

Synopsis

MOD(A, P)

Arguments

The argument A must be an integer or a real. The argument P must be of the same type and kind as A.

Return Value

The return value is the same type as the argument A and has the value (A - INT(A/P) * P).

MODULO 90

Return the modulo value of the arguments.

Synopsis

MODULO(A, P)

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

239

Arguments

The argument A must be an integer or a real. The argument P must be of the same type and kind as A.

Return Value

The return value is the same type as the argument A. If A and P are of type real, the result is (A –
FLOOR(A/P) * P). If A and P are of type integer, the result is (A – FLOOR(A÷P) * P) where ÷ represents
ordinary mathematical division.

MVBITS 90

Copies a bit sequence from a source data object to a destination data object.

Synopsis

MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)

Arguments

All arguments have type integer. The arguments FROMPOS, LEN , and TOPOS must be nonnegative.
The TO argument must be a variable of type integer and have the same kind type parameter as the
FROM argument.

Return Value

MVBITS is a subroutine and has no return value; instead, the TO argument is modified. LEN bits
starting at FROMPOS in FROM are copied to TO at TOPOS. All other bits of TO remain unchanged.

NEAREST 90

Returns the nearest different machine representable number in a given direction.

Synopsis

NEAREST(X, S)

Arguments

The argument X is a real number. The argument S is a real number and not equal to zero.

Return Value

The return value is of the same type as X. It contains the value that is the closest possible different
machine representable number from X in the direction given by the sign of S.

Fortran Intrinsics

240

NEQV § 77

Performs a logical exclusive OR on the arguments.

Synopsis

COMPL(M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

NINT 77

Returns the nearest integer to the real argument.

Synopsis

NINT(A [,KIND])

Arguments

The argument A must be a real. The optional argument KIND specifies the kind of the result integer.

Return Value

The result is an integer. If A > 0, NINT(A) has the value is INT(A+0.5). If A is less than or equal to 0,
NINT(A) has the value INT(A-0.5).

NOT 77

Perform a bit-by-bit logical complement on the argument.

Synopsis

NOT(I)

Argument

The argument I must be of type integer.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

241

Return Value

The return value is an integer value representing a bit-by-bit logical complement of the bits in the
argument.

NULL 95

Fortran 95 added this transformational function. NULL gives the disassociated status to pointer
entities. For a more detailed explanation, refer to Fortran 95 Explained.

Synopsis

NULL([PTR])

Arguments

The optional argument PTR is a pointer of any type and may have any association status including
undefined.

Return Value

The return value is a disassociated pointer.

OR § 77

Performs a logical OR on each bit of the arguments.

Synopsis

OR(M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

PACK 90

Pack an array of any number of dimensions into an array of rank one.

Synopsis

PACK(ARRAY, MASK [,VECTOR])

Fortran Intrinsics

242

Arguments

The ARRAY argument is the array to be packed and may be of any type. The MASK argument is of type
logical and must be conformable with ARRAY. The optional argument VECTOR is of the same type as
ARRAY and has rank one.

Return Value

The return value is the packed array limited by the logical values in the array MASK. If VECTOR is
present its values are part of the result array only for those elements that have an element order
greater than the number of true elements in MASK. For further details, refer to the Fortran 95
Handbook.

PRECISION 90

Return the decimal precision of the real or complex argument.

Synopsis

PRECISION(X)

Argument

The argument X must be a real or complex number.

Return Value

The return value is an integer representing the decimal precision of the argument.

PRESENT 90

Determine if an optional argument is present.

Synopsis

PRESENT(A)

Argument

The argument A must be an optional argument in the procedure in which the intrinsic is called.

Return Value

A logical scalar. True if A is present and false otherwise.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

243

PRODUCT 90

Returns the product of the elements of the supplied array.

Synopsis

PRODUCT(ARRAY [,DIM] [,MASK])

Arguments

The ARRAY argument is an array of integer, real or complex type. The optional DIM argument is a
valid dimension (valid dimensions are between the values 1 and n where n is the rank of the array).
The optional MASK argument is of type logical and conformable with the supplied array. Fortran 95
has extended PRODUCT such that if only two arguments are supplied, the type of the second argument
is used to determine if it represents DIM or MASK.

Return Value

The return value is the product of the elements of ARRAY. If the optional DIM argument is present, the
product is for the specified dimension. If the optional MASK argument is present, the result is subject
to the logical mask supplied.

RADIX 90

Return the base of the model representing numbers of the type and kind of the argument.

Synopsis

RADIX(X)

Argument

The argument X is of type integer or real.

Return Value

The return value is an integer with the value of the radix (base) of the number system model of the
argument.

RANDOM_NUMBER 90

Returns one pseudorandom number or an array of pseudo-random numbers from the uniform
distribution over the range 0 x < 1.

Fortran Intrinsics

244

Synopsis

RANDOM_NUMBER(HARVEST)

Argument

The argument HARVEST must of type real. It is set to contain the resulting pseudorandom number or
array of pseudorandom numbers from the uniform distribution.

Return Value

RANDOM_NUMBER is a subroutine.

Description

The random number intrinsic generates a 46 bit lagged fibonacci pseudo-random sequence with a
short lag of 5 and a long lag of 17. For a given seed, including the default seed, the sequence generated
is independent of the platform and number of processors. Due to limitations of some platforms'
default integer type, the seed vector is of size 34. Only the least significant 23 bits of each element of
the seed array are used, thus a seed array returned or used is portable between platforms. For non-
degenerate seed arrays, the period of this generator is (217 - 1) * 245. If all the odd elements of the
seed array are even, the period will be shorter.

For the PGHPF compiler, the best performance on distributed arrays is for block distributions. The
higher the order of the first distributed dimension, the better the performance will be.

RANDOM_SEED 90

Restarts or queries the pseudorandom number generator for RANDOM_NUMBER.

Synopsis

RANDOM_SEED([SIZE] [,PUT] [,GET])

Arguments

The arguments SIZE, PUT and GET are optional. There must be one or no arguments. Multiple
arguments are not allowed. SIZE is an integer value representing the number of integers that the
processor uses to hold the value of the seed. PUT is an integer array of rank one and is used to set the
seed. GET is an integer array of rank one and is used to get the value of the seed.

Return Value

RANDOM_SEED is a subroutine.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

245

RANGE 90

Return the decimal exponent range for the type of number supplied as an argument.

Synopsis

RANGE(X)

Argument

The argument X must be of type integer, real, or complex.

Return Value

The result is an integer.

REAL 77

Convert the argument to real.

Synopsis

REAL(A [,KIND])

Arguments

The argument A must be of type integer, real, or complex. The optional argument KIND specifies the
kind type of the result.

Return Value

The result is a real number. For a complex argument, the imaginary part is ignored.

REPEAT 90

Concatenate copies of a string.

Synopsis

REPEAT(STRING, NCOPIES)

Arguments

The argument STRING must be a scalar of type character. The argument NCOPIES is an integer.

Fortran Intrinsics

246

Return Value

The return value is a character string that is NCOPIES times as long as STRING. It is the
concatenation of STRING NCOPIES times.

RESHAPE 90

Reconstructs an array with the specified shape using the elements of the source array.

Synopsis

RESHAPE(SOURCE, SHAPE [,PAD] [,ORDER])

Arguments

The argument SOURCE is an array of any type. The argument SHAPE is of type integer and has rank
one. It must not have more than 7 elements and no values can be negative. The optional argument
PAD must be the same size and type as SOURCE. The optional argument ORDER must be of type
integer and must have the same shape as SHAPE.

Return Value

The return value is an array of shape SHAPE, with the same type as SOURCE. Array elements are filled
into the new array in array element order.

RRSPACING 90

Return the reciprocal of the relative spacing of model numbers near the argument value.

Synopsis

RRSPACING(X)

Argument

The argument X is of type real.

Return Value

Returns a value of the same type as X.

RSHIFT § 77

Perform a logical shift to the right.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

247

Synopsis

RSHIFT(I, SHIFT)

Arguments

I and SHIFT are integer values.

Return Value

The return value is of the same type and kind as the argument I. It is the value of the argument I
logically shifted right by SHIFT bits.

SCALE 90

Return the value X * bi where b is the base of the number system in use for X.

Synopsis

SCALE(X, I)

Arguments

The argument X is of type real. The argument I is an integer.

Return Value

The result is a real value of the same type as the argument X.

SCAN 90

Search the supplied string for a character in a set of characters.

Synopsis

SCAN(STRING, SET [,BACK])

Arguments

The argument STRING is of type character and is the string to search. The argument SET is of type
character and has the same kind type parameter as STRING. The optional argument BACK is of type
logical.

Fortran Intrinsics

248

Return Value

The result value is an integer specifying the position in STRING of a character from SET. If the
optional parameter BACK is not present, or is present and false, the result is the position of the first
character found. If BACK is present and true, the return value is that of the last character in STRING
matching one in SET.

SELECTED_INT_KIND 90

Returns a value that is the kind type parameter that will represent a number in the specified range,
where the range is determined by the formula -10R < n < 10R, where n is an integer and R is the
argument.

Synopsis

SELECTED_INT_KIND(R)

Argument

The argument R must be of type integer.

Return Value

The return value is an integer. If the value R is invalid, the return value is -1.

SELECTED_REAL_KIND 90

Returns a value that is the kind type parameter that will represent a number in the specified range,
where the range is determined with decimal precision P and a decimal exponent range of at least R.

Synopsis

SELECTED_REAL_KIND([P] [,R])

Arguments

The arguments are both optional, but at least one of the optional arguments must be present. The
argument P must be of type integer and specifies a precision. The argument R must be of type integer
and specifies a range.

Return Value

The return value is an integer.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

249

SET_EXPONENT 90

Returns the model number whose fractional part is the fractional part of the model representation of
X and whose exponent part is I.

Synopsis

SET_EXPONENT(X, I)

Arguments

The argument X is of type real. The argument I is of type integer.

Return Value

The result has the type of the argument X.

SHAPE 90

Returns the shape of the supplied argument.

Synopsis

SHAPE(SOURCE)

Arguments

The argument SOURCE is a scalar or an array of any type.

Return Value

The result is an array whose size is equal to the rank of SOURCE and whose values represent the shape
of SOURCE.

SHIFT § 77

Perform a logical shift.

Synopsis

RSHIFT(I, SHIFT)

Arguments

The argument I may be of any type except character or complex. The argument SHIFT is of type
integer.

Fortran Intrinsics

250

Return Value

The return value is typeless. If SHIFT is positive, the result is I logically shifted left by SHIFT bits. If
SHIFT is negative, the result is I logically shifted right by SHIFT bits.

SIGN 77

Return the absolute value of A times the sign of B.

Synopsis

SIGN(A, B)

Arguments

The argument A is an integer or real number. The argument B must be of the same type as A.

Return Value

The result is the value of the absolute value of A times the sign of B and has the same type as A. If B is
zero, its sign is taken as positive. Fortran 95 allows for a distinction to be made between positive and
negative real zeroes. In this case, if B is a real zero, its sign is positive if it is a positive real zero or if the
processor cannot distinguish between positive and negative real zeroes.

SIN 77

Return the value of the sine of the argument.

Synopsis

SIN(X)

Argument

The argument X must be of type real or complex.

Return Value

The return value has the same type as X and is expressed in radians.

SIND 77

Return the value in degrees of the sine of the argument.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

251

Synopsis

SIND(X)

Argument

The argument X must be of type real or complex.

Return Value

The return value has the same type as X and is expressed in degrees.

SINH 77

Return the hyperbolic sine of the argument.

Synopsis

SINH(X)

Argument

The argument X must be of type real.

Return Value

The return value has the same type as X.

SIZE 90

Returns either the total number of elements in the array or the number of elements along a specified
dimension.

Synopsis

SIZE(ARRAY [,DIM])

Arguments

The argument ARRAY is an array of any type. The optional DIM argument must be a valid dimension
(valid dimensions are between the values 1 and n where n is the rank of the array).

Return Value

The result value is an integer. If DIM is absent, the function returns the total number of elements in
the array. If DIM is present, the function returns the extent of the array in the specified dimension.

Fortran Intrinsics

252

SPACING 90

Returns the spacing of model numbers near the argument.

Synopsis

SPACING(X)

Arguments

The argument X is of type real.

Return Value

The return value has the same type and kind as X.

SPREAD 90

Replicates an array by adding a new dimension.

Synopsis

SPREAD(SOURCE, DIM, NCOPIES)

Arguments

The argument SOURCE may be of any type with rank less than 7. The DIM argument is a scalar
integer representing a valid dimension (valid dimensions are between the values 1 and n where n is
the rank of the array). The argument NCOPIES must be scalar and of type integer.

Return Value

The return value is an array of the same type as the SOURCE, with rank n+1 where n is the rank of
SOURCE.

SQRT 77

Return the square root of the argument.

Synopsis

SQRT(X)

Arguments

The argument X must be a real or complex number.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

253

Return Value

The result is of the same type as the argument.

SUM 90

Returns the sum of the elements of the supplied array.

Synopsis

SUM(ARRAY [,DIM] [,MASK])

Arguments

The ARRAY argument is an array of integer, real or complex type. The optional DIM argument is a
valid dimension (valid dimensions are between the values 1 and n where n is the rank of the array).
The optional MASK argument is of type logical and conformable with the supplied array. Fortran 95
has extended SUM such that if only two arguments are supplied, the type of the second argument is
used to determine if it represents DIM or MASK.

Return Value

The return value is the sum of the elements of the argument ARRAY. If the optional DIM argument is
present, the sum is for the specified dimension. If the optional MASK argument is present, the result is
subject to the logical mask supplied.

SYSTEM_CLOCK 90

Returns information about the real time clock.

Synopsis

SYSTEM_CLOCK([COUNT] [,COUNT_RATE] [,COUNT_MAX])

Arguments

The optional argument COUNT is a scalar integer that provides the current count of the system clock
when the subroutine is called. The optional argument COUNT_RATE is a scalar integer that provides
the number of clock ticks per second. The optional argument COUNT_MAX is a scalar integer that
provides the value of the maximum count possible.

The number of tics per second is always 1000. This routine is implemented on most systems using
gettimeofday(2); some implementations use dclock(3).

Fortran Intrinsics

254

Return Value

The arguments of this subroutine are modified during the call; there is no return value.

TAN 77

Return the tangent of the specified value.

Synopsis

TAN(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TAND 77

Return the tangent of the specified value.

Synopsis

TAND(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TANH 77

Return the hyperbolic tangent of the specified value.

Synopsis

TANH(X)

Argument

The argument X must be of type real and have absolute value <= 1.

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

255

Return Value

A real value of the same KIND as the argument.

TINY 90

Return the smallest positive number representable in the kind of the supplied argument.

Synopsis

TINY(X)

Argument

The argument X must be of type real.

Return Value

The return value is the smallest positive number in the number system and has the same type as the
argument X.

TRANSFER 90

Return a value that has the same bit representation as the source but with a different type.

Synopsis

TRANSFER(SOURCE, MOLD [,SIZE])

Arguments

The arguments SOURCE and MOLD may be scalars or arrays of any type. The optional argument SIZE
must be a scalar and of type integer.

Return Value

The return value has the type of the MOLD argument. If SIZE is present, the result is a rank-one array
of size SIZE. If SIZE is not present, the result is a scalar if MOLD is a scalar and a rank-one array if
MOLD is an array. Refer to The Fortran 95 Handbook for more details on the TRANSFER intrinsic.

TRANSPOSE 90

Transpose an array of rank two.

Fortran Intrinsics

256

Synopsis

TRANSPOSE(MATRIX)

Arguments

The argument MATRIX is a two-dimensional array of any type.

Return Value

The result is a transformed matrix with the same type as MATRIX and dimensions (m,n) where matrix
MATRIX has dimensions (n,m).

TRIM 90

Remove the trailing blanks from a string.

Synopsis

TRIM(STRING)

Arguments

The argument STRING is the string to be adjusted and must be a scalar.

Return Value

The return value is the same as the argument but with the trailing blanks removed. The size of the
returned string is the size of the argument STRING minus the number of trailing blanks in STRING.

UBOUND 90

Returns the upper bounds of an array or the upper bound for the specified dimension.

Synopsis

UBOUND(ARRAY [,DIM])

Arguments

The argument ARRAY is an array of any type. The optional argument DIM is a scalar that has the
value of a valid dimension of the array (valid dimensions are between the values 1 and n where n is
the rank of the array).

FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

257

Return Value

The return value is an integer or an array of rank one and size n, where n is the rank of the argument
ARRAY. If DIM is not supplied, the return value is an array with all the upper bounds for ARRAY. If DIM
is provided, the return value is the value of the upper bound in the specified dimension.

UNPACK 90

Unpack an array of rank one dimension into an array of any number of dimensions.

Synopsis

UNPACK(VECTOR, MASK, FIELD)

Arguments

The VECTOR argument is an array of any type and of rank one. It must have as many elements as
there are true elements in MASK. The MASK argument is of type logical array. The FIELD argument
must be the same type as VECTOR and must be conformable with MASK.

Return Value

The result array has the same type as VECTOR and the shape of MASK. For further details and
information on the FIELD argument, refer to The Fortran 95 Handbook.

VERIFY 90

Verify that a character string contains all characters from a set of characters.

Synopsis

VERIFY(STRING, SET [,BACK])

Arguments

The arguments STRING and SET are of type character. The optional argument BACK is of type logical.

Return Value

The return value is an integer. The function returns the position of the first (or last) character that is
not in the set. BACK is a logical that determines if the first or last character position is returned. If
BACK is present and true, the position of the right-most character is returned. If BACK is not present or
present and false, the position of the left-most character is returned.

Fortran Intrinsics

258

XOR § 77

Performs a logical exclusive OR on each bit of the arguments.

Synopsis

XOR(M, N)

Arguments

The arguments M and N must be of integer type.

Return Value

The return value is an integer type.

ZEXT § 77

Zero-extend the argument.

Synopsis

ZEXT(A)

Arguments

The argument A is of type logical or integer.

Return Value

The return value is an integer.

Supported HPF Intrinsics

The following table lists the HPF intrinsics and Library procedures supported by the PGHPF compiler.
Refer to the man pages supplied with the PGHPF software for further details on these intrinsics and
procedures. Refer to Chapter 9, “HPF Directives”, for the HPF_LIBRARY_LOCAL routines.

Supported HPF Intrinsics

259

Table 6-18: HPF Intrinsics and Library Procedures

Intrinsic Class

ALL_PREFIX Transformational function

ALL_SCATTER Transformational function

ALL_SUFFIX Transformational function

ANY_PREFIX Transformational function

ANY_SCATTER Transformational function

ANY_SUFFIX Transformational function

COPY_PREFIX Transformational function

COPY_SCATTER Transformational function

COPY_SUFFIX Transformational function

COUNT_PREFIX Transformational function

COUNT_SCATTER Transformational function

COUNT_SUFFIX Transformational function

GRADE_DOWN Transformational function

GRADE_UP Transformational function

HPF_ALIGNMENT Mapping inquiry subroutine

HPF_DISTRIBUTION Mapping inquiry subroutine

HPF_TEMPLATE Mapping inquiry subroutine

IALL Transformational function

IALL_PREFIX Transformational function

IALL_SCATTER Transformational function

IALL_SUFFIX Transformational function

Fortran Intrinsics

260

IANY Transformational function

IANY_PREFIX Transformational function

IANY_SCATTER Transformational function

IANY_SUFFIX Transformational function

ILEN Elemental Intrinsic

IPARITY Transformational function

IPARITY_PREFIX Transformational function

IPARITY_SCATTER Transformational function

IPARITY_SUFFIX Transformational function

LEADZ Elemental function

MAXLOC Transformational function Intrinsic

MAXVAL_PREFIX Transformational function

MAXVAL_SCATTER Transformational function

MAXVAL_SUFFIX Transformational function

MINLOC Transformational function Intrinsic

MINVAL_PREFIX Transformational function

MINVAL_SCATTER Transformational function

MINVAL_SUFFIX Transformational function

NUMBER_OF_PROCESSORS System Inquiry function Intrinsic

PARITY Transformational function

PARITY_PREFIX Transformational function

PARITY_SCATTER Transformational function

Intrinsic Class

CM Fortran Intrinsics §

261

CM Fortran Intrinsics §

This section provides information on CM Fortran intrinsics. The PGHPF compiler option –Mcmf provides
limited support for CM Fortran compatibility (Thinking Machines Corporation version of Fortran). This
includes support for the intrinsics DOTPRODUCT, DLBOUND, DUBOUND, and DSHAPE which have
calling sequences identical to their Fortran 90/95 counterparts. It also includes support for the CM
Fortran method of using square brackets in the definition of array constructors and the use of the ARRAY
keyword in place of the Fortran 90/95 standard DIMENSION keyword.

There are three CM Fortran intrinsics which have names identical to their Fortran 90/95 counterparts
but whose calling sequences differ. These are CSHIFT, EOSHIFT, and RESHAPE; their descriptions follow.

If PGHPF is invoked with the compiler switch -Mcmf these three intrinsics will be interpreted using the
CM Fortran convention rather than the standard Fortran 90/95 convention. There are 6 additional non-
standard intrinsics in CM Fortran: PROJECT, LASTLOC, FIRSTLOC, RANK, DIAGONAL, and REPLICATE.
These non-standard intrinsics are not supported by PGHPF. Other features of CM Fortran that are not
supported are the layout directives and the utility routines.

PARITY_SUFFIX Transformational function

POPCNT Elemental function

POPPAR Elemental function

PROCESSORS_SHAPE System Inquiry function Intrinsic

PRODUCT_PREFIX Transformational function

PRODUCT_SCATTER Transformational function

PRODUCT_SUFFIX Transformational function

SUM_PREFIX Transformational function

SUM_SCATTER Transformational function

SUM_SUFFIX Transformational function

Intrinsic Class

Fortran Intrinsics

262

CSHIFT §

Perform a circular shift on the specified array.

Synopsis

CSHIFT(ARRAY, DIM, SHIFT)

Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument DIM is an
integer representing the dimension to shift. The argument SHIFT is an integer or an array of integers
with rank n-1 where n is the rank of ARRAY.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

EOSHIFT §

Perform an end-off shift on the specified array.

Synopsis

CSHIFT(ARRAY, DIM, SHIFT, BOUNDARY)

Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument DIM is an
integer representing the dimension to shift. The argument SHIFT is an integer or an array of integers
with rank n-1 where n is the rank of ARRAY. The optional argument BOUNDARY is of the same type as
the array, it may be scalar or of rank n-1 where n is the rank of ARRAY. BOUNDARY is the value to fill
in the shifted out positions. By default it has the following values for integer, 0, for real, 0.0, for
complex, (0.0,0.0), for logical false, for character the default is blank characters.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

RESHAPE §

Reconstructs an array with the specified shape using the elements of the source array.

CM Fortran Intrinsics §

263

Synopsis

RESHAPE(SHAPE, SOURCE [,PAD] [,ORDER])

Arguments

The argument SHAPE is of type integer, rank one. It must not have more than 7 elements and no
values can be negative. The argument SOURCE is an array of any type. The optional argument PAD
must be the same size and type as SOURCE. The optional argument ORDER must be of type integer
and must have the same shape as SHAPE.

Return Value

The return value is an array of shape SHAPE, with the same type as SOURCE. Array elements are filled
into the new array in array element order.

Fortran Intrinsics

264

3F Routines

265

7 3F Functions and VAX
Subroutines
The PGI Fortran compilers support FORTRAN 77 3F functions and VAX/VMS system subroutines and
built-in functions.

3F Routines

This section describes the functions and subroutines in the Fortran run-time library which are known as
3F routines on many systems. These routines provide an interface from Fortran programs to the system
in the same manner as the C library does for C programs. These functions and subroutines are
automatically loaded from PGI's Fortran run-time library if referenced by a Fortran program.

The implementation of many of the routines uses functions which reside in the C library. If a C library
does not contain the necessary functions, undefined symbol errors will occur at link-time. For example,
if PGI’s C library is the C library available on the system, the following 3F routines exist in the Fortran
run-time library, but use of these routines will result in errors at link-time:

besj0

besj1

besjn

besy0

besy1

besyn

dbesj0

dbesj1

dbesjn

dbesy0

dbesy1

dbesyn

derf

derfc

erf

erfc

getlog

hostnm

3F Functions and VAX Subroutines

266

lstat

putenv

symlnk

ttynam

The routines mclock and times depend on the existence of the C function times().

The routines dtime and etime are only available in a SYSVR4 environment. These routines are not
available in all environments simply because there is no standard mechanism to resolve the resolution
of the value returned by the times() function.

There are several 3F routines (for example, fputc and fgetc) which perform I/O on a logical unit. These
routines bypass normal Fortran I/O. If normal Fortran I/O is also performed on a logical unit which
appears in any of these routines, the results are unpredictable.

abort

Terminate abruptly and write memory image to core file.

Synopsis

subroutine abort()

Description

abort cleans up the I/O buffers and then aborts, producing a core file in the current directory.

access

Determine access mode or existence of a file.

Synopsis

integer function access(fil, mode)

character*(*) fil

character*(*) mode

Description

The access function if the file, whose name is fil, for accessibility or existence as determined by mode.

The mode argument may include, in any order and in any combination, one or more of:

r test for read permission

3F Routines

267

w test for write permission

x test for execute permission

(blank) test for existence

An error code is returned if either the mode argument is illegal or if the file cannot be accessed in all
of the specified modes. Zero is returned if the specified access is successful.

alarm

Execute a subroutine after a specified time.

Synopsis

integer function alarm(time, proc)

integer time

external proc

Description

This routine establishes subroutine proc to be called after time seconds. If time is 0, the alarm is
turned off and no routine will be called. The return value of alarm is the time remaining on the last
alarm.

Bessel functions

These functions calculate Bessel functions of the first and second kinds for real and double precision
arguments and integer orders.

besj0

besj1

besjn

besy0

besy1

besyn

dbesj0

dbesj1

dbesjn

dbesy0

dbesy1

dbesyn

3F Functions and VAX Subroutines

268

Synopsis

real function besj0(x)

real x

real function besj1(x)

real x

real function besjn(n, x)

integer n

real x

real function besy0(x)

real x

real function besy1(x)

real x

real function besyn(n, x)

integer n

real x

double precision function dbesj0(x)

double precision x

double precision function dbesj1(x)

double precision x

double precision function dbesjn(n, x)

integer n

double precision x

double precision function dbesy0(x)

double precision x

double precision function dbesy1(x)

double precision x

double precision function dbesyn(n, x)

integer n

double precision x

chdir

Change default directory.

Synopsis

integer function chdir(path)

character*(*) path

3F Routines

269

Description

Change the default directory for creating and locating files to path. Zero is returned if successful;
otherwise, an error code is returned.

chmod

Change mode of a file.

Synopsis

integer function chmod(nam, mode)

character*(*) nam

integer mode

Description

Change the file system mode of file nam. If successful, a value of 0 is returned; otherwise, an error
code is returned.

ctime

Return the system time.

Synopsis

character*(*) function ctime(stime)

integer stime

Description

ctime converts a system time in stime to its ASCII form and returns the converted form. Neither
newline nor NULL is included.

date

Return the date.

Synopsis

character*(*) function date(buf)

Description

Returns the ASCII representation of the current date. The form returned is dd-mmm-yy.

3F Functions and VAX Subroutines

270

error functions

The functions erf and derf return the error function of x. erfc and derfc return 1.0-erf(x) and 1.0-
derf(x), respectively.

Synopsis

real function erf(x)

real x

real function erfc(x)

real x

double precision function derf(x)

double precision x

double precision function derfc(x)

double precision x

etime, dtime

Get the elapsed time.

Synopsis

real function etime(tarray)

real function dtime(tarray)

real tarray(2)

Description

etime returns the total processor run-time in seconds for the calling process.

dtime (delta time) returns the processor time since the previous call to dtime. The first time it is
called, it returns the processor time since the start of execution.

Both functions place values in the argument tarray: user time in the first element and system time in
the second element. The return value is the sum of these two times.

exit

Terminate program with status.

Synopsis

subroutine exit(s)

integer s

3F Routines

271

Description

exit flushes and closes all of the program's files, and returns the value of s to the parent process.

fdate

Return date and time in ASCII form.

Synopsis

character*(*) function fdate()

Description

fdate returns the current date and time as a character string. Neither newline nor NULL will be
included.

fgetc

Get character from a logical unit.

Synopsis

 integer function fgetc(lu, ch)

 integer lu

 character*(*) ch

Description

Returns the next character in ch from the file connected to the logical unit lu, bypassing normal
Fortran I/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was
detected. Any other value is an error code.

flush

Flush a logical unit.

Synopsis

subroutine flush(lu)

integer lu

Description

flush flushes the contents of the buffer associated with logical unit lu.

3F Functions and VAX Subroutines

272

fork

Fork a process.

Synopsis

integer function fork()

Description

fork creates a copy of the calling process. The value returned to the parent process will be the process
id of the copy. The value returned to the child process (the copy) will be zero. If the returned value is
negative, an error occurred and the value is the negation of the system error code.

fputc

Write a character to a logical unit.

Synopsis

integer function fputc(lu, ch)

integer lu

character*(*) ch

Description

A character ch is written to the file connected to logical unit lu bypassing normal Fortran I/O. If
successful, a value of zero is returned; otherwise, an error code is returned.

free

Free memory.

Synopsis

 subroutine free(p)

 int p

Description

Free a pointer to a block of memory located by malloc; the value of the argument, p, is the pointer to
the block of memory.

3F Routines

273

fseek

Position file at offset.

Synopsis

integer function fseek(lu, offset, from)

integer lu

integer offset

integer from

Description

fseek repositions a file connected to logical unit lu. offset is an offset in bytes relative to the position
specified by from :

0 beginning of the file

1 current position

2 end of the file

If successful, the value returned by fseek will be zero; otherwise, it's a system error code.

ftell

Determine file position.

Synopsis

integer function ftell(lu)

integer lu

Description

ftell returns the current position of the file connected to the logical unit lu. The value returned is an
offset, in units of bytes, from the beginning of the file. If the value returned is negative, it is the
negation of the system error code.

gerror

Return system error message.

Synopsis

character*(*) function gerror()

3F Functions and VAX Subroutines

274

Description

Return the system error message of the last detected system error.

getarg

Get the nth command line argument.

Synopsis

subroutine getarg(n, arg)

integer n

character*(*) arg

Description

Return the nth command line argument in arg, where the 0th argument is the command name.

iargc

Index of the last command line argument.

Synopsis

integer function iargc()

Description

Return the index of the last command line argument, which is also the number of arguments after the
command name.

getc

Get character from unit 5.

Synopsis

integer function getc(ch)

character*(*) ch

Description

Returns the next character in ch from the file connected to the logical unit 5, bypassing normal
Fortran I/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was
detected. Any other value is an error code.

3F Routines

275

getcwd

Get pathname of current working directory.

Synopsis

integer function getcwd(dir)

character*(*) dir

Description

The pathname of the current working directory is returned in dir. If successful, the return value is
zero; otherwise, an error code is returned.

getenv

Get value of environment variable.

Synopsis

subroutine getenv(en, ev)

character*(*) en

character*(*) ev

Description

getenv checks for the existence of the environment variable en. If it does not exist or if its value is not
present, ev is filled with blanks. Otherwise, the string value of en is returned in ev.

getgid

Get group id.

Synopsis

integer function getgid()

Description

Return the group id of the user of the process.

getlog

Get user's login name.

3F Functions and VAX Subroutines

276

Synopsis

character*(*) function getlog()

Description

getlog returns the user's login name or blanks if the process is running detached from a terminal.

getpid

Get process id.

Synopsis

integer function getpid()

Description

Return the process id of the current process.

getuid

Get user id.

Synopsis

integer function getuid()

Description

Return the user id of the user of the process.

gmtime

Return system time.

Synopsis

subroutine gmtime(stime, tarray)

integer stime

integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for GMT and return in tarray.

3F Routines

277

hostnm

Get name of current host.

Synopsis

integer function hostnm(nm)

character*(*) nm

Description

hostnm returns the name of the current host in nm. If successful, a value of zero is returned;
otherwise an error occurred.

idate

Return date in numerical form.

Synopsis

subroutine idate(im, id, iy)

integer im, id, iy

Description

Returns the current date in the variables im, id, and iy, which indicate the month, day, and year,
respectively. The month is in the range 1-12; only the last 2 digits of the year are returned.

ierrno

Get error number.

Synopsis

integer function ierrno()

Description

Return the number of the last detected system error.

ioinit

Initialize I/O

3F Functions and VAX Subroutines

278

Synopsis

subroutine ioinit(cctl, bzro, apnd, prefix, vrbose)

integer cctl

integer bzro

integer apnd

character*(*) prefix

integer vrbose

Description

Currently, no action is performed.

isatty

Is logical unit a tty.

Synopsis

logical function isatty(lu)

integer lu

Description

Returns .TRUE. if logical unit lu is connected to a terminal; otherwise, .FALSE. is returned.

itime

Return time in numerical form.

Synopsis

subroutine itime(iarray)

integer iarray(3)

Description

Return current time in the array iarray. The order is hour, minute, and second.

kill

Send signal to a process.

3F Routines

279

Synopsis

integer function kill(pid, sig)

integer pid

integer sig

Description

Send signal number sig to the process whose process id is pid. If successful, the value zero is returned;
otherwise, an error code is returned.

link

Make link

Synopsis

integer function link(n1, n2)

character*(*) n1

character*(*) n2

Description

Create a link n2 to an existing file n1. If successful, zero is returned; otherwise, an error code is
returned.

lnblnk

Return index of last non-blank.

Synopsis

integer function lnblnk(a1)

character*(*) a1

Description

Return the index of the last non-blank character in string a1.

loc

Address of an object.

3F Functions and VAX Subroutines

280

Synopsis

integer function loc(a)

integer a

Description

Return the value which is the address of a.

ltime

Return system time.

Synopsis

 subroutine ltime(stime, tarray)

 integer stime

 integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for the local time zone and return in tarray.

malloc

Allocate memory.

Synopsis

integer function malloc(n)

integer n

Description

Allocate a block of n bytes of memory and return the pointer to the block of memory.

mclock

Get elapsed time.

Synopsis

integer function mclock()

3F Routines

281

Description

mclock returns the sum of the user's cpu time and the user and system times of all child processes.
The return value is in units of clock ticks per second.

mvbits

Move bits.

Synopsis

subroutine mvbits(src, pos, len, dest, posd)

integer src

integer pos

integer len

integer dest

integer posd

Description

len bits are moved beginning at position pos of argument src to position posd of argument dest.

outstr

Print a character string.

Synopsis

integer function outstr(ch)

character*(*) ch

Description

Output the character string to logical unit 6 bypassing normal Fortran I/O. If successful, a value of
zero is returned; otherwise, an error occurred.

perror

Print error message.

Synopsis

subroutine perror(str)

character*(*) str

3F Functions and VAX Subroutines

282

Description

Write the message indicated by str to logical unit 0 and the message for the last detected system error.

putc

Write a character to logical unit 6.

Synopsis

integer function putc(ch)

character*(*) ch

Description

A character ch is written to the file connected to logical unit 6 bypassing normal Fortran I/O. If
successful, a value of zero is returned; otherwise, an error code is returned.

putenv

Change or add environment variable.

Synopsis

integer function putenv(str)

character*(*) str

Description

str contains a character string of the form name=value. This function makes the value of the
environment variable name equal to value. If successful, zero is returned.

qsort

Quick sort.

Synopsis

subroutine qsort(array, len, isize, compar)

dimension array(*)

integer len

integer isize

external compar

integer compar

3F Routines

283

Description

qsort sorts the elements of the one dimensional array, array. len is the number of elements in the
array and isize is the size of an element. compar is the name of an integer function that determines
the sorting order. This function is called with 2 arguments (arg1 and arg2) which are elements of
array. The function returns:

negative if arg1 is considered to precede arg2

zero if arg1 is equivalent to arg2

positive if arg1 is considered to follow arg2

rand, irand, srand

Random number generator.

Synopsis

double precision function rand()

integer function irand()

subroutine srand(iseed)

integer iseed

Description

The functions rand and irand generates successive pseudo-random integers or double precision
numbers. srand uses its argument, iseed, to re-initialize the seed for successive invocations of rand
and irand.

irand returns a positive integer in the range 0 through 2147483647.

rand returns a value in the range 0 through 1.0.

random, irandm, drandm

Return the next random number value. If the argument, flag , is nonzero, the random number
generator is restarted before the next random number is generated. Integer values will range from 0
thru 2147483647; floating point values will range from 0.0 thru 1.0.

3F Functions and VAX Subroutines

284

Synopsis

real function random(flag)

integer flag

integer function irandm(flag)

integer flag

double precision function drandm(flag)

integer flag

range

Range functions.

Synopsis

real function flmin()

real function flmax()

real function ffrac()

double precision function dflmin()

double precision function dflmax()

double precision function dffrac()

integer function inmax()

Description

flmin minimum single precision value

flmax maximum single precision value

ffrac smallest positive single precision value

dflmin minimum double precision value

dflmax maximum double precision value

dffrac smallest positive double precision value

inmax maximum integer

rename

Rename a file.

3F Routines

285

Synopsis

integer function rename(from, to)

character*(*) from

character*(*) to

Description

Rename the existing file from where the new name is to. If successful, zero is returned; otherwise, the
return value is an error code.

rindex

Return index of substring.

Synopsis

integer function rindex(a1, a2)

character*(*) a1

character*(*) a2

Description

Return the index of the last occurrence of string a2 in string a1.

secnds, dsecnds

Return elapsed time.

Synopsis

real function secnds(x)

real x

double precision function dsecnds(x)

double precision x

Description

Returns the elapsed time, in seconds, since midnight, minus the value of x.

setvbuf3f

Change I/O buffering behavior.

3F Functions and VAX Subroutines

286

Synopsis

interface

 function setvbuf3f(lu, typ, size)

 integer setvbuf3f, lu, typ, size

 end function

 end interface

Description

Fortran I/O supports 3 types of buffering:

• Fully buffered: on output, data is written once the buffer is full. On input, the buffer is filled
when an input operation is requested and the buffer is empty.

• Line buffered: on output, data is written when a newline character is inserted in the buffer or
when the buffer is full. On input, if an input operation is encountered and the buffer is empty,
the buffer is filled until a newline character is encountered.

• Unbuffered: No buffer is used. Each I/O operation is completed as sopon as possible. In this case,
the typ and size arguments are ignored.

Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr) is unbuffered. Disk files
are fully buffered. These defaults generally give the expected behavior. You can use setvbuf3f to change
a unit's buffering type and size of the buffer.

This function must be called after the unit is opened and before any I/O is done on the unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies line buffering,
and 2 specifies unbuffered. The size parameter specifies the size of the buffer. Note, the underlying
stdio implementation may silently restrict your choice of buffer size.

This function will return zero on success and non-zero on failure.

An example of a program in which this function might be useful is a long-running program that
periodically writes a small amount of data to a log file. If the log file is line buffered, you could check
the log file for progress. If the log file is fully buffered (the default), the data may not be written to disk
until the program terminates.

signal

Signal facility.

3F Routines

287

Synopsis

integer function signal(signum, proc, flag)

integer signum

external proc

integer flag

Description

signal allows the calling process to choose how the receipt of a specific signal is handled; signum is the
signal and proc is the choice. If flag is negative, proc is a Fortran subprogram and is established as the
signal handler for the signal. Otherwise, proc is ignored and the value of flag is passed to the system as
the signal action definition. In particular, this is how previously saved signal actions can be restored.
There are two special cases of flag: 0 means use the default action and 1 means ignore this signal.

The return value is the previous action. If this is a value greater than one, then it is the address of a
routine that was to have been called. The return value can be used in subsequent calls to signal to
restore a previous action. A negative return value indicates a system error.

sleep

Suspend execution for a period of time.

Synopsis

subroutine sleep(itime)

integer itime

Description

Suspends the process for t seconds.

stat, lstat, fstat

Get file status.

Synopsis

integer function stat(nm, statb)

character*(*) nm

integer statb(*)

integer function lstat(nm, statb)

character*(*) nm

3F Functions and VAX Subroutines

288

integer statb(*)

integer function fstat(lu, statb)

integer lu

integer statb(*)

Description

Return the file status of the file in the array statb. If successful, zero is returned; otherwise, the value
of -1 is returned. stat obtains information about the file whose name is nm; if the file is a symbolic
link, information is obtained about the file the link references. lstat is similar to stat except lstat
returns information about the link. fstat obtains information about the file which is connected to
logical unit lu.

stime

Set time.

Synopsis

integer function stime(tp)

integer tp

Description

Set the system time and date. tp is the value of the time measured in seconds from 00:00:00 GMT
January 1, 1970.

symlnk

Make symbolic link.

Synopsis

integer function symlnk(n1, n2)

character*(*) n1

character*(*) n2

Description

Create a symbolic link n2 to an existing file n1. If successful, zero is returned; otherwise, an error code
is returned.

system

Issue a shell command.

3F Routines

289

Synopsis

integer function system(str)

character*(*) str

Description

system causes the string, str, to be given to the shell as input. The current process waits until the shell
has completed and returns the exit status of the shell.

time

Return system time.

Synopsis

integer function time()

Description

Return the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

times

Get process and child process time

Synopsis

integer function times(buff)

integer buff(*)

Description

Returns the time-accounting information for the current process and for any terminated child
processes of the current process in the array buff. If successful, zero is returned; otherwise, the
negation of the error code is returned.

ttynam

Get name of a terminal

Synopsis

character*(*) ttynam(lu)

integer lu

3F Functions and VAX Subroutines

290

Description

Returns a blank padded path name of the terminal device connected to the logical unit lu. The lu is
not connected to a terminal, blanks are returned.

unlink

Remove a file.

Synopsis

integer function unlink(fil)

character*(*) fil

Description

Removes the file specified by the pathname fil. If successful, zero is returned; otherwise, an error code
is returned.

wait

Wait for process to terminate.

Synopsis

integer function wait(st)

integer st

Description

wait causes its caller to be suspended until a signal is received or one of its child processes terminates.
If any child has terminated since the last wait, return is immediate. If there are no child processes,
return is immediate with an error code.

If the return value is positive, it is the process id of the child and st is its termination status. If the
return value is negative, it is the negation of an error code.

VAX System Subroutines

The PGI FORTRAN77 compiler, pgf77, supports a variety of VAX/VMS system subroutines and built-in
functions.

VAX System Subroutines

291

Built-In Functions

The built-in functions perform inter-language utilities for argument passing and location calculations.
The following built-in functions are available:

%LOC(arg)

Compute the address of the argument arg.

%REF(a)

Pass the argument a by reference.

%VAL(a)

Pass the argument as a 32-bit immediate value (64-bit if a is double precision.) A value of 64-bits is
also possible if supported for integer and logical values.

VAX/VMS System Subroutines

DATE

The DATE subroutine returns a nine-byte string containing the ASCII representation of the current
date. It has the form:

CALL DATE(buf)

where buf is a nine-byte variable, array, array element, or character substring. The date is returned as
a nine-byte ASCII character string of the form:

dd-mmm-yy

Where:

dd is the two-digit day of the month

mmm is the three-character abbreviation of the month

yy is the last two digits of the year

EXIT

The EXIT subroutine causes program termination, closes all open files, and returns control to the
operating system. It has the form:

3F Functions and VAX Subroutines

292

CALL EXIT[(exit_status)]

where:

exit_status

GETARG

The GETARG subroutine returns the Nth command line argument in character variable ARG. For N
equal to zero, the name of the program is returned.

SUBROUTINE GETARG(N, ARG)

INTEGER*4 N

CHARACTER*(*) ARG

IARGC

The IARGC subroutine returns the number of command line arguments following the program name.

INTEGER*4 FUNCTION IARGC()

IDATE

The IDATE subroutine returns three integer values representing the current month, day, and year. It
has the form:

CALL IDATE(IMONTH, IDAY, IYEAR)

If the current date were October 9, 2004, the values of the integer variables upon return would be:

IMONTH = 10

IDAY = 9

IYEAR = 04

MVBITS

The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a second
storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 + a3 - 1) of the
source, src, to positions a5 through (a5 + a3 - 1) of the destination, dest. Other bits of the destination
location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less than or equal to 32
(less than or equal to 64 if the source or destination is INTEGER*8). It has the form:

CALL MVBITS(src, a2, a3, dest, a5)

Where:

VAX System Subroutines

293

src is an integer variable or array element that represents the source location.

a2 is an integer expression that identifies the first position in the field transferred from src.

a3 is an integer expression that identifies the length of the field transferred from src.

dest is an integer variable or array element that represents the destination location.

a5 is an integer expression that identifies the starting position within a4, for the bits being
transferred.

RAN

The RAN subroutine returns the next number from a sequence of pseudo-random numbers of uniform
distribution over the range 0 to 1. The result is a floating point number that is uniformly distributed in
the range between 0.0 and 1.0 exclusive. It has the form:

y = RAN(i)

where y is set equal to the value associated by the function with the seed argument i. The argument i
must be an INTEGER*4 variable or INTEGER*4 array element.

The argument i should initially be set to a large, odd integer value. The RAN function stores a value in
the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on
separate runs in order to obtain different random numbers. The seed is updated automatically, and
RAN uses the following algorithm to update the seed passed as the parameter:

SEED = 6969 * SEED + 1 ! MOD

2**32

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and
returned as the result.

If the command-line option to treat all REAL declarations as DOUBLE PRECISION declarations is in
effect, RAN returns a DOUBLE PRECISION value.

SECNDS

The SECNDS subroutine provides system time of day, or elapsed time, as a floating point value in
seconds. It has the form:

y = SECNDS(x)

3F Functions and VAX Subroutines

294

where (REAL or DOUBLE PRECISION) y is set equal to the time in seconds since midnight, minus the
user supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time computations can be
performed with the following sequence of calls.

X = SECNDS(0.0)

...

...! Code to be timed

...

DELTA = SECNDS(X)

The accuracy of this call is the same as the resolution of the system clock.

TIME

The TIME subroutine returns the current system time as an ASCII string. It has the form:

CALL TIME(buf)

where buf is an eight-byte variable, array, array element, or character substring. The TIME call
returns the time as an eight-byte ASCII character string of the form:

hh:mm:ss

For example:

16:45:23

Note that a 24-hour clock is used.

Parallelization Directives

295

8 OpenMP Directives for
Fortran
The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program Interface.
The OpenMP shared-memory parallel programming model is defined by a collection of compiler
directives, library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran programs. The directives include a parallel region construct for writing coarse
grain SPMD programs, work-sharing constructs which specify that DO loop iterations should be split
among the available threads of execution, and synchronization constructs. The data environment is
controlled using clauses on the directives or with additional directives. Run-time library routines are
provided to query the parallel runtime environment, for example to determine how many threads are
participating in execution of a parallel region. Finally, environment variables are provided to control the
execution behavior of parallel programs. For more information on OpenMP, see

http://www.openmp.org

For an introduction to how to execute programs that use multiple processors along with some pointers
to example code, see “Parallel Programming Using PGI Compilers” in the PGI User’s Guide.

Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers
when the option -mp is specified on the command line. The form of a parallelization directive is:

sentineldirective_name[clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must be !OMP, COMP, or
*$OMP, must start in column 1 (one), and must appear as a single word without embedded white space.
The sentinel marking a DOACROSS directive is C$. Standard Fortran syntax restrictions (line length,
case insensitivity, etc.) apply to the directive line. Initial directive lines must have a space or zero in
column six and continuation directive lines must have a character other than space or zero in column
six. Continuation lines for C$DOACROSS directives are specified using the C$& sentinel.

OpenMP Directives for Fortran

296

The order in which clauses appear in the parallelization directives is not significant. Commas separate
clauses within the directives, but commas are not allowed between the directive name and the first
clause. Clauses on directives may be repeated as needed subject to the restrictions listed in the
description of each clause.

The compiler option -mp enables recognition of the parallelization directives. The use of this option also
implies:

-Mreentrant local variables are placed on the stack and optimizations that may result
in non-reentrant code are disabled (e.g., -Mnoframe);

-Miomutex critical sections are generated around Fortran I/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given with each
section, the routines omp_get_num_threads() and omp_get_thread_num() are used; refer to Run-
time Library Routines for more information. These routines return the number of threads currently in
the team executing the parallel region and the thread number within the team, respectively.

PARALLEL ... END PARALLEL

The OpenMP PARALLEL END PARALLEL directive is supported using the following syntax.

Syntax:

!$OMP PARALLEL [Clauses]

< Fortran code executed in body of parallel region >

!$OMP END PARALLEL

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN (list)

IF (scalar_logical_expression)

This directive pair declares a region of parallel execution. It directs the compiler to create an executable
in which the statements between PARALLEL and END PARALLEL are executed by multiple lightweight
threads. The code that lies between PARALLEL and END PARALLEL is called a parallel region.

PARALLEL ... END PARALLEL

297

The OpenMP parallelization directives support a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered. At the entrance to the parallel region, a
system-dependent number of symmetric parallel threads begin executing all statements in the parallel
region redundantly. These threads share work by means of work-sharing constructs such as parallel DO
loops in the following example. The number of threads in the team is controlled by the
OMP_NUM_THREADS environment variable. If OMP_NUM_THREADS is not defined, the program will
execute parallel regions using only one processor. Branching into or out of a parallel region is not
supported.

All other shared-memory parallelization directives must occur within the scope of a parallel region.
Nested PARALLEL...END PARALLEL directive pairs are not supported and are ignored. The END PARALLEL
directive denotes the end of the parallel region, and is an implicit barrier. When all threads have
completed execution of the parallel region, a single thread resumes execution of the statements that
follow.

Note that, by default, there is no work distribution in a parallel region. Each active thread executes the
entire region redundantly until it encounters a directive that specifies work distribution. For work
distribution, see the DO, PARALLEL DO, or DOACROSS directives.

 PROGRAM WHICH_PROCESSOR_AM_I

 INTEGER A(0:1)

 INTEGER omp_get_thread_num

 A(0) = -1

 A(1) = -1

!$OMP PARALLEL

 A(omp_get_thread_num()) = omp_get_thread_num()

!$OMP END PARALLEL

 PRINT *, "A(0)=",A(0), " A(1)=",A(1)

 END

The variables specified in a PRIVATE list are private to each thread in a team. In effect, the compiler
creates a separate copy of each of these variables for each thread in the team. When an assignment to a
private variable occurs, each thread assigns to its local copy of the variable. When operations involving a
private variable occur, each thread performs the operations using its local copy of the variable.

Important points about private variables are:

• Variables declared private in a parallel region are undefined upon entry to the parallel region. If
the first use of a private variable within the parallel region is in a right-hand side expression, the
results of the expression will be undefined (i.e., this is probably a coding error).

OpenMP Directives for Fortran

298

• Likewise, variables declared private in a parallel region are undefined when serial execution
resumes at the end of the parallel region.

The variables specified in a SHARED list are shared between all threads in a team, meaning that all
threads access the same storage area for SHARED data.

The DEFAULT clause lets you specify the default attribute for variables in the lexical extent of the parallel
region. Individual clauses specifying PRIVATE, SHARED, etc. status override the declared DEFAULT.
Specifying DEFAULT(NONE) declares that there is no implicit default, and in this case, each variable in
the parallel region must be explicitly listed with an attribute of PRIVATE, SHARED, FIRSTPRIVATE,
LASTPRIVATE, or REDUCTION.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as PRIVATE
variables, but in addition, are initialized from the original object existing prior to entering the parallel
region. Variables that appear in the list of a REDUCTION clause must be SHARED. A private copy of each
variable in list is created for each thread as if the PRIVATE clause had been specified. Each private copy is
initialized according to the operator as specified in the following table:

PARALLEL ... END PARALLEL

299

Table 8-1: Initialization of REDUCTION Variables

At the end of the parallel region, a reduction is performed on the instances of variables appearing in list
using operator or intrinsic as specified in the REDUCTION clause. The initial value of each REDUCTION
variable is included in the reduction operation. If the {operator | intrinsic}: portion of the REDUCTION
clause is omitted, the default reduction operator is “+” (addition).

The COPYIN clause applies only to THREADPRIVATE common blocks. In the presence of the COPYIN
clause, data from the master thread’s copy of the common block is copied to the threadprivate copies
upon entry to the parallel region.

In the presence of an IF clause, the parallel region will be executed in parallel only if the corresponding
scalar_logical_expression evaluates to .TRUE.. Otherwise, the code within the region will be executed by
a single processor regardless of the value of the environment variable OMP_NUM_THREADS.

Operator /
Intrinsic Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX smallest representable number

MIN largest representable number

IAND all bits on

IOR 0

IEOR 0

OpenMP Directives for Fortran

300

CRITICAL ... END CRITICAL

The OpenMP END CRITICAL directive uses the following syntax.

!$OMP CRITICAL [(name)]

< Fortran code executed in body of critical section >

!$OMP END CRITICAL [(name)]

Within a parallel region, you may have code that will not execute properly when multiple threads act
upon the same sub-region of code. This is often due to a shared variable that is written and then read
again.

The CRITICAL...END CRITICAL directive pair defines a subsection of code within a parallel region,
referred to as a critical section, which will be executed one thread at a time. The optional name
argument identifies the critical section. The first thread to arrive at a critical section will be the first to
execute the code within the section. The second thread to arrive will not begin execution of statements in
the critical section until the first thread has exited the critical section. Likewise, each of the remaining
threads will wait its turn to execute the statements in the critical section.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal. If a name argument appears on a CRITICAL directive, the same name must
appear on the END CRITICAL directive.

 PROGRAM CRITICAL_USE

 REAL A(100,100), MX, LMX

 INTEGER I, J

 MX = -1.0

 LMX = -1.0

 CALL RANDOM_SEED()

 CALL RANDOM_NUMBER(A)

!$OMP PARALLEL PRIVATE(I), FIRSTPRIVATE(LMX)

!$OMP DO

 DO J=1,100

 DO I=1,100

 LMX = MAX(A(I,J), LMX)

 END DO

 END DO

!$OMP CRITICAL

 MX = MAX(MX, LMX)

MASTER ... END MASTER

301

!$OMP END CRITICAL

!$OMP END PARALLEL

 PRINT *, "MAX VALUE OF A IS ", MX

 END

Note that this program could also be implemented without the critical region by declaring MX as a
reduction variable and performing the MAX calculation in the loop using MX directly rather than using
LMX. See “DO ... END DO” on page 302, and “PARALLEL ... END PARALLEL” on page 296, for more
information on how to use the REDUCTION clause on a parallel DO loop.

MASTER ... END MASTER

The OpenMP MASTER...END MASTER directive uses the following syntax.

!$OMP MASTER

< Fortran code in body of MASTER section >

!$OMP END MASTER

In a parallel region of code, there may be a sub-region of code that should execute only on the master
thread. Instead of ending the parallel region before the sub-region and then starting it up again after the
sub-region, the MASTER...END MASTER directive pair lets you conveniently designate code that executes
on the master thread and is skipped by the other threads. There is no implied barrier on entry to or exit
from a MASTER...END MASTER section of code. Nested master sections are ignored. Branching into or
out of a master section is not supported.

 PROGRAM MASTER_USE

 INTEGER A(0:1)

 INTEGER omp_get_thread_num

 A=-1

!$OMP PARALLEL

 A(omp_get_thread_num()) = omp_get_thread_num()

!$OMP MASTER

 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"

!$OMP END MASTER

!$OMP END PARALLEL

 PRINT *, "A(0)=", A(0), " A(1)=",

A(1)

 END

OpenMP Directives for Fortran

302

SINGLE ... END SINGLE

The OpenMP SINGLE...END SINGLE directive uses the following syntax:

!$OMP SINGLE [Clauses]

< Fortran code in body of SINGLE processor section >

!$OMP END SINGLE [NOWAIT]

Clauses:

PRIVATE(list)

FIRSTPRIVATE(list)

In a parallel region of code, there may be a sub-region of code that will only execute correctly on a single
thread. Instead of ending the parallel region before the sub-region and then starting it up again after the
sub-region, the SINGLE...END SINGLE directive pair lets you conveniently designate code that executes
on a single thread and is skipped by the other threads. There is an implied barrier on exit from a
SINGLE...END SINGLE section of code unless the optional NOWAIT clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not
supported.

 PROGRAM SINGLE_USE

 INTEGER A(0:1)

 INTEGER omp_get_thread_num()

!$OMP PARALLEL

 A(omp_get_thread_num()) = omp_get_thread_num()

!$OMP SINGLE

 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"

!$OMP END SINGLE

!$OMP END PARALLEL

 PRINT *, "A(0)=", A(0), " A(1)=",

A(1)

 END

The PRIVATE and FIRSTPRIVATE clauses are as described in the PARALLEL...END PARALLEL section.

DO ... END DO

The OpenMP DO...END DO directive uses the following syntax.

DO ... END DO

303

Syntax:

!$OMP DO [Clauses]

< Fortran DO loop to be executed in parallel >

!$OMP END DO [NOWAIT]

Clauses:

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic } : list)

SCHEDULE (type [, chunk])

ORDERED

The real purpose of supporting parallel execution is the distribution of work across the available
threads. You can explicitly manage work distribution with constructs such as:

IF (omp_get_thread_num() .EQ.

0) THEN

 ...

ELSE IF (omp_get_thread_num() .EQ. 1)

THEN

 ...

ENDIF

However, these constructs are not in the form of directives. The DO...END DO directive pair provides a
convenient mechanism for the distribution of loop iterations across the available threads in a parallel
region. Items to note about clauses are:

Variables declared in a PRIVATE list are treated as private to each processor participating in parallel
execution of the loop, meaning that a separate copy of the variable exists on each processor.

Variables declared in a FIRSTPRIVATE list are PRIVATE, and in addition are initialized from the original
object existing before the construct.

Variables declared in a LASTPRIVATE list are PRIVATE, and in addition the thread that executes the
sequentially last iteration updates the version of the object that existed before the construct.

The REDUCTION clause is as described in the PARALLEL...END PARALLEL section.

The SCHEDULE clause is explained in the following section.

OpenMP Directives for Fortran

304

If ORDERED code blocks are contained in the dynamic extent of the DO directive, the ORDERED clause
must be present. For more information on ORDERED code blocks, see the ORDERED section.

The DO...END DO directive pair directs the compiler to distribute the iterative DO loop immediately
following the !$OMP DO directive across the threads available to the program. The DO loop is executed
in parallel by the team that was started by an enclosing parallel region. If the !$OMP END DO directive is
not specified, the !$OMP DO is assumed to end with the enclosed DO loop. DO...END DO directive pairs
may not be nested. Branching into or out of a !$OMP DO loop is not supported.

By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work will wait until the other threads have finished their portion of work. If NOWAIT is
specified, the threads will not synchronize at the end of the parallel loop.

Other items to note about !$OMP DO loops:

• The DO loop index variable is always private.

• !$OMP DO loops must be executed by all threads participating in the parallel region or none at all.

• The END DO directive is optional, but if it is present it must appear immediately after the end of
the enclosed DO loop.

 PROGRAM DO_USE

 REAL A(1000), B(1000)

 DO I=1,1000

 B(I) = FLOAT(I)

 END DO

!$OMP PARALLEL

!$OMP DO

 DO I=1,1000

 A(I) = SQRT(B(I));

 END DO

 ...

!$OMP END PARALLEL

 ...

 END

The SCHEDULE clause specifies how iterations of the DO loop are divided up between processors. Given a
SCHEDULE (type [, chunk]) clause, type can be STATIC, DYNAMIC, GUIDED, or RUNTIME.

These are defined as follows:

BARRIER

305

When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. The blocks of iterations are statically assigned to threads in a round-robin fashion in order of the
thread ID numbers. The chunk must be a scalar integer expression. If chunk is not specified, a default
chunk size is chosen equal to:

(number_of_iterations + omp_num_threads()

- 1) / omp_num_threads()

When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. As each thread finishes a piece of the iteration space, it dynamically obtains the next set of
iterations. The chunk must be a scalar integer expression. If no chunk is specified, a default chunk size
is chosen equal to 1.

When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an exponentially
decreasing manner with each dispatched piece of the iteration space. Chunk specifies the minimum
number of iterations to dispatch each time, except when there are less than chunk iterations remaining
to be processed, at which point all remaining iterations are assigned. If no chunk is specified, a default
chunk size is chosen equal to 1.

When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is deferred until
runtime. The schedule type and chunk size can be chosen at runtime by setting the OMP_SCHEDULE
environment variable. If this environment variable is not set, the resulting schedule is equivalent to
SCHEDULE(STATIC).

BARRIER

The OpenMP BARRIER directive uses the following syntax.

!$OMP BARRIER

There may be occasions in a parallel region when it is necessary that all threads complete work to that
point before any thread is allowed to continue. The BARRIER directive synchronizes all threads at such a
point in a program. Multiple barrier points are allowed within a parallel region. The BARRIER directive
must either be executed by all threads executing the parallel region or by none of them.

DOACROSS

The C$DOACROSS directive is not part of the OpenMP standard, but is supported for compatibility with
programs parallelized using legacy SGI-style directives.

OpenMP Directives for Fortran

306

Syntax:

C$DOACROSS [Clauses]

< Fortran DO loop to be executed in parallel >

Clauses:

[{PRIVATE | LOCAL} (list)]

[{SHARED | SHARE} (list)]

[MP_SCHEDTYPE={SIMPLE | INTERLEAVE}]

[CHUNK=<integer_expression>]

[IF (logical_expression)]

The C$DOACROSS directive has the effect of a combined parallel region and parallel DO loop applied to
the loop immediately following the directive. It is very similar to the OpenMP PARALLEL DO directive,
but provides for backward compatibility with codes parallelized for SGI systems prior to the OpenMP
standardization effort. The C$DOACROSS directive must not appear within a parallel region. It is a
shorthand notation that tells the compiler to parallelize the loop to which it applies, even though that
loop is not contained within a parallel region. While this syntax is more convenient, it should be noted
that if multiple successive DO loops are to be parallelized it is more efficient to define a single enclosing
parallel region and parallelize each loop using the OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a C$DOACROSS loop is treated the same as a private variable in
a parallel region or DO (see above). A variable declared SHARED or SHARE to a C$DOACROSS loop is
shared among the threads, meaning that only 1 copy of the variable exists to be used and/or modified by
all of the threads. This is equivalent to the default status of a variable that is not listed as PRIVATE in a
parallel region or DO (this same default status is used in C$DOACROSS loops as well).

PARALLEL DO

The OpenMP PARALLEL DO directive uses the following syntax.

Syntax:

!$OMP PARALLEL DO [CLAUSES]

< Fortran DO loop to be executed in parallel >

[!$OMP END PARALLEL DO]

SECTIONS ... END SECTIONS

307

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

COPYIN (list)

IF (scalar_logical_expression)

SCHEDULE (type [, chunk])

ORDERED

The semantics of the PARALLEL DO directive are identical to those of a parallel region containing only a
single parallel DO loop and directive. Note that the END PARALLEL DO directive is optional. The
available clauses are as defined in the DO...END DO and PARALLEL...END PARALLEL sections.

SECTIONS ... END SECTIONS

The OpenMP SECTIONS...END SECTIONS directive pair uses the following syntax:

Syntax:

!$OMP SECTIONS [Clauses]

[!$OMP SECTION]

< Fortran code block executed by processor i >

[!$OMP SECTION]

< Fortran code block executed by processor j >

 ...

!$OMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE (list)

FIRSTPRIVATE (list)

LASTPRIVATE (list)

REDUCTION({operator | intrinsic} : list)

The SECTIONS...END SECTIONS directive pair defines a non-iterative work-sharing construct within a
parallel region. Each section is executed by a single processor. If there are more processors than sections,
some processors will have no work and will jump to the implied barrier at the end of the construct. If
there are more sections than processors, one or more processors will execute more than one section.

OpenMP Directives for Fortran

308

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS...END
SECTIONS directives. In addition, the code within the SECTIONS...END SECTIONS directives must be a
structured block, and the code in each SECTION must be a structured block.

The available clauses are as defined in the DO...END DO and PARALLEL...END PARALLEL sections.

PARALLEL SECTIONS

The OpenMP PARALLEL SECTIONS...END SECTIONS directive pair uses the following syntax:

Syntax:

!$OMP PARALLEL SECTIONS [CLAUSES]

[!$OMP SECTION]

< Fortran code block executed by processor i >

[!$OMP SECTION]

< Fortran code block executed by processor j >

 ...

!$OMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

COPYIN (list)

IF (scalar_logical_expression)

The PARALLEL SECTIONS...END SECTIONS directives define a non-iterative work-sharing construct
without the need to define an enclosing parallel region. Each section is executed by a single processor. If
there are more processors than sections, some processors will have no work and will jump to the implied
barrier at the end of the construct. If there are more sections than processors, one or more processors
will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL
SECTIONS...END SECTIONS directives. In addition, the code within the PARALLEL SECTIONS...END
SECTIONS directives must be a structured block, and the code in each SECTION must be a structured
block.

ORDERED

309

The available clauses are as defined in DO...END DO and PARALELL...END PARALLEL sections.

ORDERED

The OpenMP ORDERED directive is supported using the following syntax:

!$OMP ORDERED

< Fortran code block executed by processor >

!$OMP END ORDERED

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive that
includes the ORDERED clause. The code block between the ORDERED...END ORDERED directives is
executed by only one thread at a time, and in the order of the loop iterations. This sequentializes the
ordered code block while allowing parallel execution of statements outside the code block. The following
additional restrictions apply to the ORDERED directive:

• The ORDERED code block must be a structured block. It is illegal to branch into or out of the
block.

• A given iteration of a loop with a DO directive cannot execute the same ORDERED directive more
than once, and cannot execute more than one ORDERED directive.

ATOMIC

The OpenMP ATOMIC directive uses following syntax:

!$OMP ATOMIC

The ATOMIC directive is semantically equivalent to enclosing the following single statement in a
CRITICAL...END CRITICAL directive pair. The statement must have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x,
intrinsic is one of MAX, MIN, IAND, IOR, or IEOR, and operator is one of +, *, -, /, .AND., .OR., .EQV., or
.NEQV..

OpenMP Directives for Fortran

310

FLUSH

The OpenMP FLUSH directive uses the following syntax:

!$OMP FLUSH [(list)]

The FLUSH directive ensures that all processor-visible data items, or only those specified in list when it’s
present, are written back to memory at the point at which the directive appears.

THREADPRIVATE

The OpenMP THREADPRIVATE directive uses the following syntax:

!$OMP THREADPRIVATE ([/common_block1/ [, /common_block2/] …])

where common_blockn is the name of a common block to be made private to each thread but global
within the thread. This directive must appear in the declarations section of a program unit after the
declaration of any common blocks listed. On entry to a parallel region, data in a THREADPRIVATE
common block is undefined unless COPYIN is specified on the PARALLEL directive. When a common
block that is initialized using DATA statements appears in a THREADPRIVATE directive, each thread’s
copy is initialized once prior to its first use.

The following restrictions apply to the THREADPRIVATE directive:

• The THREADPRIVATE directive must appear after every declaration of a thread private common
block.

• Only named common blocks can be made thread private.

• It is illegal for a THREADPRIVATE common block or its constituent variables to appear in any
clause other than a COPYIN clause.

Run-time Library Routines

User-callable functions are available to the Fortran programmer to query and alter the parallel
execution environment.

integer omp_get_num_threads()

Run-time Library Routines

311

returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region. By default, the value returned by this function is equal to the value of the environment
variable OMP_NUM_THREADS or to the value set by the last previous call to the
omp_set_num_threads() subroutine defined in the following section.

subroutine omp_set_num_threads(scalar_integer_exp)

sets the number of threads to use for the next parallel region. This subroutine can only be called from a
serial region of code. If it is called from within a parallel region, or within a subroutine or function that
is called from within a parallel region, the results are undefined. This subroutine has precedence over
the OMP_NUM_THREADS environment variable.

integer omp_get_thread_num()

returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested parallel
region is the same as a single parallel region.

integer function omp_get_max_threads()

returns the maximum value that can be returned by calls to omp_get_num_threads(). If
omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() will return the new value. This function returns the maximum value whether
executing from a parallel or serial region of code.

integer function omp_get_num_procs()

returns the number of processors that are available to the program.

logical function omp_in_parallel()

returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel region.
When called from within a parallel region that is serialized, for example in the presence of an IF clause
evaluating .FALSE., the function will return .FALSE..

subroutine omp_set_dynamic(scalar_logical_exp)

is designed to allow automatic dynamic adjustment of the number of threads used for execution of
parallel regions. This function is recognized, but currently has no effect.

logical function omp_get_dynamic()

OpenMP Directives for Fortran

312

is designed to allow the user to query whether automatic dynamic adjustment of the number of threads
used for execution of parallel regions is enabled. This function is recognized, but currently always
returns .FALSE..

subroutine omp_set_nested(scalar_logical_exp)

is designed to allow enabling/disabling of nested parallel regions. This function is recognized, but
currently has no effect.

logical function omp_get_nested()

is designed to allow the user to query whether dynamic adjustment of the number of threads available
for execution of parallel regions is enabled. This function is recognized, but currently always returns
.FALSE..

subroutine omp_init_lock(integer_var)

initializes a lock associated with the variable integer_var for use in subsequent calls to lock routines.
This initial state of integer_var is unlocked. It is illegal to make a call to this routine if integer_var is
already associated with a lock.

subroutine omp_destroy_lock(integer_var)

disassociates a lock associated with the variable integer_var.

subroutine omp_set_lock(integer_var)

causes the calling thread to wait until the specified lock is available. The thread gains ownership of the
lock when it is available. It is illegal to make a call to this routine if integer_var has not been associated
with a lock.

subroutine omp_unset_lock(integer_var)

causes the calling thread to release ownership of the lock associated with integer_var. It is illegal to
make a call to this routine if integer_var has not been associated with a lock.

logical function omp_test_lock(integer_var)

causes the calling thread to try to gain ownership of the lock associated with integer_var. The function
returns .TRUE. if the thread gains ownership of the lock, and .FALSE. otherwise. It is illegal to make a
call to this routine if integer_var has not been associated with a lock.

Environment Variables

313

Environment Variables

OMP_NUM_THREADS specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported
with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are defined, the
value of OMP_NUM_THREADS takes precedence.

NOTE

OMP_NUM_THREADS threads will be used to execute the program regardless of the number
of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they will execute correctly. However, performance of
programs executed in this manner can be unpredictable, and oftentimes will be inefficient.

OMP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO loops which
include the SCHEDULE(RUNTIME) clause. The default value for this variable is “STATIC”. If the optional
chunk size is not set, a chunk size of 1 is assumed except in the case of a STATIC schedule. For a STATIC
schedule, the default is as defined in the DO...END DO and PARALLEL...END PARALLEL sections.
Examples of the use of OMP_SCHEDULE are as follows:

$ setenv OMP_SCHEDULE "STATIC, 5"

$ setenv OMP_SCHEDULE "GUIDED, 8"

$ setenv OMP_SCHEDULE "DYNAMIC"

OMP_DYNAMIC currently has no effect.

OMP_NESTED currently has no effect.

MPSTKZ increases the size of the stacks used by threads executing in parallel regions. It is for use with
programs that utilize large amounts of thread-local storage in the form of private variables or local
variables in functions or subroutines called within parallel regions. The value should be an integer n
concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

OpenMP Directives for Fortran

314

Adding HPF Directives to Programs

315

9 HPF Directives
HPF directives are Fortran 90/95 comments which convey information to the PGHPF compiler. Directives
are the heart of an HPF program, indicating data parallelism by specifying how data is assigned and
allocated among processors on a parallel system, and the interrelationships between various data
elements.

Adding HPF Directives to Programs

Directives in an HPF program may have any of the following forms:

CHPF$directive

!HPF$directive

*HPF$directive

Since HPF supports two source forms, fixed source form, and free source form, there are a variety of
methods to enter a directive. Section 3.4 of the Fortran 95 Handbook outlines methods for entering code
that is valid for both free and fixed form Fortran. The C, !, or * must be in column 1 for fixed source form
directives. In free source form, Fortran limits the comment character to !. If you use the !HPF$ form for
the directive origin, and follow the rules outlined in the Fortran 95 Handbook, your code will be
universally valid. The body of the directive may immediately follow the directive origin. Alternatively,
using free source form, any number of blanks may precede the HPF directive. Any names in the body of
the directive, including the directive name, may not contain embedded blanks. Blanks may surround
any special characters, such as a comma or an equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not
significant).

HPF Directives

316

HPF Directive Summary

Table 9-1: HPF Directive Summary

DIRECTIVE FUNCTION

ALIGN Specifies that a data object is mapped in the same fashion as an associ-
ated data object. This is a specification statement. By default, objects are
aligned to themselves.

DIMENSION Specifies the dimensions of a template or processor "array". This is a
specification statement.

DISTRIBUTE Specifies the mapping of data objects to processors. This is a specifica-
tion statement. By default, objects are not distributed.

DYNAMIC Specifies that an object may be dynamically realigned or redistributed.

INDEPENDENT Preceding a DO loop or FORALL , this directive specifies that the DO
loop's iterations do not interact in any way and that the FORALL index
computations do not interfere with each other, and thus the FORALL
may be executed in parallel. This is an executable statement. By default,
FORALL and DO loops are not assumed to be independent.

INHERIT Specifies that a subprogram's dummy argument use the template asso-
ciated with the actual argument for its alignment. This is a specification
statement.

NOSEQUENCE Specifies variables that are not sequential. Note that using PGHPF, by
default variables is not sequential. Variables will be sequential if the
compiler option -Msequence is supplied.

PROCESSORS Specifies the number and rank of a processor arrangement. This is a
specification statement.

REALIGN This is similar to ALIGN, but is executable. An array can be realigned at
any time, if it is declared using the DYNAMIC attribute.

REDISTRIB-
UTE

This is similar to DISTRIBUTE, but is executable. An array can be redis-
tributed at any time, if it is declared using the DYNAMIC attribute.

HPF Directive Summary

317

ALIGN - REALIGN

The ALIGN directive specifies how data objects are mapped in relation to other data objects. The data
objects that are most often aligned in HPF programs are arrays. Alignment suggests to the compiler
that entire objects or elements of arrays be stored on the same processor. Operations on objects that
are aligned should be more efficient than operations on objects that are not aligned, assuming that
objects that are not aligned may reside on different processors.

REALIGN is similar to ALIGN, but is executable. An array can be realigned at any time, if it is declared
using the DYNAMIC attribute.

Syntax

!HPF$ ALIGN alignee align-directive-stuff

or

!HPF$ ALIGN align-attribute-stuff :: alignee-list

where:

alignee is an object-name.

align-directive-stuff is (align-source-list) align -with-clause

align-attribute-stuff is [(align-source-list)] align -with-clause

Each align-source has the form:

:

*

align-dummy

Each align-with-clause has the form:

WITH align-target [(align-subscript-list)]

SEQUENCE Specifies that a variable or common block is sequential and requires lin-
ear, standard FORTRAN 77, treatment. This is a specification statement.

TEMPLATE Defines an entity that may be used as an abstract align-target for a dis-
tribution or a redistribution. This is a specification statement.

DIRECTIVE FUNCTION

HPF Directives

318

An align-subscript has the form:

int-exp

align-subscript-use

subscript-triplet

*

Type

Specification

Default

The default PGHPF alignment specifies that a data object is replicated across all processor memories.
For example, for an array RAY1 with a single dimension and a template T with matching size and
shape, the following alignment specifies replication when T is distributed in any manner across
processors.

!HPF$ALIGN RAY1(*) WITH T(*)

!HPF$DISTRIBUTE T(BLOCK)

See Also

For details on the ALIGN syntax specifications, refer either to section 4.5 of The High Performance
Fortran Handbook, or section 3.4 of the HPF Language Specification.

Example

 PROGRAM TEST

 INTEGER A(1000)

!HPF$ PROCESSORS PROC(10)

!HPF$TEMPLATE T(1000)

!HPF$ ALIGN A(:) WITH T(:)

!HPF$DISTRIBUTE (BLOCK) ONTO PROC:: T

DIMENSION

The DIMENSION attribute specifies the dimensions and extents for each dimension of a TEMPLATE or
PROCESSORS directive.

Syntax

!HPF$ DIMENSION (explicit-shape-spec-list)

HPF Directive Summary

319

Type

Specification

Default

The default for a TEMPLATE or PROCESSORS arrangement is a scalar.

See Also

The TEMPLATE and PROCESSORS directives.

Example

 REAL A(100,100)

!HPF$PROCESSORS, DIMENSION(10,10):: PROC

!HPF$TEMPLATE, DIMENSION(10,10):: T

!HPF$ALIGN WITH T:: A

!HPF$DISTRIBUTE (BLOCK,BLOCK) ONTO PROC:: T

DYNAMIC

The DYNAMIC attribute specifies that an object may be dynamically realigned or redistributed.

Syntax

!HPF$ DYNAMIC alignee-or-distributeee-list

Type

Specification

Default

By default an object is not dynamic.

See Also

The REALIGN and REDISTRIBUTE directives.

HPF Directives

320

Example

 REAL A(100,100)

!HPF$ DYNAMIC A

!HPF$PROCESSORS, DIMENSION(10,10):: PROC

!HPF$TEMPLATE, DIMENSION(10,10):: T

!HPF$ALIGN WITH T:: A

!HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO PROC:: T

DISTRIBUTE - REDISTRIBUTE

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in a processor
arrangement. Distribution partitions an object, in the usual case an array (actually a template),
among a set of processors.

REDISTRIBUTE is similar to DISTRIBUTE, but is executable. An array can be redistributed at any
time, if it is declared using the DYNAMIC attribute

Syntax

!HPF$ DISTRIBUTE distributee dist-directive-stuff

or

!HPF$ DISTRIBUTE dist-attribute-stuff :: distributee-list

where dist-directive-stuff is one of:

(dist-format-list)

(dist-format-list) ONTO processors-name

The form of dist-attribute-stuff is one of:

(dist-format-list)

(dist-format-list) ONTO processors-name

ONTO dist-target

The dist-format may be one of:

BLOCK [(int-expr)]

CYCLIC [(int-expr)]

Type

Specification

HPF Directive Summary

321

Default

By default, each object is replicated and distributed to every processor.

See Also

For details on the DISTRIBUTE syntax specifications, refer either to Section 4.4 of The High
Performance Fortran Handbook, or Section 3.3 of the HPF Language Specification.

Example

 REAL A(100,100)

!HPF$PROCESSORS PROC(10,10)

!HPF$TEMPLATE T(10,10)

!HPF$ALIGN WITH T:: A

!HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO PROC:: T

INDEPENDENT

The INDEPENDENT directive specifies that the iterations of a DO loop, or the computations for the
active index values of a FORALL, do not interfere with each other in any way. Refer to the PGHPF
Release notes for details on extensions to the INDEPENDENT directive.

Syntax

!HPF$ INDEPENDENT [, NEW (variable-list

)]

Type

Executable

Default

By default, DO and FORALL statements are not independent.

See Also

For details on the INDEPENDENT syntax specifications, refer either to Section 6.4 of The High
Performance Fortran Handbook, or Section 4.4 of the HPF Language Specification. Also refer to the
PGHPF Release notes for details on extensions to the INDEPENDENT directive.

HPF Directives

322

Example

!HPF$INDEPENDENT

 DO I = 2, N-1

 X(I) = Y(I-1) + Y(I) + Y(I+1)

 END DO

INHERIT

The INHERIT directive specifies that the template for a dummy argument should be the same as the
template for the corresponding actual argument.

Syntax

!HPF$ INHERIT dummy-argument-name-list

Default

If the INHERIT attribute is not used, and ALIGN and DISTRIBUTE are not used for a dummy
argument, then the dummy's template has the same shape as the dummy argument and it is
ultimately aligned with itself.

Type

Specification

See Also

For details on the INHERIT syntax specifications, refer either to Section 5.4 of The High Performance
Fortran Handbook, or Section 3.9 of the HPF Language Specification.

Example

 REAL VAR1(100)

!HPF$ DISTRIBUTE VAR1(BLOCK)10))

 CALL SUB1(VAR1(10:20:2))

 SUBROUTINE SUB1(PARAM1)

 REAL PARAM1(5)

!HPF$INHERIT PARAM1

PROCESSORS

The PROCESSORS directive specifies one or more processor arrangements, by name, rank, and size.

HPF Directive Summary

323

Syntax

!HPF$PROCESSORS processors-decl-list

Default

The default for PROCESSORS is the number of processors on which the program is running, as
specified by the runtime command-line options.

Type

Specification

See Also

For details on the PROCESSOR syntax specifications, refer either to Section 4.8 of The High
Performance Fortran Handbook, or Section 3.7 of the HPF Language Specification

For finding more information on processors while running a program, refer to the
NUMBER_OF_PROCESSORS and PROCESSORS_SHAPE intrinsics.

Examples

!HPF$PROCESSORS PROCN(128)

!HPF$ PROCESSORS PROC2(3,3,3)

!HPF$PROCESSORS:: PROC3(-8:12,100:200)

NO SEQUENCE

In environments where variables are by default sequential, the NO SEQUENCE directive specifies that
non-sequential access should apply to a scoping unit or to variables and common blocks within the
scoping unit.

Syntax

!HPF$ NO SEQUENCE

or

!HPF$ NOSEQUENCE [::] association-name-list

Type

Specification

HPF Directives

324

See Also

For details on the NO SEQUENCE syntax specifications, refer either to Section 4.10.2 of The High
Performance Fortran Handbook, or Section 7.1.3 of the HPF Language Specification

The SEQUENCE directive.

Example

 INTEGER FLAG, I, A(1000)

 COMMON /FOO/ A,I,FLAG

!HPF$NOSEQUENCE FOO

SEQUENCE

The SEQUENCE directive allows a user to declare explicitly that variables or common blocks are to be
treated by the compiler as sequential.

Syntax

!HPF$ SEQUENCE

or

!HPF$ SEQUENCE [::] association-name-list

Type

Specification

See Also

For details on the SEQUENCE syntax specifications, refer either to Section 4.10.2 of The High
Performance Fortran Handbook, or Section 7.1.3 of the HPF Language Specification.

The NO SEQUENCE directive.

Example

 INTEGER FLAG, I, A(1000)

 COMMON /FOO/ A,I,FLAG

!HPF$ SEQUENCE FOO

HPF Directive Summary

325

TEMPLATE

The TEMPLATE directive declares one or more templates, specifying for each a name, rank, and size
for each dimension.

Syntax

!HPF$ TEMPLATE template-decl-list

Default

By default for each object, a new template is created and in the absence of an explicit ALIGN directive,
the object is ultimately aligned to itself.

Type

Specification

See Also

For details on the TEMPLATE syntax specifications, refer either to Section 4.9 of The High Performance
Fortran Handbook, or Section 3.8 of the HPF Language Specification.

Examples

!HPF$TEMPLATE VAR1(N)

!HPF$TEMPLATE VAR2(N,N)

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK,BLOCK):: BOARD(8,8)

HPF Directives

326

327

Appendix A. HPF_LOCAL
This appendix lists the HPF_LOCAL_LIBRARY procedures. For complete descriptions of the
HPF_LOCAL_LIBRARY routines, and the current standards for HPF_LOCAL extrinsics, refer to Annex A,
"Coding Local Routines in HPF and Fortran 90", in the High Performance Fortran Language
Specification. Table A-1 , “HPF_LOCAL_LIBRARY Procedures”, briefly lists the procedures. Refer to the
man pages supplied with the PGHPF software for further details on these procedures. Refer to Chapter 6,
“Fortran Intrinsics”, for details on the intrinsics defined in the Fortran 90/95 Language Specification
and for HPF LIBRARY procedures.

For complete descriptions of the HPF_LOCAL_LIBRARY routines, and the current standards for
HPF_LOCAL extrinsics, refer to Annex A, "Coding Local Routines in HPF and Fortran 90", in the High
Performance Fortran Language Specification.

328

Table A-1: HPF_LOCAL_LIBRARY Procedures

Intrinsic Description

ABSTRACT_TO_PHYSICAL Returns processor identification for the
physical processor associated with a speci-
fied abstract processor.

GLOBAL_ALIGNMENT Returns information about the global HPF
array argument.

GLOBAL_DISTRIBUTION Returns information about the global HPF
array argument.

GLOBAL_LBOUND Returns lower bounds of the actual HPF glo-
bal array associated with a dummy array.

GLOBAL_SHAPE Returns the shape of the global HPF actual
argument.

GLOBAL_SIZE Returns the global extent of the specified
argument.

GLOBAL_TEMPLATE Returns template information for the global
HPF array argument.

GLOBAL_TO_LOCAL Converts a set of global coordinates within a
global HPF actual argument.

GLOBAL_UBOUND Returns upper bounds of the actual HPF glo-
bal array associated with a dummy array.

LOCAL_BLKCNT Returns the number of blocks of elements in
each dimension on a given processor.

LOCAL_LINDEX Returns the lowest local index of all blocks
of an array dummy.

LOCAL_TO_GLOBAL Converts a set of local coordinates within a
local dummy array to an equivalent set of
global coordinates.

329

ABSTRACT_TO_PHYSICAL

Subroutine returns processor identification for the physical processor associated with a specified
abstract processor relative to a global actual argument array.

Synopsis

ABSTRACT_TO_PHYSICAL(ARRAY, INDEX, PROC)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

INDEX must be a rank-1 integer array containing the coordinates of an abstract processor in the
processors arrangement onto which the global HPF array is mapped. It is an INTENT(IN) argument.
The size of INDEX must equal the rank of the processors arrangement.

PROC must be scalar and of type integer. It is an INTENT(OUT) argument. It receives the identifying
value for the physical processor associated with the abstract processor specified by INDEX.

GLOBAL_ALIGNMENT

This has the same interface and behavior as the HPF inquiry subroutine HPF_ALIGNMENT, but it
returns information about the global HPF array actual argument associated with the local dummy
argument ARRAY, rather than returning information about the local array.

Synopsis

GLOBAL_ALIGNMENT(ARRAY, ...)

LOCAL_UINDEX Returns the highest local index of all blocks
of an array dummy argument.

MY_PROCESSOR Returns the identifying number of the call-
ing physical processor.

PHYSICAL_TO_ABSTRACT Returns coordinates for an abstract proces-
sor, relative to a global actual argument
array.

Intrinsic Description

330

GLOBAL_DISTRIBUTION

This has the same interface and behavior as the HPF inquiry subroutine HPF_DISTRIBUTION, but it
returns information about the global HPF array actual argument associated with the local dummy
argument ARRAY, rather than returning information about the local array.

Synopsis

GLOBAL_DISTRIBUTION(ARRAY, ...)

GLOBAL_LBOUND

Inquiry function, returns all the lower bounds or a specified lower bound of the actual HPF global
array.

Synopsis

GLOBAL_LBOUND(ARRAY, DIM)

Arguments

Optional argument. DIM

ARRAY may be of any type. It must not be a scalar. It must be a dummy array argument of an
HPF_LOCAL procedure which is argument associated with a global HPF array actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n
is the rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of
rank one and size n, where n is the rank of ARRAY.

Return Value

If the actual argument associated with the actual argument associated with ARRAY is an array section
or an array expression, other than a whole array or an array structure component,
GLOBAL_LBOUND(ARRAY, DIM) has the value 1; otherwise it has a value equal to the lower bound for
subscript DIM of the actual argument associated with the actual argument associated with ARRAY.

GLOBAL_LBOUND(ARRAY) has a value whose i th component is equal to GLOBAL_LBOUND(ARRAY, i
), for i = 1,2,...n where n is the rank of ARRAY.

331

GLOBAL_SHAPE

Returns the shape of the global HPF actual argument associated with an array or scalar dummy
argument of an HPF_LOCAL procedure.

Synopsis

GLOBAL_SHAPE(SOURCE)

Argument

SOURCE may be of any type. It may be array valued or a scalar. It must be a dummy argument of an
HPF_LOCAL procedure which is argument associated with a global HPF actual argument.

Return Type

The result is a default integer array of rank one whose size is equal to the rank of SOURCE.

Return Value

The value of the result is the shape of the global actual argument associated with the actual argument
associated with SOURCE.

GLOBAL_SIZE

Inquiry function returns the extent along a specified dimension of the global HPF actual array
argument associated with a dummy array argument of an HPF_LOCAL procedure.

Synopsis

GLOBAL_SIZE(ARRAY, DIM)

Arguments

ARRAY may be of any type. It must not be a scalar. It must be a dummy argument of an HPF_LOCAL
procedure which is argument associated with a global HPF actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1<= DIM <= n, where n
is the rank of ARRAY.

Return Type

Default integer scalar.

332

Return Value

The result has a value equal to the extent of dimension DIM of the actual argument associated with
the actual argument associated with ARRAY or, if DIM is absent, the total number of elements in the
actual argument associated with the actual argument associated with ARRAY.

GLOBAL_TEMPLATE

This has the same interface and behavior as the HPF inquiry subroutine HPF_TEMPLATE, but it
returns information about the global HPF array actual argument associated with the local dummy
argument ARRAY, rather than returning information about the local array.

Synopsis

GLOBAL_TEMPLATE(ARRAY, ...)

Arguments

Refer to HPF_TEMPLATE.

GLOBAL_TO_LOCAL

Subroutine converts a set of global coordinates within a global HPF actual argument array to an
equivalent set of local coordinates within the associated local dummy array.

Synopsis

GLOBAL_TO_LOCAL(ARRAY, G_INDEX,

L_INDEX, LOCAL,

 NCOPIES, PROCS)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an INTENT(IN)
argument. It contains the coordinates of an element within the global HPF array actual argument
associated with the local dummy array ARRAY.

333

L_INDEX (optional) must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an
INTENT(OUT) argument. It receives the coordinates within a local dummy array of the element
identified within the global actual argument array by G_INDEX. (These coordinates are identical on
any processor that holds a copy of the identified global array element.)

LOCAL (optional) must be scalar and of type LOGICAL. It is an INTENT(OUT) argument. It is set to
.TRUE. if the local array contains a copy of the global array element and to .FALSE. otherwise.

NCOPIES (optional) must be scalar and of type integer. It is an INTENT(OUT) argument. It is set to the
number of processors that hold a copy of the identified element of the global actual array.

PROCS (optional) must be a rank-1 integer array whose size is a least the number of processors that
hold copies of the identified element of the global actual array. The identifying numbers of those
processors are placed in PROCS. The order in which they appear is implementation dependent.

GLOBAL_UBOUND

Inquiry function returns all the upper bounds or a specified upper bound of the actual HPF global
array argument associated with an HPF_LOCAL dummy array argument.

Synopsis

GLOBAL_UBOUND(ARRAY, DIM)

Arguments

Optional argument. DIM

ARRAY may be of any type. It must not be a scalar. It must be a dummy array argument of an
HPF_LOCAL procedure which is argument associated with a global HPF array actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n
is the rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of
rank one and size n, where n is the rank of ARRAY.

334

Return Value

If the actual argument associated with the actual argument associated with ARRAY is an array section
or an array expression, other than a whole array or an array structure component,
GLOBAL_UBOUND(ARRAY, DIM) has a value equal to the number of elements in the given dimension;
otherwise it has a value equal to the upper bound for subscript DIM of the actual argument associated
with the actual argument associated with ARRAY, if dimension DIM does not have size zero and has the
value zero if dimension DIM has size zero.

GLOBAL_UBOUND(ARRAY) has a value whose i th component is equal to GLOBAL_UBOUND(ARRAY, i
), for i = 1,2,...n where n is the rank of ARRAY.

LOCAL_BLKCNT

Pure function returns the number of blocks of elements in each dimension, or of a specific dimension
of the array on a given processor.

Synopsis

LOCAL_BLKCNT(ARRAY, DIM, PROC)

Arguments

Optional arguments. DIM, PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM (optional) must be scalar and of type integer with a value in the range 1<= DIM <= n where n is
the rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of
rank one and size n, where n is the rank of ARRAY.

Return Value

The value of LOCAL_BLKCNT(ARRAY, DIM, PROC) is the number of blocks of the ultimate align target
of ARRAY in dimension DIM that are mapped to processor PROC and which have at least one element
of ARRAY aligned to them.

335

LOCAL_BLKCNT(ARRAY, DIM) returns the same value as LOCAL_BLKCNT(ARRAY, DIM,
PROC=MY_PROCESSOR()).

LOCAL_BLKCNT(ARRAY) has a value whose i th component is equal to LOCAL_BLKCNT(ARRAY, i), for
i = 1,...,n, where n is the rank of ARRAY.

LOCAL_LINDEX

Pure function returns the lowest local index of all blocks of an array dummy argument in a given
dimension on a processor.

Synopsis

LOCAL_LINDEX(ARRAY, DIM, PROC)

Arguments

Optional argument. PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the rank
of ARRAY.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is a rank-one array of type default integer and size 1<= DIM <= n, where n is the value
returned by LOCAL_BLKCNT(ARRAY, DIM [, PROC]).

Return Value

The value of LOCAL_LINDEX(ARRAY, DIM, PROC) has a value whose i th component is the local index
of the first element of the i th block in dimension DIM of ARRAY on processor PROC.

LOCAL_LINDEX(ARRAY, DIM) returns the same value as LOCAL_LINDEX(ARRAY, DIM,
PROC=MY_PROCESSOR()).

LOCAL_TO_GLOBAL

Subroutine converts a set of local coordinates within a local dummy array to an equivalent set of
global coordinates within the associated global HPF actual argument array.

336

Synopsis

LOCAL_TO_GLOBAL(ARRAY, L_INDEX,

G_INDEX)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

L_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an INTENT(IN)
argument. It contains the coordinates of an element within the local dummy array ARRAY.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an
INTENT(OUT) argument. It receives the coordinates within the global HPF array actual argument of
the element identified within the local array by L_INDEX.

LOCAL_UINDEX

Pure function returns the highest local index of all blocks of an array dummy argument in a given
dimension on a processor.

Synopsis

LOCAL_UINDEX(ARRAY, DIM, PROC)

Arguments

Optional argument. PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the rank
of ARRAY.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is a rank-one array of type default integer and size b , where b is the value returned by
LOCAL_BLKCNT(ARRAY, DIM [, PROC])

337

Return Value

The value of LOCAL_UINDEX(ARRAY, DIM, PROC) has a value whose i th component is the local index
of the last element of the i th block in dimension DIM of ARRAY on processor PROC.

LOCAL_UINDEX(ARRAY, DIM) returns the same value as LOCAL_UINDEX(ARRAY, DIM,
PROC=MY_PROCESSOR()).

MY_PROCESSOR

Pure function returns the identifying number of the calling physical processor.

Synopsis

MY_PROCESSOR()

Return Type

The result is scalar and of type default integer.

Return Value

Returns the identifying number of the physical processor from which the call is made. This value is in
the range where is the value returned by NUMBER_OF_PROCESSORS().

PHYSICAL_TO_ABSTRACT

Subroutine returns coordinates for an abstract processor, relative to a global actual argument array,
corresponding to a specified physical processor. This procedure can be used only on systems where
there is a one-to-one correspondence between abstract processors and physical processors. On systems
where this correspondence is one-to-many an equivalent, system-dependent procedure should be
provided.

Synopsis

PHYSICAL_TO_ABSTRACT(ARRAY, PROC, INDEX)

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

PROC must be scalar and of type default integer. It is an INTENT(IN) argument. It contains an
identifying value for a physical processor.

338

INDEX must be a rank-1 integer array. It is an INTENT(OUT) argument. The size of INDEX must equal
the rank of the processor arrangement onto which the global HPF array is mapped. INDEX receives the
coordinates within this processors arrangement of the abstract processor associated with the physical
processor specified by PROC.

339

Index
A
ABSTRACT_TO_PHYSICAL 329
ACCEPT 44
ADVANCE 162
ALIGN 317

WITH 317
ALLOCATABLE 45
ALLOCATE 45
arithmetic expressions 12
ARRAY 47, 144
arrays

ARRAY attribute 144
assumed shape 140
assumed size 140
CM Fortran constructors 144
constructor extensions 144
constructors 144
deferred shape 140
explicit shape 140
sections 142, 143
specification 141
specification assumed shape 141
specification assumed size 142
specification deferred shape 141
specification explicit shape 141
subscript triplets 142
subscripts 142
vector subscripts 143

ASSIGN 48
assignment statements 16
assumed shape arrays 140
assumed size arrays 140

attribute
DIMENSION 318
PURE 116

B
BACKSPACE 49

specifier
ERR 49
IOSTAT 49
UNIT 49

binary constants 33
BLOCK 320
BLOCKDATA 49
BYTE 50

C
CALL 51
CASE 52
CHARACTER 52
character constants 29
character set

C language compatibility 4
CLOSE 54

DISP specifier 54
DISPOSE specifier 54
ERR specifier 54
IOSTAT specifier 54
STATUS specifier 54
UNIT specifier 54

closing a file 147
CM Fortran

arrays 144
CM Fortran Intrinsics 261

CSHIFT 262
EOSHIFT 262
RESHAPE 262

column formatting

continuation field 6, 7
label field 6
statement field 6, 7

COMMON 55
COMPLEX 58
complex constants 28
Conformance to standards xiv
constants 25

PARAMETER statement 30
CONTAINS 59
CONTINUE 60
Conventions xvi
CSHIFT

CM Fortran 262
CYCLE 60
CYCLIC 320

D
DATA 61
data types

binary constants 33
character constants 29
complex constants 28
constants 25
double precision constants 27
extensions 22
hexadecimal constants 33
integer constants 25
kind parameter 21
logical constants 28
octal constants 33
real constants 26
size specification 22

DEALLOCATE 62
STAT specifier 62

debug statements 7
DECODE 63

340

Index

deferred shape arrays 140
derived types 30
DIMENSION 64
direct access files 147
Directives

Parallelization 295
DO 65
double precision constants 27
DOUBLECOMPLEX 68
DOUBLEPRECISION 69
DOWHILE 67
DYNAMIC 319

E
ELSE 70, 87, 88
ELSE IF 70, 88
ELSE WHERE 71
ELSEIF 87
ELSEWHERE 134
ENCODE 71
END 72
END DO 65
END IF 88
ENDBLOCKDATA 49
ENDCASE 52
ENDFORALL 80
ENDFUNCTION 83
ENDIF 87
ENDINTERFACE 96
ENDPROGRAM 115
ENDSUBROUTINE 128
ENDTYPE 130
ENDWHERE 134
ENTRY 75
Environment Variables

MPSTKZ 313
OMP_DYNAMIC 313
OMP_NESTED 313
OMP_NUM_THREADS 313
OMP_SCHEDULE 313

EOSHIFT
CM Fortran 262

EQUIVALENCE 78

EXIT 79
expressions 10
EXTERNAL 79
EXTRINSIC 80

F
F77 3F Routines 265

ABORT 266
ACCESS 266
ALARM 267
BESSEL FUNCTIONS 267
chdir 268
CHMOD 269
CTIME 269
DATE 269
DRANDM 283
DSECNDS 285
ELAPSED TIME 270
ERROR FUNCTIONS 270
EXIT 270
FDATE 271
FGETC 271
FLUSH 271
FORK 272
FSTAT 287
GERROR 273
GETARG 274
GETC 274
GETCWD 275
GETENV 275
GETGID 275
GETLOG 275
GETPID 276
GETUID 276
GMTIME 276
HOSTNM 277
IARG 274
IDATE 277
IERRNO 277
IOINIT 277
IRAND 283
IRANDM 283
ISATTY 278

ITIME 278
KILL 278
LINK 279
LNBLNK 279
LOC 279
LSTAT 287
LTIME 280
MALLOC 280
MCLOCK 280
MVBITS 281
OUTSTR 281
PERROR 281
PUTC 282
PUTENV 282
QSORT 282
RAND 283
RANDOM 283
RANGE 284
RENAME 284
RINDEX 285
SECNDS 285
SETVBUF3F 285
SIGNAL 286
SLEEP 287
SRAND 283
STAT 287
STIME 288
SYMLNK 288
SYSTEM 288
TIME 289
TIMES 289
TTYNAM 289
UNLINK 290
WAIT 290

F77 VAX Built-In Functions 291
%LOC 291
%REF(a) 291

F77 VAX System Subroutines 290
F77 VAX/VMS Subroutines 291

DATE 291
EXIT 291
GETARG 292
IARGC 292

Index

341

IDATE 292
MVBITS 292
RAN 293
SECNDS 293
TIME 294

F90 Functions 228
ABS 201
ACHAR 202
ACOS 202
ADJUSTL 203
ADJUSTR 203
AIMAG 203
AINT 204
ALL 204
ALLOCATED 205
ANINT 205
ANY 206
ASIN 206, 207
ASSOCIATED 207
ATAN 208, 209
ATAN2 208
BIT_SIZE 209
BTEST 209
CEILING 210
CHAR 210
CMPLX 211, 215
CONJG 211
COSH 212
COUNT 213
CSHIFT 214
DATE_AND_TIME 214
DBLE 215
DIGITS 216
DIM 216
DOT_PRODUCT 216
DPROD 217
EOSHIFT 217
EPSILON 218
EXP 218
EXPONENT 219
FLOOR 219, 222
FRACTION 220
HUGE 220, 255

IACHAR 220
IAND 221, 223, 225, 229, 230, 231
IBCLR 221
IBITS 205, 211, 218, 221, 240, 241,
258
INDEX 223
INT 223, 224, 225, 227
IOR 225
ISHFT 225, 232, 246, 249
ISHFTC 226
KIND 227
LBOUND 228
LEN_TRIM 229
LGE 229
LLT 231
LOG 231
LOG10 232
LOGICAL 232
MATMUL 233
MAX 233
MAXEXPONENT 234
MAXLOC 234
MAXVAL 235, 237
MERGE 236
MIN 236
MINEXPONENT 236
MINVAL 237
MOD 238
MODULO 238
MVBITS 239
NEAREST 239
NINT 224, 227, 228, 240
NOT 240
PACK 241, 257
PRECISION 242
PRESENT 242
PRODUCT 243
RADIX 243
RANDOM_NUMBER 243
RANDOM_SEED 244
RANGE 245
REAL 245
REPEAT 245

RESHAPE 246
RRSPACING 246
SCALE 247
SCAN 247
SELECTED_INT_KIND 248
SELECTED_REAL_KIND 248
SET_EXPONENT 249
SHAPE 249
SIGN 250
SIN 250
SINH 251
SIZE 251
SPACING 252
SPREAD 252
SQRT 252
SUM 253
SYSTEM_CLOCK 253
TAN 254
TANH 254
TRANSFER 255
TRANSPOSE 255
TRIM 256
UBOUND 256
UNPACK 257
VERIFY 226, 257, 258

F95 Functions
CPU_TIME 213
NULL 241

file access methods 145
fixed source form 2, 6
FORALL 80
FORMAT 81
Format control

specifier
$ specifier 162
A specifier 153
B specifier 154
BN specifier 158
D specifier 154
E specifier 155
EN specifier 155
end of record 161
ES specifier 155

342

Index

F specifier 156
format termination 162
G specifier 156
H specifier 158
I specifier 156
L specifier 157
O specifier 158, 161
P specifier 159
Q specifier 159
quote control 157
S specifier 159
slash 161
SP specifier 159
SS specifier 159
T specifier 160
TL specifier 160
X specifier 160
Z specifier 158, 161

format specifications 151
formatted data transfer 150
Fortran 77 171

Math Intrinsics 172
Fortran Intrinsics 171
Fortran Parallelization Directives

ATOMIC 309
BARRIER 305
CRITICAL ... END CRITICAL 300
DO ... END DO 302
DOACROSS 305
FLUSH 310
MASTER ... END MASTER 301
PARALLEL DO 306
PARALLEL SECTIONS 308
SECTIONS ... END SECTIONS 307
SINGLE ... END SINGLE 302
THREADPRIVATE 310

Fortran program unit
elements of 1

free source form 2, 5
comments 5
continuation line 6
statement labels 6

FUNCTION 83

G
GLOBAL_ALIGNMENT 329
GLOBAL_DISTRIBUTION 330
GLOBAL_LBOUND 330
GLOBAL_SHAPE 331
GLOBAL_SIZE 331
GLOBAL_TEMPLATE 332
GLOBAL_TO_LOCAL 332
GLOBAL_UBOUND 333
GOTO

Assigned 85
Computed 86
Unconditional 87

H
hexadecimal constants 33, 34
hollerith constants 35
HPF Directives

!HPF$ 315
*HPF$ 315
adding to HPF 315
ALIGN 317
CHPF$ 315
DISTRIBUTE 320
DISTRIBUTE BLOCK 320
DISTRIBUTE CYCLIC 320
DISTRIBUTE ONTO 320
INDEPENDENT 321
INHERIT 322
NOSEQUENCE 323
PROCESSORS 322
REALIGN 317
REDISTRIBUTE 320
SEQUENCE 324
summary table 316
TEMPLATE 325

HPF_LOCAL Functions
ABSTRACT_TO_PHYSICAL 329
GLOBAL_ALIGNMENT 329
GLOBAL_DISTRIBUTION 330
GLOBAL_LBOUND 330
GLOBAL_SHAPE 331
GLOBAL_SIZE 331

GLOBAL_TEMPLATE 332
GLOBAL_TO_LOCAL 332
GLOBAL_UBOUND 333
LOCAL_BLKCNT 334
LOCAL_LINDEX 335
LOCAL_TO_GLOBAL 335
LOCAL_UNIDEX 336
MY_PROCESSOR 337
Overview 327
PHYSICAL_TO_ABSTRACT 337

I
IF

Arithmetic 87
Block 87
Logical 88

IMPLICIT 89
implied DO list 151
INCLUDE 8, 90
INDEPENDENT 321
INHERIT 322
input and output 145
INQUIRE 91

ACCESS specifier 91
ACTION specifier 91
BLANK specifier 91
DELIM specifier 91
DIRECT specifier 91
ERR specifier 91
EXIST specifier 92
FILE specifier 92
FORM specifier 92
FORMATTED specifier 92
IOSTAT specifier 92
NAME specifier 92
NAMED specifier 92
NEXTREC specifier 92
NUMBER specifier 92
OPENED specifier 92
PAD specifier 92
POSITION specifier 93
READ specifier 93
READWRITE specifier 93

Index

343

RECL specifier 93
SEQUENTIAL specifier 93
STATUS specifier 93
UNFORMATTED specifier 93
WRITE specifier 93

INTEGER 94
integer constants 25
INTENT 95
INTERFACE 96
INTRINSIC 96
intrinsic data types 21

L
list-directed formatting 163
list-directed input 163
list-directed output 165
LOCAL_BLKCNT 334
LOCAL_LINDEX 335
LOCAL_TO_GLOBAL 335
LOCAL_UNIDEX 336
LOGICAL 98
logical constants 28

M
MAP@ 99
multiple statements 6
MY_PROCESSOR 337

N
NAMELIST 102
namelist groups 167
namelist input 167
namelist output 168
non-advancing i/o 162
NULLIFY 102

O
octal constants 33, 34
ONTO 320
OPEN 103

ACCESS specifier 103
ACTION specifier 103

ASYNCHRONOUS specifier 103
BLANK specifier 103
DELIM specifier 104
ERR specifier 104
FILE specifier 104
FORM specifier 104
IOSTAT specifier 104
PAD specifier 104
POSITION specifier 104
RECL specifier 104
STATUS specifier 105

opening and closing files 146
OpenMP Directives

syntax 295
OpenMP Environment Variables

MPSTKZ 313
OMP_DYNAMIC 313
OMP_NESTED 313
OMP_NUM_THREADS 313
OMP_SCHEDULE 313

OpenMP Fortran Directives 295
OpenMP Fortran Support Routines

omp_destroy_lock() 312
omp_get_dynamic() 312
omp_get_max_threads() 311
omp_get_nested() 312
omp_get_num_procs() 311
omp_get_num_threads() 310
omp_get_thread_num() 311
omp_in_parallel() 311
omp_init_lock() 312
omp_set_dynamic() 311
omp_set_lock() 312
omp_set_nested() 312
omp_set_num_threads() 311
omp_test_lock() 312
omp_unset_lock() 312

option
-Mdlines 7
-Mfreeform 2

OPTIONAL 108
OPTIONS 108

P
Parallelization Directives 295
PARAMETER 110
PAUSE 110
PHYSICAL_TO_ABSTRACT 337
POINTER 111
pointers 33
precedence rules 10
PRINT 113
PRIVATE 114
PROGRAM 115
PUBLIC 115
PURE 116

R
READ 117

ADVANCE specifier 117
ASYNCHRONOUS specifier 117, 135
END specifier 117
EOR specifier 117
ERR specifier 117
FMT specifier 117
IOSTAT specifier 117
NML specifier 117
REC specifier 118
SIZE specifier 118

REAL 119
real constants 26
REALIGN 317
RECORD 120
RECURSIVE 121
REDIMENSION 122
REDISTRIBUTE 320
Related Publications xvii
RESHAPE

CM Fortran 262
RETURN 122
REWIND 123

specifier
ERR 123
IOSTAT 123
UNIT 123

344

Index

S
SELECT 52
SELECT CASE 125
Standard compatibility xiv
standard preconnected units 146
Statement

ACCEPT 44
ALLOCATABLE 45
ALLOCATE 45
ARRAY 47, 144
ASSIGN 48
BACKSPACE 49
BLOCKDATA 49
BYTE 50
CALL 51
CASE 52
CHARACTER 52
CLOSE 54
COMMON 55
COMPLEX 58
CONTAINS 59
CONTINUE 60
CYCLE 60
DATA 61
DEALLOCATE 62
DECODE 63
DIMENSION 64
DO 65
DOUBLECOMPLEX 68
DOUBLEPRECISION 69
DOWHILE 67
ELSE 70, 87, 88
ELSE IF 70, 87, 88
ELSE WHERE 71
ELSEWHERE 134
ENCODE 71
END 72
END DO 65
END FUNCTION 83
END IF 87, 88
END PROGRAM 115
ENDBLOCKDATA 49
ENDCASE 52

ENDFORALL 80
ENDINTERFACE 96
ENDSUBROUTINE 128
ENDTYPE 130
ENDWHERE 134
ENTRY 75
EQUIVALENCE 78
EXIT 79
EXTERNAL 79
EXTRINSIC 80
FORALL 80
FORMAT 81
FUNCTION 83
GOTO 85, 86, 87
IF 87, 88
IMPLICIT 89
INCLUDE 90
INQUIRE 91
INTEGER 94
INTENT 95
INTERFACE 96
INTRINSIC 96
LOGICAL 98
MAP@ 99
NAMELIST 102
NULLIFY 102
OPEN 103
OPTIONAL 108
OPTIONS 108
PARAMETER 110
PAUSE 110
POINTER 111
PRINT 113
PRIVATE 114
PROGRAM 115
PUBLIC 115
READ 117
REAL 119
RECORD 120
RECURSIVE 121
REDIMENSION 122
RETURN 122
REWIND 123

SELECT 52
SELECT CASE 125
SEQUENCE 125
STOP 126
STRUCTURE@ 126
SUBROUTINE 128
TARGET 129
THEN 87, 88, 129
TYPE 130
UNION@ 131
USE 133
VOLATILE 133
WHERE 134
WRITE 135

Statement ordering 2
Statements and comments 1
STOP 126
STRUCTURE@ 126
SUBROUTINE 128
symbolic name scope 16

T
tab formatting 7
TARGET 129
targets 33
THEN 87
TYPE 130

U
unformatted data transfer 150
UNION@ 131
USE 133

V
VOLATILE 133

W
WHERE 134
WITH 317
WRITE

specifier
ADVANCE specifier 135

Index

345

ERR specifier 135
FMT specifier 135
IOSTAT specifier 135
NML specifier 136
REC specifier 136

	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	1 Language Overview
	Elements of a Fortran Program Unit
	Statements
	Free and Fixed Source
	Statement Ordering

	The Fortran Character Set
	Free Form Formatting
	Fixed Formatting
	Column Formatting
	Fixed Format Label Field
	Fixed Format Continuation Field
	Fixed Format Statement Field
	Fixed Format Debug Statements
	Tab Formatting
	Fixed Input File Format - Summary

	Including Fortran Source Files
	The Components of Fortran Statements
	Symbolic Names

	Expressions
	Expression Precedence Rules
	Arithmetic Expressions
	Relational Expressions
	Logical Expressions
	Character Expressions
	Character Concatenation

	Symbolic Name Scope
	Assignment Statements
	Arithmetic Assignment
	Logical Assignment Statement
	Character Assignment

	Listing Controls
	OpenMP Directives
	HPF Directives

	2 Fortran Data Types
	Intrinsic Data Types
	Kind Parameter
	Number of Bytes Specification

	Constants
	Integer Constants
	Binary, Octal and Hexadecimal Constants
	Real Constants
	Double Precision Constants
	Complex Constants
	Double Complex Constants
	Logical Constants
	Character Constants
	PARAMETER Constants

	Derived Types
	Arrays
	An Array Declaration Element
	Deferred Shape Arrays
	Subscripts
	Character Substring

	Fortran Pointers and Targets
	Fortran Binary, Octal and Hexadecimal Constants
	Octal and Hexadecimal Constants - Alternate Form §

	Hollerith Constants
	Structures
	Records
	UNION and MAP Declarations
	Data Initialization

	Pointer Variables
	Restrictions

	3 Fortran Statements
	Origin of Statement
	Statements

	4 Fortran Arrays
	Array Types
	Explicit Shape Arrays
	Assumed Shape Arrays
	Deferred Shape Arrays
	Assumed Size Arrays

	Array Specification
	Explicit Shape Arrays
	Assumed Shape Arrays
	Deferred Shape Arrays
	Assumed Size Arrays

	Array Subscripts and Access
	Array Sections and Subscript Triplets
	Array Sections and Vector Subscripts

	Array Constructors
	CM Fortran Extensions
	The ARRAY Attribute §
	Array Constructors Extensions §

	5 Input and Output Formatting
	File Access Methods
	Standard Preconnected Units

	Opening and Closing Files
	Direct Access Files
	Closing a File

	Data Transfer Statements
	Unformatted Data Transfer
	Formatted Data Transfer
	Implied DO List Input Output List
	Format Specifications
	A Format Control - Character Data
	B Format Control - Binary Data
	D Format Control - Real Double Precision Data with Exponent
	E Format Control - Real Single Precision Data with Exponent
	EN Format Control
	ES Format Control
	F Format Control - Real Single Precision Data
	G Format Control
	I Format Control - Integer Data
	L Format Control - Logical Data
	Quote Format Control
	BN Format Control - Blank Control
	H Format Control - Hollerith Control
	O Format Control Octal Values
	P Format Specifier - Scale Control
	Q Format Control - Quantity
	S Format Control - Sign Control
	T , TL and X Format Controls - Spaces and Tab Controls
	Z Format Control Hexadecimal Values
	Slash Format Control / - End of Record
	The : Format Specifier - Format Termination
	$ Format Control

	Variable Format Expressions ,<expr>

	Non-advancing Input and Output
	List-directed formatting
	List-directed input
	List-directed output
	Commas in External Field

	Namelist Groups
	Namelist Input
	Namelist Output

	6 Fortran Intrinsics
	FORTRAN 77 and Fortran 90/95 Intrinsics by Category
	FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions
	Supported HPF Intrinsics
	CM Fortran Intrinsics §

	7 3F Functions and VAX Subroutines
	3F Routines
	VAX System Subroutines
	Built-In Functions
	VAX/VMS System Subroutines

	8 OpenMP Directives for Fortran
	Parallelization Directives
	PARALLEL ... END PARALLEL
	CRITICAL ... END CRITICAL
	MASTER ... END MASTER
	SINGLE ... END SINGLE
	DO ... END DO
	BARRIER
	DOACROSS
	PARALLEL DO
	SECTIONS ... END SECTIONS
	PARALLEL SECTIONS
	ORDERED
	ATOMIC
	FLUSH
	THREADPRIVATE
	Run-time Library Routines
	Environment Variables

	9 HPF Directives
	Adding HPF Directives to Programs
	HPF Directive Summary

	Appendix A. HPF_LOCAL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

