PGI® User’s Guide

Parallel Fortran, C and C++ for Scientists and Engineers

The Portland Group™
STMicroelectronics
Two Centerpointe Drive
L ake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of STMicroelectronics, makes no warranty

for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein. The
Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document may be reproduced or transmitted in any
form or by any means, for any purpose other than the purchaser's personal use without the express written permission of The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this manual, The
Portland Group was aware of a trademark claim. The designations have been printed in caps or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular,
to the High Performance Debugging Forum for their efforts.

PGF95, PGF90, PGC++, Cluster Development Kit, CDK, PGI Unified Binary, PGI Visual Fortran, PVF and The Portland Group are trademarks and PGI, PGHPF, PGF77, PGCC,
PGPROF, and PGDBG are registered trademarks of STMicroelectronics, Inc. Other brands and names are the property of their respective owners. The use of STLport, a C++
Library, is licensed separately and license, distribution and copyright notice can be found in the online documentation for a given release of the PGI compilers and tools.

PGI® User's Guide
Copyright © 1998 — 2000 The Portland Group, Inc.
Copyright © 2000 — 2006 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America
First Printing: Release 1.7, Jun 1998
Second Printing: Release 3.0, Jan 1999
Third Printing: Release 3.1, Sep 1999
Fourth Printing: Release 3.2, Sep 2000
Fifth Printing: Release 4.0, May 2002
Sixth Printing: Release 5.0, Jun 2003
Seventh Printing: Release 5.1, Nov 2003
Eight Printing: Release 5.2, Jun 2004
Ninth Printing: Release 6.0, Mar 2005
Tenth Printing: Release 6.1, Dec 2005
Eleventh Printing: Release 6.2, Aug 2006
Twelfth printing: Release 7.0-1, December, 2006
Thirteenth printing: Release 7.1, October, 2007

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com/

Contents

PLEEACE ..o Xix
AUAIENCE DESCIIPLONvviiieiieiie ettt sttt ettt eneeenee e XiX
Compatibility and Conformance to Standardscocvviiiiiiiiininiiiicc XiX
OFZANIZALIONeviiiiiiiice ettt ettt e et XX
Hardware and Software CONSELAINESccveruieriiiieiiieie et Xxii
COMVEILIONSvveeiiiiiieeiiiie ettt et ettt e ettt e e et e e e st et e s anbneeee st XXii
Related PUDLCAONScc.ooviiiiiiiiieiiet et XXVii

1. GettiNG STATTEMc.coviiiiiiiiecc s 1
OVEIVIEW ..eeiiiiiiiiiiieiet ettt ettt e e e sttt e e e s st e et e e s e s st reeeeeeens 1
Invoking the Command-level PGI COMPILETSccoooviiiriririniiiiiiiccce e 1

CommANd-HNE SYNTAXc..ooviriiriiiiiiiiiiiii it 2
COMMANA-TNE OPLONSevveiieeiieiieitiee ettt ettt be e e 3
Fortran Directives and C/C++ Pragmascoocvvviiriiriirieniniiiniieieeeenene e 3
Filename COMVEMHONSooiuriiiiiiiiiiiieitie ettt ettt ettt ettt 3
INPUL FILES ... e 3
OULPUL FHLES ..ot 5
Fortran, C, and C++ DAt TYPESeovvevrerieieierieiteeie ettt ettt ete et e e sneene s e 6
Parallel Programming Using the PGI COMPIETSccoooviriiriiriiniiiiiiicicieceese e 7
Running SMP Parallel Programscoccoiiiiiiiiiiniiniiiiinicicneetec e 7
Running Data Parallel HPF Programsccccocoviriiiiiiiiiiinieniie e 8
Platform-specific CONSIAEIAONScviiiiriiiiiiieie et 8
Using the PGI Compilers 0N LINUXcc.cooviiieriiiieiieiieieiieie et 9
Using the PGI Compilers on WINAOWSc.coerviriiriiniiiniiiiiieceese e 10
Using the PGI Compilers on SUA and SFUccccoeiiiiiiniiiiiiicccc e, 11
Using the PGI Compilers 0n Mac OS Xoocveriiiiiiiniiiiiiciieic e 11
Site-specific Customization of the COMPIIETScccveriiiiiiiieiiiie e 12
USING SIEIC FILES ...oovviiiiiiiiiiciiii e 12
USING USET TC FIleSccuviiiiiiiiiiiiiiiiicicct e 12
Common Development TASKSccueiiiriiiiiiiiieiieiie ettt 13
2. Using Command Line OPtionscccoccoeviiiinininieiccseeeenes 15

PGI® User's Guide

Command Line Option OVEIVIEWcc.coiiriiiiiniiniiiiiiiienitete ettt 15
Command-line OPtioNS SYNLAXcoveruiiiiiiiniiiiiit ettt 15
Command-lne SUDOPLONScoveriiriiriiiiiiiiii e 16
Command-line Conflicting OPONScovevviriiriiiiiiiiiieeres s 16

Help with Command-line OPtionScccooiiiiiiiiiiiiii e 16

Getting Started with Performanceccccocoviiiiiiiiiiii e 18
Using —fast and —fastsse OPHONSc.eoeruiriiiiiiiiiierieete e 18
Other Performance-related OPHONScoovviiieriiriiiieiiee e 19

Targeting Multiple Systems; Using the -tp OPtioncocveviiiiiiiniiiiniceecc 19

Frequently-used OPLONScc.oviiriiiiiiiiiietie et 19

3. Using Optimization & Parallelization ..., 21

Overview Of OPHMIZALONcovertiriiiiiiiiiieiete et 21
LOCAl OPUMIZALONc.veivviiieniieiiceiiee e 22
Global OPHMIZALONcoviiiiiiiiiiiieit e 22
Loop Optimization: Unrolling, Vectorization, and Parallelizationcccceoviiinnnnne. 22
Interprocedural Analysis (IPA) and Optimizationccccoceviiieiierieneneninenieeeeee, 22
Function INJNINGc.ooviiiiiiiiiii e 22
Profile-Feedback Optimization (PFO)ccevieriiiiiiiieieeie et 22

Getting Started with OPtHMIZAONScocviriiiiiiiiiice e 23

Local and Global Optimization USING -0coevviriiriiiiiiieice e 24
Scalar SSE Code GENETAONcveieriiriiriiiiiitieiieit ettt 26

Loop Unrolling using —Munrollcc.cocuiiiiniiiiiiiiiiic s 27

Vectorization using —MVECEccooiiiiiiiiiiiiiii 28
Vectorization SUD-OPHONSccvevieriiiiiiiii i 28
Vectorization Example Using SSE/SSE2 INSrUCHONSovvervivvirieniiiiiniieiicicneecece 30

Auto-Parallelization using -MCONCULcocviiiiiiiiiiiiii et 32
Auto-parallelization SUD-OPHONScciriiiriiiiiiiiii e 33
Loops That Fail to Parallelizeccocooiiiiniiiiiiic 34

Processor-Specific Optimization and the Unified Binaryccccocoviriiiniiiinincnccn 36

Interprocedural Analysis and Optimization uSing —MiPac..covevvieriiiiniiiniiieee e 37
Building a Program Without IPA — Single Stepccccooeiiiniiiiniiiicn 37
Building a Program Without IPA - Several Stepsccccooivviiriiiriiiiniiiiiiece 38
Building a Program Without IPA Using Makecc.coceviiiviiiiniiiniiiiicecnce 38
Building a Program with IPAcccooiiiiiiiiiiiii e 38
Building a Program with IPA - Single Stepc.ccooviviiiiniiiiiie 39
Building a Program with IPA - Several Stepscccccooeriiiiiniiiniiiiiiiieecec 39
Building a Program with IPA Using Makeccccooiiiiiniiiiniiiiicce 40
QuEStiONS ADOUL TPAuiiiiiiiieiie et 40

Profile-Feedback Optimization using —Mpfi/—MpPfococeviriiiiiiiiiiii e, 41

Default Optimization LEVELSccoveriiiiiiiiiiiiiiiiccee e 42

Local Optimization Using Directives and Pragmascocovivviiriininiinieniienienceicsee 42

Execution Timing and Instruction COUNtNGc.cocoviviiriiniiiiiinienieicne e 43

Portability of Multi-Threaded Programs on LINUXcccooeririniniiiniiiiieeccee e 43
TOPGDINA ... 44
JIDOUMA ..o +

PGI® User's Guide

4. Using Function INJining ..o 45
Invoking FUNCHON INHNINGoovviiiiiiiieiieieeie ettt sbe e 45
Using an INHNE LIDIATYcooviiiiiiiieiicicce e 46
Creating an Inlne LIDIArYccoooviiiiiiiiiiii e 47
Working with Inline LIDIariescccccvevveiieriiiiieiiee e 48
Updating Inline Libraries - Makefilescccocooviiiiiiiiiiiiiiic e 48
Error Detection during INHNINGccovieriiiiiiiieriieieie et 49
EXAMPIES ...o.vveiieiiieiie ittt ettt ettt ettt ettt et e et et et te e b s e teenteent e neene e 49
Restrictions on INHNINGoooviiiiiiiiiiiiiiii e 49
5. USING OPENMP ... 51
Fortran Parallelization DIirECVEScccuerieriiiiiriiinieiiesiiete ettt 51
C/C++ Parallelization PraAMAScc.eevivieriieiiieiieiieeitesiee et eiee et e sieeenbeesieessbeestaeenbeeseee e 52
Directive and Pragma RECOZNILONcoviriiriieiiiiiiiiete ettt 53
Directive and Pragma Summary Tablecocoiiiiiiiiiniiiii e 53
Directive and Pragma ClAUSESccveriviiriieiiieiiieiieeite et eiteeee et e sbeesieesrbeesbeesbeesteesnseens 54
RUN-time LIDrary ROULNESccoviiiiiiiiiiiiiiiieiie ittt ettt 55
Environment VAriablescccoiviiiiiiiiiiiii e 59
OMP_DYNAMIC ...ttt e ettt e e e e ettt e e e e s e eaebbbeees 59
OMP_NESTEDcoiiiiiiieiiiiit oottt ettt e e et e e st e e s es 59
OMP_NUM_THREADSoiiiiiiiiiiteeiiite ettt e e e e s es 59
OMP_SCHEDULEoottiiiiiiiiiiiiiiitt et e et e e e e st eeeeeenaas 60
OMP_STACK_SIZEoveiiiiiiiieeeee ettt e e e e 60
OMP_WAIT _POLICYeeeiiiiiiiieeiiiiit ettt ettt e e e e st e e e 60

6. Using Directives and Pragmasc.ccoocooiniinnininiinninisnsssssssnens 63
PGI Proprietary FOrtran DIr€Ctivescceieiiiiiiiiiiiiiiiiiiiiii e 63
PGI Proprietary C and C++ Pragmascccooeriiiiiiiiiiiiiiciceene e 64
PGI Proprietary Optimization Fortran Directive and C/C++ Pragma Summaryccoccoeninnnens 04
Scope of Fortran Directives and Command-Line OPHONScovevvierieriiiiieiienieaieseenieeee e 66
Scope of C/C++ Pragmas and Command-Line OPtONSc.cooververiiirienieaienienieeie e 67
PLEfEICR DILECHVES ...ttt ettt e e e e e e 69
FOormat REqUITEMIENLSviiiiiiiieieiiiitee et e e et e e e e e e 70
SAMPIE USAZE ...ttt 70
IDECS DAFECEVE ...ttt et e e e et e e e et e e et e et e e e e e et e et e e et e e s e e neaeees 70
FOormat REqUITEMIENLSuvuiiiiiiieiiiiiiee et e e e e e e e e 71
ALIAS DITECHVE ...eeiiiiiiiiiiiiiie ettt e 71
ATTRIBUTES DIFECHVEvveeniiiiiiiieiiit et 71
DISTRIBUTE DiIFECHVEveeniiiiiiiieiiiteiiit ettt 72
ALIAS DITECHVE ...eeiiiiiiiiiiiiiie ettt 72
CEPRAGMA € ..ottt ettt ettt ettt ettt ettt ettt ettt e et et e aeeaeereensens 72
7. Creating and Using LIDraries ..., 75
Using builtin Math FUnctions in G/C++ ..c..couevuiiiiiiiiiiiiiieieic et 75
Creating and Using Shared Object Files 0n LiINUXcccocieviiiiniiiiiiiniiiciccceccc 76

PGI® User's Guide

Creating and Using Shared Object Files in SFU and 32-bit SUAcccceeviiiiiiiiiniiiiciceeee, 77
Shared Object EXTor MESSAZEcovevviriieniiiiiiiiieiieie ettt 78
Shared Object-Related Compiler SWItchesccooivviiniiiniiiiiii 78

PGI Runtime LibrarieS 00 WINAOWSuuuueuueeeeieeeieieeeieieeeeeeeeeeaeeaeeeeaaaeseeeeeeaeeeeseeeeeneneeennnnnnes 79

Creating and Using Static Libraries on Windowsccccooiiiiiniiiiniiniiiiiice 79
AT COIMUIMAIIA ...ttt ettt nnnnnnns 79
ranlib COMMANGooovvvviiiiiiii e 80

Creating and Using Dynamic-Link Libraries on Windowscccccoceviiiiniiinnicnicciiencen, 80

USING LIB3F ..ot 88

LAPACK, BLAS AN FETSoooiiiiiiiiiiiiiiie ettt 88

The C++ Standard Template LiDrarycoccooiiiiiiiiiiii e 88

8. Using Environment Variables ..., 89

Setting Environment VAriablesccooiiiiiiiiiiiiiiiiii e 89
Setting Environment Variables on LINUXccccoiiiiiiiiiiiiiiiiiiecee e 89
Setting Environment Variables on Windowscccoiiiiiiiiiiiiiice 90
Setting Environment Variables on Mac OSXccccooiiiiiiiniiiiiiiiieciee e 90

PGI-Related Environment VAriablescoovvviiiiiiiiiiiiiii 91

PGI Environment VATIADIESoovvviiviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt 92
FLEXLM_ BATCHcoovvnniiiiiie ettt e e st e st e e s aaaas 93
FORTRAN_OPT ...ttt et et e e e e e eaanas 93
GMON_OUT _PREFIXouuiiiiiiiiiiiiiiiee et 93
LD_LIBRARY PATHoooviniiiiiii et 93
LM_LICENSE_FILEoooeiiiiiii e e e et eaaaas 93
MANPATH ...coooiiii et et e e e e e e et e et eeees 04
MPSTKZ ..o e e e et e e e e e aaa 04
MP_BIND oot 04
MP _BLIST oottt 95
M PIN Lo e 95
MP_WARN ..ot e 95
1[0 1 U TP UPPPTP 96
NCPUS M AKX oottt et et e e e et e e e e e b e e e e et e e e eab e e eeabteeeearineaaaes 96
NO_STOP_MESSAGEoovriiiiiiiiiiiiee e 96
PATH oot e e e 96
o0 TN 96
PGI_CONTINUEovvuiiieiiiiiiiieee ettt ettt e et e e e e e 97
PGI_OBJSUFFIX ..ottt ettt ettt et e et e eeee et e e eeeeeeeeeeeeeeeees 97
PGI_STACK _USAGEooommmiiiiiiiiiee e 97
PGILTERM ...t e e e et s et e e e e e s e e e eaaans 97
PGI_TERM_DEBUGouoiiiiiiiiiiiiiiiiie et eeans 99
P D e 99
STATIC_RANDOM_SEEDoovttiiiiiiiiiiiiiiiie e 99
0 PR 100
TMPDIR ..ottt 100

Using Environment MOAUIEScccoooviiiiiiiiiiiiiiccc e 100

Stack Traceback and JIT DebUZZINGcovveiiriiriiiiiiiiiie e 101

Vi

PGI® User's Guide

9. Distributing Files - Deploymentccocooiiiiiiiiieeee, 103
Deploying AppLications 0N LINUXcccuieriiiiiiiieiieeiie ittt 103
Runtime Library CONSIdErationscocuieriieiiiiiiieiiieniie sttt 103
04-bit LinuxX CONSIAETAONScvevieviierieiiiteieti ettt ettt 104
Linux RediStributable FIlescocovoiiiiiriiiiiiiiieieeiee e 104
Restrictions on Linux POrtabilitycccoovieviiiiiiiiiiiiiieiiceecie e 104
Installing the Linux Portability PACKAZEccoieiiiiiiiiiiiiieiie e 104
Licensing for Redistributable Filescccooiiiiiiiiiiiiii e 105
Deploying Applications 0n WINAOWScc.eoruieiiiiiiiiiiiiiesie et 105
PGI RediStribUtablesc..ovuiiiiiiiiiiiiiiiccici e 105
Microsoft RediStributablesc..oooiiiiiiiiiiiiii 105

Code Generation and Processor ArChiteCturecccovvveviiriiiiiniiiiiiice e 106
Generating Generic X80 COAEcevvieiiieiiieieieet ettt 106
Generating Code for a Specific PrOCESSOTccuveriiiiiieiiiiiieiie et 106
Generating Code for Multiple Types of Processors in One Executablecccccovvieniinnennn. 106
Unified Binary Command-line SWitChesccccooviiiiiiiiiiiiiic e 107
Unified Binary Directives and Pragmaoccoeviiiiiiieiiiiiiieiiecieece e 107

10. Inter-language Callingcocoooiiiiiic s 109
Overview of Calling CONVENLIONScveriieriiiiiriieieie ettt 109
Inter-language Calling Considerationscceovevieriiririniiiiieicicec e, 110
Functions and SUDTOULNESooouiiiiiiiriiiieiieie et 110
Upper and Lower Case Conventions, UNErSCOTEScoveruerieniienieiieniiaiesieenieeeenieeniesnnens 111
Compatible DAL TYPESc.vevieriiiiiiitiiiieit ettt 111
Fortran Named Common BIOCKSccccooiiiiiiiiiiiiiicc e 112
Argument Passing and Return VALUESccoooveiiiiiiriniiiiiiiiiceccc e 113
Passing by VAlue (9VAL)c.eoveiiiiriiiiiiitiiieieit e 113
Character Return VAIUESccoooioiiiiiiiiiiiiie e 113
Complex REMUN VAIUESccocoviiiiiiiiiiiiiieiieie ettt 114
ALTAY TAICES ..ot 114
T 111) (TSP P TSP P R UPPRPPRR 115
Example - Fortran Calling Ccoooiieiiiiiiiiiice e 115
Example - C Calling FOTLrancccooieiiiiiiiiiniieie et 115
Example - G ++ CAllNG Coovvoviiinieiieiiieicieeie ettt 116
Example - C Calling G+ ..oovveiireiiiiiiieieeeee e 117
Example - Fortran Calling G+ooviriiiiiiieiicie e 118
Example - C++ Calling FOTtrancccoovviiiiiiiiiiieieiiesee e 119
Win32 Calling CONVENHONSc.veiuieiieiieiiiettaie et ettt et see e 120
Win32 Fortran Calling CONVENtONSccceerviiiiriieiiiieiieie et 120
Symbol Name Construction and Calling EXampleccccooveviiiiiiiiniininieceicieeee, 121
Using the Default Calling CONVENtONcoveriiiiieiieiiiienieie et 122
Using the STDCALL Calling CONVENtONeouieriiiieriieiiiiesiieie et 122
Using the C Calling CONVENLONcoviriiiiiiiieiieie it 122
Using the UNIX Calling CONVENtIONcceeruiriieriieiiiieniieie sttt 123

11. Programming Considerations for 64-Bit Environmentsc......... 125

PGI® User's Guide

viii

Data Types in the 64-Bit ENVIFONMENEccooviiiiiiiiiiiiiiieie e 125
C/CH+ DAL TYPLS ..ottt 126
FOIran DAtA TYPEScveviriiiiiiiieiieieiet ettt 126

Large Static DAta iN LINUXooverviriiiiiiiiiiitiiieicce e 126

Large Dynamically ALlOCated DAtAc..coveririiiiiiiiiiiiieese e 126

04-Bit ATaY INAEXINGeveeieviitiieiieti ettt sttt 126

Compiler Options for 64-bit Programmingccccervririeinirierieieeieieeeeee e 127

Practical Limitations of Large Array Programmingccccoeveviriniiiiiienienenienene e, 128

Example: Medium Memory Model and Large Array in Cc.cooeviiniininiiinieniiicniccen 129

Example: Medium Memory Model and Large Array in FOrtrancoccooevviniiniicnicncnnnn 130

Example: Large Array and Small Memory Model in FOItranc..cocooveviniiniininicniicnnns 131

12. C/C++ Inline Assembly and Intrinsicscoccoovviiiinininccce, 133

Inlne ASSEMDIYoviiiiiiiii e 133

Extended Inline ASSEMDIYccoooviriiriiniiiiiiiiiic e 134
OUIPUE OPEIANAS ...ttt ettt ettt ettt eaeenees 135
INPUE OPEIANMASveeviiieiieite ettt ettt sa e enee e 137
(010131 O APPSO PP 138
AAItIONA] CONSLIANESevvvvvveeieeee e ettt e ettt e e et e ettt e e e e e e e et eeeeeeer e aaeees 139
OPErANA ALIASESevveiieiieeiiett ettt 145
Assembly String MOGHErScocveiiiiiiiiiii e 145
EXtended ASM MACTOSoouviiiieiiiiieitete ettt sttt ettt nee e b eneeas 147

TIELINSICS +vnvievte ittt ettt ettt ettt s ettt r ettt n ettt eneees 148

13. Fortran, C and C++ Data TYPESc.cooiviiiiiiiiiicece e 151

FOTTran DALA TYPESeeevvvrrieiiiiiiee ittt et e st e et e e e st e e e s nateee 151
FOTTEAN SCAIALSovviiiiiiieiiee ettt 151
FORTRAN 77 Aggregate Data Type EXIENSIONSccccvveriiiieniiiiiniiiiiniiiiniieiiieceiee e 153
Fortran 90 Aggregate Data Types (Derived TYPES)c.ccveveeverieeieeierieeieeeesieenreeieenean, 154

C AN G+ DAL TYPES .oevvivreriieeiietieie ettt ettt ettt et et ebeebeensesteesbeenbesaaeneas 154
C AN Gt SCALATS ...ovvieiiiieiieeee e 154
C and C++ AZEregate DAt TYPESccvveeurerireeiieriieeieeeiieeieesiteebeesieeebeeseressbeesseesnseens 156
Class and Object DAta LAYOULocveierierieiieiteiieeiieie et 156
AgEregate ALIGNMENTcovvieiiieiteiie ettt ettt ettt e e et ebeesaeeesbeentaeensee e 157
Bit-field ALGNMENEc.ooviiiiiiiiiii et 158
Other Type Keywords in € and G+ ...oovvveiviiiiiiiiiiiieiie e 158

14. C++ Name Manglingccocoooiviiiiiiiiiiec s 159

TYPES Of MANGUNGcovovviviiiiiiiicte ettt ettt eb et ra et e saeeaeene s 160

Mangling SUMMALYcooviieriiieieieteite ettt ettt ettt et e eteete s e s e s e b et e sbeeseereeseersessens 160
Type Name Manglingccoevverviriiiiiiiiiieeieiei ettt ere ettt e eteeae e ene e 160
Nested Class Name Manglingc.cooueeviiiiiieiiiiiieiie it 161
Local Class Name Manglingccccovieieioioierieriesieeieere e eeers s e e sae e sveeve e enseneas 161
Template Class Name ManGlngcccoeviiiiiieniiiiiiienie ittt 161

15. Command-Line Options Reference ..., 163

PGI® User's Guide

PGI Compiler Option SUMMALYcviuirieiiiiiieieiiite ettt e 163
Build-Related PGL OPHONScocviiiiieriiiiieiiaiiiteieit ettt 163

PGI Debug-Related Compiler OPtiONScceviririiiieiiiiiieii et 166

PGI Optimization-Related Compiler OPtONScovverieiiiieieiierieiee e 167

PGI Linking and Runtime-Related Compiler OPtonscccoevvevienieiiniicniiiciiecenn 167

C and C++ Compiler OPtONSc.evvirtiiiiiiiiiieieiet e 168
Generic PGI Compiler OPtONSccvevviriiriiiiiiieiciier e 170
C and C++ -specific ComPIler OPLONSccveiiriiriiriiriiiiit e, 208
—M OPtiONS DY CAEGOTY ..ottt 219
—M<pgflag> Code Generation CONLroLSccoevveriiriiriireriiiiiiiceeeeee e 220
—M<pgflag> C/C++ Language CONLrolscoevvereriririiniiiiieeeesee e 223
—M<pgflag> Environment CONIOLSccoceriiiiiiriniiiiiiiiiti e 225
—M<pgflag> Fortran Language CONtrolscccooververirinininiiieieeeeerese e 226
—M<pgflag> Inlning CONIOLScceviiiiiiiiiiiiicic e 228
—M<pgflag> Optimization CONLIOLScceririiiiiriiiiiiiieieite e 229
—M<pgflag> Miscellaneous CONLIOLScociiiiiiiieriiiiniini et 238

16. OpenMP Reference INfOrmationc.cccocoevviiinioiiiiiiinionoeieeene s 243
Parallelization Directives and Pragmasc.cooverieiiiioniieniieaniie e eiee e eiee e sine e 243
ATOMIC ..ottt ettt ettt 244
BARRIER ...ttt et e e e e e e et as 244
CRITICAL ... END CRITICAL and 0mp CIItiCalccooovvieiiieiiienieiece e 245
CEDOACROSS ..ottt ettt ettt ettt s ettt ettt bbbt e et se bt et es s e b s b s s ebens 246
DO ... END DO and 0mp fOrcccoeiiiiiiiiiiiiiiieiee e 247
FLUSH and omp flush pragmacooceiiiiiiiiiiiiiict e 249
MASTER ... END MASTER and omp master Pragmaccceevveriveenueervearueesineenseennessneennens 250
ORDERED ...ttt 251
PARALLEL ... END PARALLEL and omp parallelcoocooiiiiiiiiiiiiicieceee 251
PARALLEL DO .ottt e e e st e e e e s e e 254
PARALLEL SECTIONS .. .oooiiieiiiiiteeett e ettt ettt e et e e s abbeee s 255
PARALLEL WORKSHARE ...ttt e e 256
SECTIONS ... END SECTIONS ..ottt 257
SINGLE ... END SINGLEcooiiiiiiiiiiiiiiiiieiiiii et e e e e e e e e 257
THREADPRIVATE ...ttt e s e e 258
WORKSHARE ... END WORKSHAREcoooiiiiiiiiiiiiiiiiiccci e 259
Directive and Pragma ClAUSEScceeriiiiiieriieiiienite et esiee ettt e ereesieeebe e e srreebeeerbeeeees 260
SChedule CLAUSEc.oc.eriiiiiiiiiiie e 261

17. Directives and Pragmas Reference ..., 263
PGI Proprietary Fortran Directive and C/C++ Pragma SUummaryccccoocvirieniniinienncniennnn 263
AltCode (NOACOAL) ...oooveiiieiieeee ettt 263
ASSOC (TMOASSOC) .vvvveeeieieiee ettt ettt e ettt e e ettt e e e et et e e e ea e e e e et e e e e eaaaeeeeenaaeeas 264
bounds (NODOUNAS) oooiieiiiiiiieiiee ettt 265
COCAL (MOCNCALL) ..o ettt 265
CONCUL (TIOCOMCUL) +.evvvieeeieeeee e e ettt e e e ettt e e e ettt e e et e e e et e e e e et teeeseetteeeeseatteeeeeraaeeeseenaeeeens 265
depchk (NOAEPChK)c.ooviiiiiiiiiiii e 265

PGI® User's Guide

eqVChK (N0EGVCHK) ...oviiiiii s 265
0N (NOFCOM) .ovviiiiiece ettt 265
INVArif (MOINVATIE)cvvviiiieie e 265
IVACD .o 266
ISEVAL (NOISEVAL) ..ottt 266
DD ettt b bbb bbbt n et bbb 266
SAE (NOSALE) ... 266
SATE_LASIVAL ..o 266
SAfEPr (NOSAEPLL)cvvvieieieei e 267
SINGlE (MOSINGIE)evieiiiieiiit et 268
111 OO O TSP SO PO PO PP TP PP PTPPRPPION 268
UNLOLL (NOUNTOIL) ...vvviiiiiiiie ettt 268
L0 (0 G 0110)= ot 14)) B PRRRROPRRR 269
211U 110371115 0 R OTUPRRPRRTRR 269
18. Run-time Enviromment ... 271
Linux86 and Win32 Programming Modelccoooiiiiiiiiiiiieiceece e 271
Function Calling SEQUENCEcviiiieiiiiiiiieii et 271
Function Return VAIUESooouiiiiiiiiiiiiiie e 273
ArgUMENt PASSINGcoovvviiiiiiiiiiiiiii e 275
Linux86-64 Programming MOdelo.oiiiiiiiiiiiiii e 277
Function Calling SEQUENCEcooviiiieiiiiiiiiieiiee et 278
Function Return VAIUEScoouiiiiiiiiiiiiiie e 280
ArgUMENt PASSINGcooovvviiiiiiiiiiiii e 281
Linux86-64 Fortran SUPPIEMENLEccocoveiiviiiiiiriiriitiitiere ettt 283
Win64 Programming MOAElc.coiiiiiiiiiiiiiei et 287
Function Calling SEQUENCEcoviiiieiiiiiiiiieii et 288
FUNCHON RETUIN VAIUES .. .oevvvieeeee ettt e e e e e e e e 290
ArgUMENt PASSINGcooovvviiiiiiiiiiiii e 201
Win64/SUAG4 Fortran SUPPIEMENLc.ccvevvivviiiiiiiiiirieeeiei ettt 293

19. C++ Dialect Supported ..., 299
Extensions Accepted in NOrmal C++ MOAEccceevviiriiiiiiiiieiiiecie et 299
cfront 2.1 Compatibility MOAEccoeoviiiiiiiiiiiiiie e 300
cfront 2.1/3.0 Compatibility MOAEc.covviriiiiiiiiiiiiieieeeee e 301
20. C/C++ MMX/SSE Inline INtrinsicsccoooviviiiiininiiniiiece s 303
Using INtrinsic fUNCHONSoovviiiiiiiiiiiie ettt 303
Required Header FIleccooviiiiiiiiieiiiieit e 304
INLENSIC DAA TYPES ..ovvevrereierieeiteieesie et ettt ettt ettt e staebeesaesbeeseeneesseeseeneeas 304
INtrNSIC EXAMPIEovvveviiiviiiieii ettt ettt 304
MMEX INEFINSICS ...vvvviiiiiiiiiiiiiiiie e 305
SSE TIELINSICS ...vvvevveviett ettt ettt ettt ettt ettt ettt e st ettt et e bt e st et et e st e sttt ene s nenes 306
ABM INELINSICS ©ovviiiiiiiiiiiiiiiiiciiiii i 309
21. Fortran Module/Library Interfacesc..cccocoooviviinininiceecne, 311

PGI® User's Guide

DA TYPES ...oveieiiiiiiiie e 311
Using DFLIB and DFPORTcccuiiiiiiiiiiiieiiteiie ettt 312
DELIB ..ottt 312
DEPORT ...ttt ettt ettt 312
Using the DFWIN MOAUIEc.ooviriiiiiiiiiiiicici e 312
Supported Libraries and MOAUIEScocoooiiiiiiiiiiiiiiii e 313
AAVADPIZ2 .ot 313
COMUIZB2 ..ot 315
AEWDASE ... et 315
QEWINLY ..o 315
BAIB2 .ot 316
KENEIZ2 oo 319
SHEIIB2 ..ottt neenae e 327
USEIBZ ittt ettt e ettt e e ettt et e e e ettt e e e e st e e et e e e e 327
WHIIVET ettt et e ettt e e e e s ettt e e e ettt e e e e e n e et e e e e e e eeeees 331
WSOCKBZ ettt 332

220 MESSAZES ...t 333
DiIAZNOSHC MESSAZESvveveeeeeeeiiiiiitiet e e ettt e e e ettt e e e e e sttt e e e s s anebb b reeeeeeenanes 333
Phase INVOCAON MESSAZESeeuvieiieiriieiieiiieitee et e ettt e tte st et e stbeebeesateenbeeeseeenteesneeenes 334
Fortran Compiler EXTOr MESSAZESeovieriiiiiieiiieaiieiiieeieesiee et e stee st et sieesnbeesieeenneens 334
MESSAZE FOTMIALc.vieviiiiieiieiie ettt ettt et et te e b e saesaeesaeenee s 334
MESSAZE LISt ...vevvvevveevteiieie ettt ettt ettt sttt e ettt et et e et et et ne e nae e e nae e 334
Fortran Runtime Error MESSAZESvvveiiieeiiiiiiiiiiieieeee ettt e e ee e 360
MeSSAZE FOIMALcviiviiiiieieiieieiecte ettt ettt et eaeeve e 360
MESSAZE LASEvveveeeiieteiete ettt ettt ettt ettt ettt ettt ereens 360
TIUACX ..o 363

Xi

Xii

Figures

13.1. Internal Padding in @ StrUCIULEc..covviiiiiriiiiiiieit e 157
13.2. Tail Padding in @ SETUCIULEcveiiiiiiiiiiieie et 158

xiii

Xiv

Tables

1. PGI Compilers and COMMANGScooueriiriiiiiiiiiiie e XXVi
2. PLOCESSOT OPLIOMNS .eoeeiiiiiiiiiiiiiee et e e ettt e e e e ettt e e e e s s e nabbbbe et e eeeenanns XXVi
1.1. Stop-after Options, INPULS ANA OULPULSevvevirrieriieiiiiieiieeie e 5
1.2. Examples of Using siterc and USer rC FIleScoceriiriiiiiiiiiiieiieiccesceie e 13
2.1. Commonly Used Command Line OPHONSccuerveriiriiiieniieieiienieeeesie e 20
3.1. Optimization and —0, —g and —M<OPt> OPONScceerviiierieiieiiiieeie et 42
5.1. Directive and Pragma Summary Tableccocooriiiiiiiiiiiii e 53
5.2. Run-time Library Call SUMMALYcc.coviiiiiiiiiiiieiit et 55
5.3. OpenMP-related Environment Variable Summary Tablecocoviiriiiiniininienccc e 59
6.1. Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summaryc.coco..... 05
8.1. PGI-related Environment Variable Summary Tableccccooiiiiniiiiiiinicee 91
8.2. Supported PGI_TERM VALUESccueriiriiiiiiiiiitieieiiesit ettt 98
10.1. Fortran and C/C++ Data Type Compatibilityccooviiiiiiiiiiiiiiiieiiieriecc e 111
10.2. Fortran and C/C++ Representation of the COVPLEX TYPEc.cevvieriieiiieriieiiieniieeieesiie e 112
10.3. Calling Conventions Supported by the PGI Fortran Compilersc.covevierieniniienieniiiennnn 120
11.1. 64-bit ComPIler OPLONSc.eeviiriiiiiiiiiteete ettt ettt ettt eb e eae e ens s 127
11.2. Effects of Options on Memory and Array SiZeScceeevveeriieriieeriieniieeiieiie et siae e 127
11.3. 64-Bit LIMGAHONSvevvevieiiiteietieteeieiett ettt ettt ettt s s s bt ese bt seneere e 128
12.1. SIMPIE CONSLIANLSeevvieiiiiiieiiieeitestte et e ette et et et e st e et eesteeesbeesteessbeeteeerbeebeessseeseesnnes 139
12.2. X86/X86_64 MACKINE CONSILANLSeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e e e eeeea 141
12.3. Multiple Alternative CONSELAINESeorvierireirreeriieaiteriieeieesieereesieesbeessreeseessaesseessseesseens 143
12.4. Constraint Modifier ChATACLETScoeviiiiiiiiiiiieieiee e 144
12.5. Assembly String Modifier ChAracterscooovereiieriiniiieiieccee e 145
12.6. Intrinsic Header File Orgamizationcccovveviiriirierriiriitiereeteeeereeeet e ere e 148
13.1. Representation of FOrtran Data TYPEScc.eervieriiiiiieriieiiieiie et esiie e sreesiee e saae e 151
13.2. Real DAta TYPE RANGESoevvveiiiieiieiiiieiie ettt ettt ettt sttt et e sbeebaeenbeesbaesnbeesee s 152
13.3. Scalar TYPe AZNMENTc.eovviiiiiiiieeieeite ettt ete et sre et et e e bt e sraeebeeetbeebeessbeabeeanneas 152
13.4. C/C++ SCAlAr DAA TYPESvvovveerveerieiierreeteeste ettt ettt et e et ste e be e b e eteeae e s e saeebaessesneesse e 154
13.5. SCAlar AIZNMENEcovviiiieiiieeiieite ettt ettt sttt e st e e et e e sbe e tbeesbeestaeenbeennees 155
15.1. PGI Build-Related Compiler OPHONSccoeriiiiiiiiiiiieiieie ettt 164
15.2. PGI Debug-Related Compiler OPiONScoverierieriiiiiiiiiiieieieie et 166
15.3. Optimization-Related PGI Compiler OPtONScovervirierieriiiieniieieiie st 167
15.4. Linking and Runtime-Related PGI Compiler OPHONScoeeiiviiiiieieieieie et 167

PGI® User's Guide

XVi

15.5. C and C++ -specific Compiler OPLONSccveiiieiiriiieriiie e 168
15.6. Subgroups for —help OPHONccooviiiiiiiiii i 179
15.7. =M OPHONS SUMIMIALYooeiiiiiiiiiiiiiiiiiiiiiiiii e 185
15.8. Optimization and —0, —g, —Mvect, and —Mconcur OPtionscc.cecververiinieriierinienieeeeenn 193
16.1. Initialization of REDUCTION Variablesccccooiiiriiiiiniiiiiieie e 253
16.2. Directive and Pragma ClAUSESccooveiiiirieiiiiiieieit ettt 260
18.1. Re@ister ALIOCALONcoviiiiiiiiiiiiiiitictee et 271
18.2. Standard Stack Framecociiiiiiiiiiiiiiiic s 272
18.3. Stack Contents for Functions Returning StrUCU/UNIONcoverueriiriereriniiiiieieieeeee e 274
18.4. Integral and Pointer ATGUIMENLScc.erviriiriiiiiiieieiee ettt 275
18.5. Floating-point ATGUMENLSc..eeovieiiiiiiiiiieiiiete ettt ettt 275
18.6. Structure and Union ATZUMENLSc.eivirieuiriiierietiiteieteeteetese ettt sttt sttt eene e, 276
18.7. Re@ister ALIOCALONccviriiiiiiiiiiiiitiie et 278
18.8. Standard Stack Frameccocooiiiiiiiiiiiiiii e 278
18.9. Register Allocation for EXample A-2cccooiiiiiiiiiiiiiec e 282
18.10. Linux86-64 Fortran Fundamental TYPESccoeiruerieririinieiiiiieieii et 284
18.11. Fortran and C/C++ Data Type Compatibilitycccoevviriiriiiniiiiiniiiiiicccecc 285
18.12. Fortran and C/C++ Representation of the COMPLEX TYPEcoceruiviiviiieienienieneneeiceieie 286
18.13. Re@iSter ALIOCAONcouviriiiiiiiiiiiietieit ettt 288
18.14. Standard Stack FIAMEcccoiiiiiiiiiiiiiieiec e 288
18.15. Register Allocation for EXample A-4ccccooiiiiiiiiiiiiiiiiet e 292
18.16. Win64 Fortran Fundamental TYPESccvevverrerriiiiiiieieieiesie sttt ereesseae e ene s 293
18.17. Fortran and C/C++ Data Type Compatibilitycocoevviviiiniiiiiiiiiniiiiecee e 295
18.18. Fortran and C/C++ Representation of the COMPLEX TYPEc.coevuiviiiieiiienieienienesicie i, 296
20.1. MMX Intrinsics (Mmuntrin.i)oc.oooiiiiiiiiii e 305
20.2. SSE Intrinsics (XMMUNELIN.N) ©.ooovvviiiiiiiiii et 306
20.3. SSE2 Intrinsics (eMMUNELIN.N)oooiiviiiiiiiiiie e 307
20.4. SSE3 Intrinsics (PMMIntrin.h)oooviiiiiiiiiiiiiiee e 309
20.5. SSSE3 Intrinsics (dmmintrin.dl)ooooviiiiiiiiiiii e 309
20.6. SSE4a Intrinsics (AMMUNTIN.N) ©...ooiiiiiiiiiiiiii e 309
20.7. SSE4a Intrinsics (INEFIN) oooovvviiiiiiiiiiee e 310
21.1. Fortran Data Type MapPingsccoovviiiiiiiiiiiiiiiiiiiiiie e 311

Examples

1.1, HELO PIOZIAMovvieiiiiiiieiie ettt ettt ettt ettt e et et e e s e et e esbeestbeenbeesaeeesbeenteeenseenes 2
2.1. Makefiles With OPHONScvevviiiiiiriitiiteere ettt ettt ettt ereereersere s 16
3.1, DOt PrOAUCE COAEvevieniiiiieiieiiecie e et 27
3.2. Unrolled Dot Product COAEcc.eouiriiiriiiiiiiieiiaie ettt 27
3.3. Vector operation using SSE inStIUCHONSccuevvviiieiieiiiiiiiiiiiteee e e e 31
3.4. Using SYSTEM_CLOCK cOde fragmentcoooveieierierierieiiiie ittt 43
4.1, Sample MAKEFIIEceoiviiiiiiiiici et 48
0.1. PrefetCh DIFECHVE USEcoveiiiiierieriiesierietesiesieteetesteseetestestete et tessesesbestesessebeseaseebeseeseese e 70
7.1 BUild @ DLL: FOTEIAN ©....veiiiiiiiieiiieic ittt sttt et 82
7.2, BUILA @ DLL: € ot 83
7.3. Build DLLs Containing Circular Mutual IMpPOrts: Ccceooverieriiiiiniiniiiienieiesee e 84
7.4. Build DLLs Containing Circular Mutual Imports: FOItranccoovvvirieierienenieieieeeeeeeeienes 86
7.5. Import a Fortran module from a2 DLLcocviiiiiiiiiiiiiieiieee e 87
10.1. Character Return PATAMELELSccoveiieriiaieiiieriieie sttt ettt ettt st sieenne s 114
10.2. COMPLEX RetUIN VAIUEScvvevviriiiiiiiiiieiieieesieieie ettt ettt 114
10.3. Fortran Main Program fmain.fccooviiiiiiiii e 115
10.4. C TUNCHON CIUNC oottt et e e e eeeeen e 115
10.5. Fortran Subroutine forts.fccooviiriiiiiiiii i 116
10.6. C Main Program CIMAINLCcveveiiiiiiiteirieteeteeseeseetete st et eeseeveeveeve e essess et essesseeseereereeneans 116
10.7. Simple C FUNCHON CRUNC.C ...vvovveniiiiiiiet ittt 116
10.8. C++ Main Program cpmain.C Calling 2 C FUNCHONc.oovviiviiiiiiiiiiiiiecieciee e 117
10.9. Simple C++ Function cpfunc.C with EXIErn Gcccvveviiiiiiiiieiieeiiie e 117
10.10. C Main Program cmain.c Calling @ C++ FUNCHONccoveviiiiiiiinieiiieieciece e 117
10.11. Fortran Main Program fmain.f calling 2 C++ functionccccoovvviviiiiiiiniiiiiciic e, 118
10.12. C++ function CPRUNC.C ..voevvieiiieiie et 118
10.13. Fortran Subroutine forts.fooiiiiiiiiiiii 119
10.14. C++ main program CPMAIN.Cevvrerriiierrieriereieeteetesteesteerteereesteeaesseesseessesseesseasaesaeas 119
18.1. C Program Calling an Assembly-language ROULNEcccooverieriiiiiniiniiieiieicce e 277
18.2. PArameter PASSINGcooiiiiiiiiiiiiiiiie et e e e e e e e s 282
18.3. C Program Calling an Assembly-language ROULNEcc.cooverieriiiiiniiniiieiieicce e 283
18.4. Parameter PASSINGc.ccveruieiiiretiesieittesseetteeteesteestesteeseesbeeseesbeessesseesseessesseasseessesseesseens 291
18.5. C Program Calling an Assembly-language ROULNEcccooverieriiiiiniiniiieiieicceseee e 293

Xviii

Preface

This guide is part of a set of manuals that describe how to use The Portland Group (PGI) Fortran, C, and
C++ compilers and program development tools. These compilers and tools include the PGF77, PGF95,
PGHPF, PGC++, and PGCC ANSI C compilers, the PGPROF profiler, and the PGDBG debugger. They work in
conjunction with an x86 or x64 assembler and linker. You can use the PGI compilers and tools to compile,
debug, optimize, and profile serial and parallel applications for x86 (Intel Pentium II/I1I/4/M, Intel Centrino,
Intel Xeon, AMD Athlon XP/MP) or x64 (AMD Athlon64/Opteron/Turion, Intel EM64T, Intel Core Duo, Intel
Core 2 Duo) processor-based systems.

The PGI User's Guide provides operating instructions for the PGI command-level development environment. It
also contains details concerning the PGI compilers' interpretation of the Fortran language, implementation of
Fortran language extensions, and command-level compilation. Users are expected to have previous experience
with or knowledge of the Fortran programming language.

Audience Description

This manual is intended for scientists and engineers using the PGI compilers. To use these compilers, you
should be aware of the role of high-level languages, such as Fortran, €, and C++, as well as assembly-language
in the software development process; and you should have some level of understanding of programming. The
PGI compilers are available on a variety of x86 or x64 hardware platforms and operating systems. You need to
be familiar with the basic commands available on your system.

Compatibility and Conformance to Standards

Your system needs to be running a properly installed and configured version of the compilers. For information
on installing PGI compilers and tools, refer to the Release and Installation notes included with your software.

For further information, refer to the following:

* American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

o ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran, Geneva, 1991
(Fortran 90).

* [SO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran, Geneva, 1997
(Fortran 95).

XiX

PGI® User's Guide

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.

* High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),
http://www.crpc.rice.edu/HPFF.

* High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

* OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e [BM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

* American National Standard Programming Language C, ANSI X3.159-1989.
e ISO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999 (C99).

Organization

XX

Users typically begin by wanting to know how to use a product and often then find that they need more
information and facts about specific areas of the product. Knowing how as well as why you might use certain
options or perform certain tasks is key to using the PGI compilers and tools effectively and efficiently.
However, once you have this knowledge and understanding, you very likely might find yourself wanting to
know much more about specific areas or specific topics. Consequently, his manual is divided into the following
two parts:

e Part I, Compiler Usage, contains the essential information on how to use the compiler.

e Part II, Reference Information, contains more detailed reference information about specific aspects of the
compiler, such as the details of compiler options, directives, and more.

Part I, Compiler Usage, contains these chapters:

Chapter 1, “Getting Started” provides an introduction to the PGI compilers and describes their use and
overall features.

Chapter 2, “Using Command Line Options” provides an overview of the command-line options as well as
task-related lists of options.

Chapter 3, “Using Optimization & Parallelization” describes standard optimization techniques that, with
little effort, allow users to significantly improve the performance of programs.

Chapter 4, “Using Function Inlining” describes how to use function inlining and shows how to create an
inline library.

Chapter 5, “Using OpenMP” provides a description of the OpenMP Fortran parallelization directives and of the
OpenMP C and C++ parallelization pragmas and shows examples of their use.

Chapter 6, “Using Directives and Pragmas” provides a description of each Fortran optimization directive and
C/C++ optimization pragma, and shows examples of their use.

Preface

Chapter 7, “Creating and Using Libraries” discusses PGI support libraries, shared object files, and
environment variables that affect the behavior of the PGI compilers.

Chapter 8, “ Using Environment Variables” describes the environment variables that affect the behavior of the
PGI compilers.

Chapter 9, “Distributing Files - Deployment” describes the deployment of your files once you have built,
debugged and compiled them successfully.

Chapter 10, “Inter-language Calling” provides examples showing how to place C Language calls in a Fortran
program and Fortran Language calls in a C program.

Chapter 11, “Programming Considerations for 64-Bit Environments” discusses issues of which
programmers should be aware when targeting 64-bit processors.

Chapter 12, “C/C++ Inline Assembly and Intrinsics” describes how to use inline assembly code in C
and C++ programs, as well as how to use intrinsic functions that map directly to x86 and x64 machine
instructions.

Part II, Reference Information, contains these chapters:

Chapter 13, “Fortran, C and C++ Data Types” describes the data types that are supported by the PGI Fortran,
C, and C++ compilers.

Chapter 14, “C++ Name Mangling” describes the name mangling facility and explains the transformations of
names of entities to names that include information on aspects of the entity’s type and a fully qualified name.

Chapter 15, “Command-Line Options Reference” provides a detailed description of each command-line
option.

Chapter 16, “OpenMP Reference Information”contains detailed descriptions of each of the OpenMP
directives and pragmas that PGI supports.

Chapter 17, “Directives and Pragmas Reference”contains detailed descriptions of PGI's proprietary directives
and pragmas.

Chapter 18, “Run-time Environment” describes the assembly language calling conventions and examples of
assembly language calls.

Chapter 19, “C++ Dialect Supported” lists more details of the version of the C++ language that PGC++
supports.

Chapter 20, “C/C++ MMX/SSE Inline Intrinsics,” on page 303 provides tables that list the MMX Inline
Intrinsics (mmintrin.h), the SSE1 inline intrinsics (xmmintrin.h), and SSE2 inline intrinsics (emmintrin.h).

Chapter 21, “Fortran Module/Library Interfaces” provides a description of the Fortran module library
interfaces that PVF supports, describing each property available.

Chapter 22, “Messages” provides a list of compiler error messages.

XXi

PGI® User's Guide

Hardware and Software Constraints

This guide describes versions of the PGI compilers that produce assembly code for x86 and x64 processor-
based systems. Details concerning environment-specific values and defaults and system-specific features or
limitations are presented in the release notes delivered with the PGI compilers.

Conventions

XXii

The PGI User's Guide uses the following conventions:

italic
Italic font is for commands, filenames, directories, arguments, options and for emphasis.
Constant Wdth

Constant width font is for examples and for language statements in the text, including assembly language
statements.

[item1]
Square brackets indicate optional items. In this case item1 is optional.

{ item?2 | item 3}
Braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename...
Ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using upper-case characters and a reduced
point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of Linux, Windows, and Mac

0S operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems. The PGI User’s Guide defines the following terms with
respect to these platforms:

AMDG64
a 64-bit processor from AMD, designed to be binary compatible with IA32 processors, and incorporating
new features such as additional registers and 64-bit addressing support for improved performance and
greatly increased memory range.

Barcelona
the Quad-Core AMD Opteron(TM) Processor, that is, Opteron Rev x10

DIL
a dynamic linked library on Win32 or Win64 platforms of the form xxx. dI | containing objects that are
dynamically linked into a program at the time of execution.

driver
the compiler driver controls the compiler, linker, and assembler, and adds objects and libraries to create
an executable. The -dryrun option illustrates operation of the driver. pgf77, pgf95, pghpf, pgcc, pgCC

Preface

(Linux), and pgcpp are drivers for the PGI compilers. A pgf90 driver is retained for compatibility with
existing makefiles, even though pgf90 and pgf95 drivers are identical.

Dual-core
Dual-, Quad-, or Multi-core - some x64 CPUs incorporate two or four complete processor cores
(functional units, registers, level 1 cache, level 2 cache, etc) on a single silicon die. These are referred to
as Dual-core or Quad-core (in general, Multi-core) processors. For purposes of OpenMP or auto-parallel
threads, or MPI process parallelism, these cores function as distinct processors. However, the processing
cores are on a single chip occupying a single socket on the system motherboard. In PGI 7.1, there are no
longer software licensing limits on OpenMP threads for Multi-core.

EM64T
a 64-bit 1A32 processor with Extended Memory 64-bit Technology extensions that are binary compatible
with AMD64 processors. This includes Intel Pentium 4, Intel Xeon, and Intel Core 2 processors.

hyperthreading (HT)
some IA32 CPUs incorporate extra registers that allow 2 threads to run on a single CPU with improved
performance for some tasks. This is called hyperthreading and abbreviated HT. Some linux86 and
linux86-64 environments treat IA32 CPUs with HT as though there were a 2nd pseudo CPU, even though
there is only one physical CPU. Unless the Linux kernel is hyperthread-aware, the second thread of an
OpenMP program will be assigned to the pseudo CPU, rather than a real second physical processor (if one
exists in the system). OpenMP Programs can run very slowly if the second thread is not properly assigned.

1A32
an Intel Architecture 32-bit processor, designed to be binary compatible with x86 processors, and
incorporating new features such as streaming SIMD extensions (SSE) for improved performance.

Large Arrays
arrays with aggregate size larger than 2GB, which require 64-bit index arithmetic for accesses to elements
of arrays. If -Mlarge_arrays is specified and -mcmodel=medium is not specified, the default small memory
model is used, and all index arithmetic is performed in 64-bits. This can be a useful mode of execution
for certain existing 64-bit applications that use the small memory model but allocate and manage a single
contiguous data space larger than 2GB.

linux86
32-bit Linux operating system running on an x86 or x64 processor-based system, with 32-bit GNU tools,
utilities and libraries used by the PGI compilers to assemble and link for 32-bit execution.

linux86-64
64-bit Linux operating system running on an x64 processor-based system, with 64-bit and 32-bit GNU
tools, utilities and libraries used by the PGI compilers to assemble and link for execution in either /inux86
or linux86-64 environments. The 32-bit development tools and execution environment under /inux86-64
are considered a cross development environment for x86 processor-based applications.

Mac OS X
collectively, all 0sx86 and 0sx86-64 platforms supported by the PGI compilers.

-mcmodel=small
compiler/linker switch to produce small memory model format objects/executables in which both code
(.text) and data (.bss) sections are limited to less than 2GB. This switch is the default and only possible
format for linux86 32-bit executables. This switch is the default format for linux86-64 executables.

XXiii

PGI® User's Guide

Maximum address offset range is 32-bits, and total memory used for 0S+Code+Data must be less than
2GB.

-mcmodel=medium
compiler/linker switch to produce medium memory model format objects/executables in which code
sections are limited to less than 2GB, but data sections can be greater than 2GB. This option is supported
only in linux86-64 environments. It must be used to compile any program unit that will be linked in to a
64-bit executable that will use aggregate data sets larger than 2GB and will access data requiring address
offsets greater than 2GB. This option must be used to link any 64-bit executable that will use aggregate
data sets greater than 2GB in size. Executables linked using -mcmodel=medium can incorporate objects
compiled using -mcmodel=small as long as the small objects are from a shared library.

NUMA
A type of multi-processor system architecture in which the memory latency from a given processor to a
given portion of memory can vary, resulting in the possibility for compiler or programming optimizations
to ensure frequently accessed data is "close" to a given processor as determined by memory latency.

0sx806
32-bit Apple Mac OS Operating Systems running on an x86 Core 2 or Core 2 Duo processor-based system
with the 32-bit Apple and GNU tools, utilities, and libraries used by the PGI compilers to assemble and link
for 32-bit execution. The PGI Workstation preview supports Mac OS 10.4.9 only.

0sx80-04
04-bit Apple Mac OS Operating Systems running on an x64 Core 2 Duo processor-based system with the
04-bit and 32-bit Apple and GNU tools, utilities, and libraries used by the PGI compilers to assemble and
link for either 64- or 32-bit execution. The PGI Workstation preview supports Mac 0S 10.4.9 only.

SFU
Windows Services for Unix, a 32-bit-only predecessor of SUA, the Subsystem for Unix Applications. See
SUA.

Shared library
a Linux library of the form libxxx.so containing objects that are dynamically linked into a program at the
time of execution.

SSE
collectively, all SSE extensions supported by the PGI compilers.

SSE1
32-bit IEEE 754 FPU and associated streaming SIMD extensions (SSE) instructions on Pentium III,
AthlonXP* and later 32-bit x86, AMD64 and EM64T compatible CPUs, enabling scalar and packed vector
arithmetic on single-precision floating-point data.

SSE2
64-bit IEEE 754 FPU and associated SSE instructions on P4/Xeon and later 32-bit x86, AMD64 and EM64T
compatible CPUs. SSE2 enables scalar and packed vector arithmetic on double-precision floating-point
data.

SSE3
additional 32-bit and 64-bit SSE instructions to enable more efficient support of arithmetic on complex
floating-point data on 32-bit x86, AMD64 and EM64T compatible CPUs with so-called Prescott New

XXiv

Preface

Instructions (PNI), such as Intel IA32 processors with EMO4T extensions and newer generation (Revision
E and beyond) AMDG64 processors.

SSE4A and ABM
AMD Instruction Set enhancements for the Quad-Core AMD Opteron Processor. Support for these
instructions is enabled by the -tp barcelona or -tp barcelona-64 switch.

SSSE3
an extension of the SSE3 instruction set found on the Intel Core 2.

Static linking
a method of linking:

On Linux, use - to ensure all objects are included in a generated executable at link time. Static linking
causes objects from static library archives of the form libxxx.a to be linked in to your executable, rather
than dynamically linking the corresponding libxxx.so shared library. Static linking of executables linked
using the -mcmodel=medium option is supported.

On Windows, the Windows linker links statically or dynamically depending on whether the libraries on the
link-line are DLL import libraries or static libraries. By default, the static PGI libraries are included on the
link line. To link with DLL versions of the PGI libraries instead of static libraries, use the -Mdll option.

SUA
Subsystem for UNIX-based Applications (SUA) is source-compatibility subsystem for compiling and
running custom UNIX-based applications on a computer running 32-bit or 64-bit Windows server-class
operating system. It provides an operating system for Portable Operating System Interface (POSIX)
processes. SUA supports a package of support utilities (including shells and >300 Unix commands),
case-sensitive file names, and job control. The subsystem installs separately from the Windows kernel to
support UNIX functionality without any emulation.

Win32
any of the 32-bit Microsoft Windows Operating Systems (XP/2000/Server 2003) running on an x86 or x64
processor-based system. On these targets, the PGI compiler products include all of the tools and libraries
needed to build executables for 32-bit Windows systems.

Win64
any of the 64-bit Microsoft Windows Operating Systems (XP Professional /Windows Server 2003 x64
Editions) running on an x64 processor-based system. On these targets, the PGI compiler products include
all of the tools and libraries needed to build executables for 32-bit Windows systems.

Windows
collectively, all Win32 and Win64 platforms supported by the PGI compilers.

X064
collectively, all AMD64 and EMO4T processors supported by the PGI compilers.

x86
a processor designed to be binary compatible with i386/i486 and previous generation processors from
Intel* Corporation. Refers collectively to such processors up to and including 32-bit variants.

x87
- 80-bit IEEE stack-based floating-point unit (FPU) and associated instructions on x86-compatible CPUs.

XXV

PGI® User's Guide

XXVi

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1. PGI Compilers and Commands

Compiler or Tool |Language or Function Command
PGF77 FORTRAN 77 pgf77

PGF95 Fortran 90/95 pgf95

PGHPF High Performance Fortran pghpf

PGCC C ANSI €99 and K&R C pgcc

PGC++ ANSI C++ with cfront features | pgepp (pgCC)
PGDBG Source code debugger pgdbg
PGPROF Performance profiler pgprof

In general, the designation PGF95 is used to refer to The Portland Group’s Fortran 90/95 compiler, and pgf95
is used to refer to the command that invokes the compiler. A similar convention is used for each of the PGI
compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the pgfo5
command, and most source code examples are written in Fortran. Usage of the PGF77 compiler, whose
features are a subset of PGF95, is similar. Usage of PGHPF, PGC++, and PGCC ANSI €99 is consistent with
PGF95 and PGF77, but there are command-line options and features of these compilers that do not apply to
PGF95 and PGF77 and vice versa.

There are a wide variety of x86-compatible processors in use. All are supported by the PGI compilers and
tools. Most of these processors are forward-compatible, but not backward-compatible, meaning that code
compiled to target a given processor will not necessarily execute correctly on a previous-generation processor.
The following table provides a partial list, including the most important processor types, along with the
features utilized by the PGI compilers that distinguish them from a compatibility standpoint:

Table 2. Processor Options

Processor Prefetch |SSE1 |SSE2 |SSE3 [32-bit |64-bit |Scalar FP
Default
AMD Athlon N N N N Y N x87
AMD Athlon XP/MP Y Y N N Y N x87
AMD Athlon64 Y Y Y N Y Y SSE
AMD Opteron Y Y Y N Y Y SSE
AMD Opteron RevE |Y Y Y Y Y Y SSE
AMD Opteron RevF |Y Y Y Y Y Y SSE
AMD Turion Y Y Y Y Y Y SSE
Intel Celeron N N N N Y N x87

Preface

Processor Prefetch |SSE1 |SSE2 |SSE3 |[32-bit |64-bit |Scalar FP
Default

Intel Pentium IT N N N N Y N x87
Intel Pentium III Y Y N N Y N x87
Intel Pentium 4 Y Y Y N Y N SSE
Intel Pentium M Y Y Y N Y N SSE
Intel Centrino Y Y Y N Y N SSE
Intel Pentium 4 EM64T |Y Y Y Y Y Y SSE
Intel Xeon EM64T Y Y Y Y Y Y SSE
Intel Core Duo EM64T |Y Y Y Y Y Y SSE
Intel Core 2 Duo Y Y Y Y Y Y SSE
EM64T

In this manual, the convention is to use “x86” to specify the group of processors in the previous table that are
listed as “32-bit” but not “64-bit.” The convention is to use “x64” to specify the group of processors that are
listed as both “32-bit” and “64-bit.” x86 processor-based systems can run only 32-bit operating systems. x64
processor-based systems can run either 32-bit or 64-bit operating systems, and can execute all 32-bit x86
binaries in either case. x64 processors have additional registers and 64-bit addressing capabilities that are
utilized by the PGI compilers and tools when running on a 64-bit operating system. The prefetch, SSE1, SSE2
and SSE3 processor features further distinguish the various processors. Where such distinctions are important
with respect to a given compiler option or feature, it is explicitly noted in this manual.

Note that the default for performing scalar floating-point arithmetic is to use SSE instructions on targets that
support SSE1 and SSE2. See section 2.3.1, Scalar SSE Code Generation, for a detailed discussion of this topic.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures, and the
compilers and tools available from The Portland Group.

* PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data
types, input/output format specifiers, and additional reference material related to use of the PGI Fortran
compilers.

o System VApplication Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.).

o System V Application Binary Interface X86-64 Architecture Processor Supplement, http://www.x86-
64.org/abi.pdf.

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

e [BM VS Fortran, IBM Corporation, Rev. GC26-4119.

e The C Programming Language by Kernighan and Ritchie (Prentice Hall).

XXVii

PGI® User's Guide

* (A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

e The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories,
Inc. (Addison-Wesley Publishing Co., 1990).

* OpenMP Application Program Interface, Version 2.5 May 2005 (OpenMP Architecture Review Board,
1997-2005).

XXViii

Chapter 1. Getting Started

This chapter describes how to use the PGI compilers. The command used to invoke a compiler, such as

the pgf95 command, is called a compiler driver. The compiler driver controls the following phases of
compilation: preprocessing, compiling, assembling, and linking. Once a file is compiled and an executable file
is produced, you can execute, debug, or profile the program on your system. Executables produced by the PGI
compilers are unconstrained, meaning they can be executed on any compatible x86 or x64 processor-based
system, regardless of whether the PGI compilers are installed on that system.

Overview

In general, using a PGI compiler involves three steps:

1. Produce a program source code in a file containing a .f extension or another appropriate extension, as
described in “Input Files,” on page 3. This program may be one that you have written or one that you
are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The PGI compilers allow many variations on these general program development steps. These variations
include the following:

e Stop the compilation after preprocessing, compiling or assembling to save and examine intermediate
results.

e Provide options to the driver that control compiler optimization or that specify various features or
limitations.

e Include as input intermediate files such as preprocessor output, compiler output, or assembler output.

Invoking the Command-level PGl Compilers

To translate and link a Fortran, G, or C++ program, the pgf77, pgf95, pghpf, pgcc, and pgepp commands do
the following;

PGI® User's Guide

1. Preprocess the source text file.
2. Check the syntax of the source text.
3. Generate an assembly language file.

4. Pass control to the subsequent assembly and linking steps.
Example 1.1. Hello program

Let’s look at a simple example of using the PGI compiler to create, compile, and execute a program that prints
hello.

Step 1: Create your program.

For this example, suppose you enter the following simple Fortran program in the file hel I o. f:
print *, "hello"
end

Step 2: Compile the program.

When you created your program, you called it hel | o. f . In this example, we compile it from a shell

command prompt using the default pgf95 driver option. Use the following syntax:
PA $ pgf95 hello.f
PG $

By default, the executable output is placed in the file a. out , or, on Windows platforms, in a filename based
on the name of the first source or object file on the command line. However, you can use the —o option to

specify an output file name. To place the executable output in the file hel | o, use this command:
PG $ pgf95 -0 hello hello.f
PG $

Step 3: Execute the program.

To execute the resulting hello program, simply type the filename at the command prompt and press the Return

or Enter key on your keyboard:
PA$ hello

hel | o
PG $

Command-line Syntax

The compiler command-line syntax, using pgf95 as an example, is:
pgf 95 [options] [path]filenane [...]

Where:

options
is one or more command-line options, all of which are described in detail in Chapter 2, “Using
Command Line Options”.

path
is the pathname to the directory containing the file named by filename. If you do not specify the path for a
filename, the compiler uses the current directory. You must specify the path separately for each filename
not in the current directory.

Chapter 1. Getting Started

filename
is the name of a source file, preprocessed source file, assembly-language file, object file, or library to be
processed by the compilation system. You can specify more than one [path]filename.

Command-line Options

The command-line options control various aspects of the compilation process. For a complete alphabetical
listing and a description of all the command-line options, refer to Chapter 2, “Using Command Line
Options”.

The following list provides important information about proper use of command-line options.

e (ase is significant for options and their arguments.

* The compiler drivers recognize characters preceded by a hyphen (-) as command-line options. For
example, the —M i st option specifies that the compiler creates a listing file.

Note

The convention for the text of this manual is to show command-line options using a dash instead of
a hyphen; for example, you see —M i st .

* The pgcpp command recognizes a group of characters preceded by a plus sign (+) as command-line
options.

e The order of options and the filename is not fixed. That is, you can place options before and after the
filename argument on the command line. However, the placement of some options is significant, such as the
—1 option, in which the order of the filenames determines the search order.

Note

If two or more options contradict each other, the /ast one in the command line takes precedence.
Fortran Directives and C/C++ Pragmas

You can insert Fortran directives and C/C++ pragmas in program source code to alter the effects of certain
command-line options and to control various aspects of the compilation process for a specific routine or a
specific program loop. For more information on Fortran directives and C/C++ pragmas, refer to Chapter 5,
“Using OpenMP” and Chapter 6, “Using Directives and Pragmas”.

Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create input and
output files. This section describes the input and output filename conventions for the phases of the compilation
process.

Input Files

You can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files, object files,
and libraries as inputs on the command line. The compiler driver determines the type of each input file by
examining the filename extensions. The drivers use the following conventions:

PGI® User's Guide

filename.f
indicates a Fortran source file.

filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to be preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to be preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.f90
indicates a Fortran 90/95 source file that is in freeform format.

filename.f95
indicates a Fortran 90/95 source file that is in freeform format.

filename.hpf
indicates an HPF source file.

filename.c
indicates a C source file that can contain macros and preprocessor directives (to be preprocessed).

filename.i
indicates a preprocessed C or C++ source file.

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be preprocessed).

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be preprocessed).

filename.s
indicates an assembly-language file.

filename.o
(Linux, Apple, SFU, SUA) indicates an object file.

filename.obj
(Windows systems only) indicates an object file.

filename.a
(Linux, Apple, SFU, SUA) indicates a library of object files.

filename.lib
(Windows systems only) indicates a statically-linked library of object files.

filename.so
(Linux and SFU systems only) indicates a library of shared object files.

filename.dll
(Windows systems only) indicates a dynamically-linked library.

Chapter 1. Getting Started

filename..objlib
(Apple systems only) indicates a dynamically-linked library.

The driver passes files with .s extensions to the assembler and files with .o, .obj, .so, .dll, .a and .lib extensions
to the linker. Input files with unrecognized extensions, or no extension, are also passed to the linker.

Files with a . F (Capital F) or . FOR suffix are first preprocessed by the Fortran compilers and the output is
passed to the compilation phase. The Fortran preprocessor functions similar to cpp for C/C++ programs, but
is built in to the Fortran compilers rather than implemented through an invocation of cpp. This design ensures
consistency in the preprocessing step regardless of the type or revision of operating system under which you’re
compiling.

Any input files not needed for a particular phase of processing are not processed. For example, if on

the command line you specify an assembly-language file (filename.s) and the —S option to stop before

the assembly phase, the compiler takes no action on the assembly language file. Processing stops after
compilation and the assembler does not run. In this scenario, the compilation must have been completed in
a previous pass which created the .s file. For a complete description of the —S option, refer to the following
section:“Output Files”.

In addition to specifying primary input files on the command line, code within other files can be compiled
as part of include files using the I NCLUDE statement in a Fortran source file or the pr epr ocessor
#i ncl ude directive in Fortran source files that use a .F extension or C and C++ source files.

When linking a program with a library, the linker extracts only those library components that the program
needs. The compiler drivers link in several libraries by default. For more information about libraries, refer to
Chapter 7, “Creating and Using Libraries”.

Output Files

By default, an executable output file produced by one of the PGI compilers is placed in the file a.out, or,
on Windows, in a filename based on the name of the first source or object file on the command line. As the
example in the preceding section shows, you can use the —o option to specify the output file name.

If you use one of the options: —F (Fortran only), —P (C/C++ only), —S or —c, the compiler produces a file
containing the output of the last completed phase for each input file, as specified by the option supplied. The
output file will be a preprocessed source file, an assembly-language file, or an unlinked object file respectively.
Similarly, the —E option does not produce a file, but displays the preprocessed source file on the standard
output. Using any of these options, the —o option is valid only if you specify a single input file. If no errors
occur during processing, you can use the files created by these options as input to a future invocation of any of
the PGI compiler drivers. The following table lists the stop-after options and the output files that the compilers
create when you use these options. It also describes the accepted input files.

Table 1.1. Stop-after Options, Inputs and Outputs

Option |Stop after Input Output
-E preprocessing | Source files. For Fortran, must have .F preprocessed file to
extension. standard out

PGI® User's Guide

Option |Stop after Input Output

—F preprocessing | Source files. Must have .F extension. This preprocessed file (.f)
option is not valid for pgcc or pgepp.

-P preprocessing |Source files. This option is not valid for pgf77, | preprocessed file (.i)
pgfo5 or pghpf)

-S compilation Source files or preprocessed files assembly-language file (.s)

—C assembly Source files, preprocessed files or assembly- | unlinked object file (.o or
language files .obj)

none linking Source files, preprocessed files, assembly- executable file (a.out or
language files, object files or libraries .exe)

If you specify multiple input files or do not specify an object filename, the compiler uses the input filenames
to derive corresponding default output filenames of the following form, where filename is the input filename
without its extension:

filename.f
indicates a preprocessed file, if you compiled a Fortran file using the —F option.

filename.i
indicates a prepossedfile, if you compiled using the —P option..

filename.lst
indicates a listing file from the —Mlist option.

filename.o or filename.obj
indicates an object file from the —c option.

filename.s
indicates an assembly-language file from the —S option.

Note

Unless you specify otherwise, the destination directory for any output file is the current working
directory. If the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgf95 -c proto.f protol. F

This produces the output files proto.o and protol.o, or, on Windows, proto.obj and proto1.obj all of which
are binary object files. Prior to compilation, the file proto1.F is preprocessed because it has a .F filename
extension.

Fortran, C, and C++ Data Types

The PGI Fortran, C, and C++ compilers recognize scalar and aggregate data types. A scalar data type holds
a single value, such as the integer value 42 or the real value 112.6. An aggregate data type consists of one or
more scalar data type objects, such as an array of integer values.

Chapter 1. Getting Started

For information about the format and alignment of each data type in memory, and the range of values each
type can have on x806 or x64 processor-based systems running a 32-bit operating system, refer to Chapter 13,
“Fortran, C and C++ Data Types”.

For more information on x86-specific data representation, refer to the System V Application Binary Interface
Processor Supplement by AT&T UNIX System Laboratories, Inc. (Prentice Hall, Inc.).

This manual specifically does not address x64 processor-based systems running a 64-bit operating system,
because the application binary interface (ABI) for those systems is still evolving. For the latest version of this
ABI, see www.x86-64.org/abi.pdf.

Parallel Programming Using the PGI Compilers
The PGI compilers support three styles of parallel programming:

* Automatic shared-memory parallel programs compiled using the —~Mconcur option to pgf77, pgf95, pgcc,
or pgcpp — parallel programs of this variety can be run on shared-memory parallel (SMP) systems such as
dual-core or multi-processor workstations.

e OpenMP shared-memory parallel programs compiled using the —np option to pgf77, pgf95, pgcc, or pgepp
— parallel programs of this variety can be run on SMP systems. Carefully coded user-directed parallel
programs using OpenMP directives can often achieve significant speed-ups on dual-core workstations
or large numbers of processors on SMP server systems. Chapter 5, “Using OpenMP” contains complete
descriptions of user-directed parallel programming.

e Data parallel shared- or distributed-memory parallel programs compiled using the PGHPF High
Performance Fortran compiler — parallel programs of this variety can be run on SMP workstations or
servers, distributed-memory clusters of workstations, or clusters of SMP workstations or servers. Coding
a data parallel version of an application can be more work than using OpenMP directives, but has the
advantage that the resulting executable is usable on all types of parallel systems regardless of whether
shared memory is available. See the PGHPF User’s Guide for a complete description of how to build and
execute data parallel HPF programs.

In this manual, the first two types of parallel programs are collectively referred to as SMP parallel programs.
The third type is referred to as a data parallel program, or simply as an HPF program.

Some newer CPUs incorporate two or more complete processor cores - functional units, registers, level 1
cache, level 2 cache, and so on - on a single silicon die. These CPUs are known as multi-core processors. For
purposes of HPF, threads, or OpenMP parallelism, these cores function as two or more distinct processors.
However, the processing cores are on a single chip occupying a single socket on a system motherboard. For
purposes of PGI software licensing, 2 multi-core processor is treated as a single CPU.

Running SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To run on more than one
processor, set the NCPUS environment variable to the desired number of processors, subject to 2 maximum of
four for PGI's workstation-class products.

You can set this environment variable by issuing the following command in a2 Windows command prompt
window:

PGI® User's Guide

% set env NCPUS <nunber >
In a shell command window under csh, issue the following command:
% set env. NCPUS <numnber >
In sh, ksh, or BASH command window, issue the following command:

% NCPUS=<nunber >; export NCPUS

Note

If you set NCPUS to a number larger than the number of physical processors, your program may
execute very slowly.

Running Data Parallel HPF Programs

When you execute an HPF program, by default it will use only one processor. If you wish to run on more
than one processor, use the -pghpf -np runtime option. For example, to compile and run the hello.f example
defined above on one processor, you would issue the following commands:

% pghpf -0 hello hello.f
Li nki ng:
% hel | o
hel | o
%

To execute it on two processors, you would issue the following commands:
% hell o - pghpf -np 2

hel | o
%

Note

If you specify a number larger than the number of physical processors, your program will execute
very slowly.

You still only see a single “hello” printed to your screen. This is because HPF is a single-threaded model,
meaning that all statements execute with the same semantics as if they were running in serial. However,
parallel statements or constructs operating on explicitly distributed data are in fact executed in parallel.

The programmer must manually insert compiler directives to cause data to be distributed to the available
processors. See the PGHPF User’s Guide and The High Performance Fortran Handbook for more details on
constructing and executing data parallel programs on shared-memory or distributed-memory cluster systems
using PGHPF.

Platform-specific considerations
There are nine platforms supported by the PGI Workstation and PGI Server compilers and tools:

e 32-bit Linux - supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or an
x64 compatible processor.

Chapter 1. Getting Started

e 04-bit/32-bit Linux - includes all features and capabilities of the 32-bit Linux version, and is also supported
on 64-bit Linux operating systems running on an x64 compatible processor.

e 32-bit Windows - supported on 32-bit Windows operating systems running on either a 32-bit x86
compatible or an x64 compatible processor.

e 04-bit/32-bit Windows - includes all features and capabilities of the 32-bit Windows version, and is also
supported on 64-bit Windows operating systems running an x64 compatible processor.

e 32-bit SFU - supported on 32-bit Windows operating systems running on either a 32-bit x86 compatible or
an x64 compatible processor.

e 32-bit SUA - supported on 32-bit Windows operating systems running on either a 32-bit x86 compatible or
an x64 compatible processor.

e 064-bit/32-bit SUA - includes all features and capabilities of the 32-bit SUA version, and is also supported on
64-bit Windows operating systems running on an x64 compatible processor.

e 32-bit Apple Mac OS X - supported on 32-bit Apple Mac operating systems running on either a 32-bit or 64-
bit Intel-based Mac system.

e 04-bit Apple Mac OS X - supported on 64-bit Apple Mac operating systems running on a 64-bit Intel-based
Mac system.

The following sections describe the specific considerations required to use the PGI compilers on the various
platforms: Linux, Windows, and Apple Mac OS X.

Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. PGI supports many of these extensions,

thus allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers can

compile. A few header files not interoperable with the PGI compilers have been rewritten and are included

in $PG / | i nux86/ i ncl ude. These files are: si gset . h, asni byt eor der . h, st ddef . h, asm

posi x_t ypes. h and others. Also, PGI's version of st dar g. h supports changes in newer versions of Linux.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This will happen by default unless you explicitly add a —I option that
references one of the system include directories.

Running Parallel Programs on Linux

You may encounter difficulties running auto-parallel or OpenMP programs on Linux systems when the
per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting the
environment variable OVP_STACK_SI ZE to a larger value, such as 8MB. This can be accomplished with the
command in csh:

% set env OVP_STACK SI ZE 8M

in bash, sh, or ksh, use:

% OVP_STACK_SI ZE=8M export OWP_STACK_SI ZE

PGI® User's Guide

If your program is still failing, you may be encountering the hard 8 MB limit on main process stack sizes in
Linux. You can work around the problem by issuing the following command in csh:

%limt stacksize unlimted
in bash, sh, or ksh, use:

%ulimt -s unlimted

Using the PGI Compilers on Windows

BASH Shell Environment

10

On Windows platforms, the tools that ship with the PGI Workstation or PGI Server command-level compilers
include a full-featured shell command environment. After installation, you should have a PGI icon on your
Windows desktop. Double-left-click on this icon to cause an instance of the BASH command shell to appear
on your screen. Working within BASH is very much like working within the sh or ksh shells on a Linux system,
but in addition BASH has a command history feature similar to csh and several other unique features. Shell
programming is fully supported. A complete BASH User’s Guide is available through the PGI online manual set.
Select “PGI Workstation” under Start->Programs and double-left-click on the documentation icon to see the
online manual set. You must have a web browser installed on your system in order to read the online manuals.

The BASH shell window is pre-initialized for usage of the PGI compilers and tools, so there is no need to set
environment variables or modify your command path when the command window comes up. In addition to the
PGI compiler commands referenced above, within BASH you have access to over 100 common commands and
utilities, including but not limited to the following:

vi emacs make

tar / untar gzip / gunzip ftp

sed grep / egrep / fgrep awk

cat cksum cp

date diff du

find kill Is

more / less mv printenv / env
rm / rmdir touch wC

If you are familiar with program development in a Linux environment, editing, compiling, and executing
programs within BASH will be very comfortable. If you have not previously used such an environment, you
should take time to familiarize yourself with either the vi or emacs editors and with makefiles. The emacs
editor has an extensive online tutorial, which you can start by bringing up emacs and selecting the appropriate
option under the pull-down help menu. You can get a thorough introduction to the construction and use of
makefiles through the online Makefile User’s Guide.

For library compatibility, PGI provides versions of ar and ranlib that are compatible with native Windows
object-file formats. For more information on these commands, refer to “Creating and Using Static Libraries on
Windows,” on page 79.

Chapter 1. Getting Started

Windows Command Prompt

The PGI Workstation entry in the Windows Start menu contains a submenu titled PGI Workstation Tools.

This submenu contains a shortcut labeled PGI Command Prompt (32-bit). The shortcut is used to launch a
Windows command shell using an environment pre-initialized for the use of the 32-bit PGI compilers and
tools. On x64 systems, a second shortcut labeled PGI Command Prompt (64-bit) will also be present. This
shortcut launches a Windows command shell using an environment pre-initialized for the use of the 64-bit PGI
compilers and tools.

Using the PGI Compilers on SUA and SFU

Subsystem for Unix Applications (SUA and SFU)

Subsystem for Unix Applications (SUA) is a source-compatibility subsystem for running Unix applications on
32-bit and 64-bit Windows server-class operating systems. PGI Workstation for Windows includes compilers
and tools for SUA and its 32-bit-only predecessor, Services For Unix (SFU).

SUA provides an operating system for POSIX processes. There is a package of support utilities available for
download from Microsoft that provides a more complete Unix environment, including features like shells,
scripting utilities, a telnet client, development tools, and so on.

SUA/SFU Header Files

The SUA/SFU system header files contain numerous non-standard extensions. PGI supports many of these
extensions, thus allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers
can compile. A few header files not interoperable with the PGI compilers have been rewritten and are included
in $PGI/sua32/include or $PGIl/sua64/include. These files are: stdarg.h, stddef.h, and others.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This happens by default unless you explicitly add a —I option that
references one of the system include directories.

Running Parallel Programs on SUA and SFU

You may encounter difficulties running auto-parallel or OpenMP programs on SUA/SFU systems when the
per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting the
environment variable OVP_STACK_SI ZE to a larger value, such as 8MB. This can be accomplished with the
command:

in csh:

% set env OWP_STACK_SI ZE 8M

in bash, sh, or ksh.
% OVP_STACK_SI ZE=8M export OVP_STACK S| ZE

Using the PGI Compilers on Mac OS X

Mac OS X Header Files

11

PGI® User's Guide

The Mac OS X header files contain numerous non-standard extensions. PGI supports many of these extensions,
thus allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers can compile.
A few header files not interoperable with the PGI compilers have been rewritten and are included in $PGI/
sua32/include or $PGl/sua64/include. These files are: stdarg.h, stddef.h, and others.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This will happen by default unless you explicitly add a —I option that
references one of the system include directories.

Running Parallel Programs on Mac OS

You may encounter difficulties running auto-parallel or OpenMP programs on Mac OS X systems when the
per-thread stack size is set to the default (8MB). If you have unexplained failures, please try setting the
environment variable OMP_STACK_SIZE to a larger value, such as 16MB. This can be accomplished with the
following command:

in csh:
% set env OVP_STACK_SI ZE 16M

in bash, sh, or ksh.
% OVP_STACK_SI ZE=16M export OMP_STACK_SI ZE

Site-specific Customization of the Compilers

If you are using the PGI compilers and want all your users to have access to specific libraries or other files,
there are special files that allow you to customize the compilers for your site.

Using siterc Files

The PGI compiler drivers utilize a file named si t er ¢ to enable site-specific customization of the behavior of
the PGI compilers. The si t er c file is located in the bin subdirectory of the PGI installation directory. Using
si t er c, you can control how the compiler drivers invoke the various components in the compilation tool
chain.

Using User rc Files

12

In addition to the siterc file, user r c files can reside in a given user’s home directory, as specified by the user’s
HOME environment variable. You can use these files to control the respective PGI compilers. All of these files
are optional.

On Linux and SUA these files are named . nypgf 77r ¢, . nypgf 90r ¢, . mypgccr ¢, . nypgcppr ¢, and
. mypghpfrec.

On native windows, these files are named mypgf 77rc, nypgf 95rc, nypgccrc, nypgcpprc, and
mypghpfrec.

On Windows, these files are named mypgf 77r ¢ and nmypgf 95r c.

The following examples show how these rc files can be used to tailor a given installation for a particular
purpose.

Chapter 1. Getting Started

Table 1.2. Examples of Using siterc and User rc Files

To do this... Add the line shown to the indicated file

Make the libraries found in the set SITELIB=/opt/new i bs/64;
following location available to all
linux86-64 compilations.

[opt/ new i bs/ 64

Make the libraries found in the set SITELI B=/opt/new i bs/32;
following location available to all
linux86 compilations.
[opt/ new i bs/ 32

Add the following new library path to all |append SI TELI B=/opt/l ocal/fast;
linux86-64 compilations.
/opt/|ocal/fast

Make the following include path set S| TEI NC=/ Opt /acm /incl ude;
available to all compilations;
-1/opt/acm /include

to/opt/pgi/linux86-64/7.1/bin/siterc

to/opt/pgi/linux86/7.1/bin/siterc

to/opt/pgi/linux86-64/7.1/bin/siterc

to /opt/pgi/linux86/7.1/bin/siterc and/
opt/pgi/linux86-64/7.1/bin/siterc

Change —Mmpi to link in the following |Set MPI'LI BDI R=/ opt/nynpi / 64;
with linux86-64 compilations. e RIENENENESNRIRS

, , , to/opt/pgi/linux86-64/7.1/ bin/siterc;
[opt/ nmynpi / 64/1i bnpi x. a

Have linux86-64 compilations always ~ |Set Sl TEDEF=I S64BI T AVD;
add

to/ opt/pgi/linux86-64/7.1/bin/siterc
—-DI S64BI T —DAMD

Build an F90 executable for linux86- set RPATH=./REDI ST ;
64 or linux86 that resolves PGI shared
objects in the relative directory

to~/ . mypgf 95r ¢

./ REDI ST Note

This only affects the behavior of PGF95 for the
given user.

Common Development Tasks

Now that you have a brief introduction to the compiler, let’s look at some common development tasks that you
might wish to perform.

* When you compile code you can specify a number of options on the command line that define specific
characteristics related to how the program is compiled and linked, typically enhancing or overriding the
default behavior of the compiler. For a list of the most common command line options and information on
all the command line options, refer to Chapter 2, “Using Command Line Options”.

e Code optimization and parallelization allow you to organize your code for efficient execution. While possibly
increasing compilation time and making the code more difficult to debug, these techniques typically

13

PGI® User's Guide

14

produce code that runs significantly faster than code that does not use them. For more information on
optimization and parallelization, refer to Chapter 3, “Using Optimization & Parallelization”.

Function inlining, a special type of optimization, replaces a call to a function or a subroutine with the body
of the function or subroutine. This process can speed up execution by eliminating parameter passing and
the function or subroutine call and return overhead. In addition, function inlining allows the compiler

to optimize the function with the rest of the code. However, function inlining may also result in much
larger code size with no increase in execution speed. For more information on function inlining, refer to
Chapter 4, “Using Function Inlining”.

Directives and pragmas allow users to place hints in the source code to help the compiler generate

better assembly code. You typically use directives and pragmas to control the actions of the compiler in a
particular portion of a program without affecting the program as a whole. You place them in your source
code where you want them to take effect. A directive or pragma typically stays in effect from the point where
included until the end of the compilation unit or until another directive or pragma changes its status. For
more information on directives and pragmas, refer to Chapter 5, “Using OpenMP"and Chapter 6, “Using
Directives and Pragmas’.

A library is a collection of functions or subprograms used to develop software. Libraries contain "helper"
code and data, which provide services to independent programs, allowing code and data to be shared and
changed in 2 modular fashion. The functions and programs in a library are grouped for ease of use and
linking. When creating your programs, it is often useful to incorporate standard libraries or proprietary
ones. For more information on this topic, refer to Chapter 7, “Creating and Using Libraries”.

Environment variables define a set of dynamic values that can affect the way running processes behave on a
computer. It is often useful to use these variables to set and pass information that alters the default behavior
of the PGI compilers and the executables which they generate. For more information on these variables,
refer to Chapter 8, “ Using Environment Variables”.

Deployment, though possibly an infrequent task, can present some unique issues related to concerns
of porting the code to other systems. Deployment, in this context, involves distribution of a specific file
or set of files that are already compiled and configured. The distribution must occur in such a way that
the application executes accurately on another system which may not be configured exactly the same as
the system on which the code was created. For more information on what you might need to know to
successfully deploy your code, refer to Chapter 9, “Distributing Files - Deployment”.

An intrinsic is a function available in a given language whose implementation is handled specially by the
compiler. Intrinsics make using processor-specific enhancements easier because they provide a C/C++
language interface to assembly instructions. In doing so, the compiler manages details that the user would
normally have to be concerned with, such as register names, register allocations, and memory locations
of data. For C/C++ programs, PGI provides support for MMX and SSE/SSE2/SSE3 intrinsics. For more
information on these intrinsics, refer to Chapter 20, “C/C++ MMX/SSE Inline Intrinsics”.

Chapter 2. Using Command Line
Options

A command line option allows you to control specific behavior when a program is compiled and linked. This
chapter describes the syntax for properly using command-line options and provides a brief overview of a few
of the more common options.

Note

For a complete list of command-line options, their descriptions and use, refer to Chapter 15,
“Command-Line Options Reference,” on page 163.

Command Line Option Overview

Before looking at all the command-line options, first become familiar with the syntax for these options. There
are a large number of options available to you, yet most users only use a few of them. So, start simple and
progress into using the more advanced options.

By default, the PGI 7.1 compilers generate code that is optimized for the type of processor on which
compilation is performed, the compilation host. Before adding options to your command-line, review the
sections‘‘Help with Command-line Options,” on page 16 and “Frequently-used Options,” on page 19.

Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not recognize an
option, it passes the option to the linker.

This document uses the following notation when describing options:
[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (I) separates
the choices.

15

PGI® User's Guide

Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

NOTE

Some options do not allow a space between the option and its argument or within an argument. When
applicable, the syntax section of the option description in Chapter 15, “Command-Line Options
Reference,” on page 163 contains this information.

Command-line Suboptions

Some options accept several suboptions. You can specify these suboptions either by using the full option
statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:

pgf 95 - Mvect =sse - Mvect =noal t code

pgf 95 - Mrect =sse, noal t code
Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both—-Mrect and —Mhovect are
available. -Mvect enables vectorization and —vnovect disables it. If you used both of these commands on a
command line, they would conflict.

Note

Rule: When you use conflicting options on a command line, the last encountered option takes
precedence over any previous one.

This rule is important for a number of reasons.

¢ Some options, such as —f ast , include other options. Therefore, it is possible for you to be unaware that
you have conflicting options.

* You can use this rule to create makefiles that apply specific flags to a set of files, as shown in Example 2.1.

Example 2.1. Makefiles with Options

In this makefile, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags defined for CCFLAGS but disables
vectorization.

CCFLAGS=c - Mvect =sse
CCNOVECTFLAGS=$(CCFLAGS) - Mhovect

Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know which options are
available, when to use them, and which options most users find effective.

16

Chapter 2. Using Command Line Options

Using —help
The —hel p option is useful because it provides information about all options supported by a given compiler.

You can use —hel p in one of three ways:

e Use —hel p with no parameters to obtain a list of all the available options with a brief one-line description
of each.

* Add a parameter to —hel p to restrict the output to information about a specific option. The syntax for this
usage is this:

—hel p <command |ine option>

For example, suppose you use the following command to restrict the output to information about the -
fast option:

pgf 95 -hel p -fast

The output you see is similar to this:

-f ast Conmon optim zations; includes - -Minroll=c:1 -Mofrane -Mre

In the following example, usage information for —hel p shows how groups of options can be listed or
examined according to function

$ pgf95 -help -help

- hel p[=gr oups| asnj debug| | anguage| | i nker | opt | ot her |
overal | | phase| prepro| suffix|sw tch|target|vari abl e]
Show conpi | er swi tches

e Add a parameter to —hel p to restrict the output to a specific set of options or to a building process. The
syntax for this usage is this:

- hel p=<subgr oup>

The previous output from the command pgf 95 - hel p - hel p shows the available subgroups. For
example, you can use the following command to restrict the output to information about options related to
debug information generation.

pgf 95 - hel p=debug

The output you see is similar to this:

Debuggi ng swi t ches:

- M no] bounds Generate code to check array bounds

- Mchkf pst k Check consi stency of floating point stack at subprogram calls
(32-bit only)

Note: This switch only works on 32-bit. On 64-bit, the switch is ignored.

- Mchkst k Check for sufficient stack space upon subprogram entry

- Mcof f Generate COFF fornmat obj ect

- Miwar f 1 Gener at e DWARF1 debug i nformation with -g

- Miwar f 2 Gener at e DWARF2 debug i nformation with -g

- Miwar f 3 Gener at e DWARF3 debug i nformation with -g

- Mel f Generate ELF format object

-g Generate information for debugger

- gopt Generate information for debugger without disabling

optim zations

PGI® User's Guide

For a complete description of subgroups, refer to “~help ,” on page 178.

Getting Started with Performance

One of top priorities of most users is performance and optimization. This section provides a quick overview of
a few of the command-line options that are useful in improving performance.

Using —fast and —fastsse Options

PGI compilers implement a wide range of options that allow users a fine degree of control on each
optimization phase. When it comes to optimization of code, the quickest way to start is to use —f ast and

—f ast sse. These options create a generally optimal set of flags for targets that support SSE/SSE2 capability.
They incorporate optimization options to enable use of vector streaming SIMD (SSE/SSE2) instructions for
04-bit targets. They enable vectorization with SSE instructions, cache alignment, and SSE arithmetic to flush to
zero mode.

Note

The contents of the —fast and —fastsse options are host-dependent. Further, you should use these
options on both compile and link command lines.

e —fast and —f ast sse typically include these options:

—02 Specifies a code optimization level of 2.

—Munroll=c:1 Unrolls loops, executing multiple instances of the loop during each
iteration.

—Mnoframe Indicates to not generate code to set up a stack frame.

—Mlre Indicates loop-carried redundancy elimination.

e These additional options are also typically available when using —f ast for 64-bit targets and when using
—f ast sse for both 32- and 64-bit targets:

—Mvect=sse Generates SSE instructions.

—Mscalarsse Generates scalar SSE code with xmm registers; implies —Mflushz.
—Mcache_align Aligns long objects on cache-line boundaries.

—Mflushz Sets SSE to flush-to-zero mode.

Note

For best performance on processors that support SSE instructions, use the PGF95 compiler, even for
FORTRAN 77 code, and the —f ast option.

To see the specific behavior of —f ast for your target, use the following command:

pgf 95 -hel p -fast
18

Chapter 2. Using Command Line Options

Other Performance-related Options

While —f ast and - f ast sse are options designed to be the quickest route to best performance, they are
limited to routine boundaries. Depending on the nature and writing style of the source code, the compiler
often can perform further optimization by knowing the global context of usage of a given routine. For instance,
determining the possible value range of actual parameters of a routine could enable a loop to be vectorized,
similarly, determining static occurrence of calls helps to decide which routine is beneficial to inline.

These types of global optimizations are under control of Inter Procedural Analysis (IPA) in PGI compilers.
Option - M pa enables Inter Procedural Analysis. - Mpi =f ast is the recommended option to get best
performances for global optimization. You can also add the suboption i nl i ne to enable automatic global
inlining across file. You might consider using —M pa=f ast, i nl i ne. This option for inter-procedural
analysis and global optimization can improve performance.

You may also be able to obtain further performance improvements by experimenting with the individual
—Mpgf | ag options detailed in the section“—M Options by Category,” on page 219. These options include
—Mvect,—Munrol | ,—M nl i ne, —=Mconcur , and —Mpf i / —Mpf 0. However, performance improvements
using these options are typically application- and system-dependent. It is important to time your application
carefully when using these options to ensure no performance degradations occur.

For more information on optimization, refer to Chapter 3, “Using Optimization & Parallelization,” on page
21. For specific information about these options, refer to “~M<pgflag> Optimization Controls,” on page
229,

Targeting Multiple Systems; Using the -tp Option

The —t p option allows you to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system. As a result, executables created on a given
system may not be usable on previous generation systems. For example, executables created on a Pentium 4
may fail to execute on a Pentium III or Pentium II.

Processor-specific optimizations can be specified or limited explicitly by using the - t p option. Thus, it is
possible to create executables that are usable on previous generation systems. With the exception of k8-64, k8-
64e, p7-64, and x64, any of these sub-options are valid on any x86 or x64 processor-based system. The k8-64,
k8-64e, p7-64 and x64 options are valid only on x64 processor-based systems

For more information about the - t p option, refer to “~tp <target> [,target...] ,” on page 202.

Frequently-used Options

In addition to overall performance, there are a number of other options that many users find useful when
getting started. The following table provides a brief summary of these options.

For more information on these options, refer to the complete description of each option available in

Chapter 15, “Command-Line Options Reference,” on page 163. Also, there are a number of suboptions
available with each of the —M options listed. For more information on those options, refer to “—M Options by
Category”.

19

PGI® User's Guide

20

Table 2.1. Commonly Used Command Line Options

Option

Description

—fast or —fastsse

These options create a generally optimal set of flags for targets that
support SSE/SSE2 capability. They incorporate optimization options
to enable use of vector streaming SIMD instructions (64-bit targets)
and enable vectorization with SEE instructions, cache aligned and
flushz.

-g Instructs the compiler to include symbolic debugging information in
the object module.

—gopt Instructs the compiler to include symbolic debugging information
in the object file, and to generate optimized code identical to that
generated when —g is not specified.

—help Provides information about available options.

—mcmodel=medium

Enables medium=model core generation for 64-bit targets; useful
when the data space of the program exceeds 4GB.

—Mconcur Instructs the compiler to enable auto-concurrentization of loops. If
specified, the compiler uses multiple processors to execute loops
that it determines to be parallelizable; thus, loop iterations are split
to execute optimally in a multithreaded execution context.

—Minfo Instructs the compiler to produce information on standard error.

—Minline Passes options to the function inliner.

—Mipa=fast,inline

Enables interprocedural analysis and optimization. Also enables
automatic procedure inlining.

—Mneginfo Instructs the compiler to produce information on standard error.

—Mpfi and —Mpfo Enable profile feedback driven optimizations.

—Mkeepasm Keeps the generated assembly files.

—Munroll Invokes the loop unroller to unroll loops, executing multiple
instances of the loop during each iteration. This also sets the
optimization level to 2 if the level is set to less than 2, or if no -0 or
—g options are supplied.

—M[no]vect Enables/Disables the code vectorizer.

--[no_]exceptions

Removes exception handling from user code.

—0

Names the output file.

—O<level>

Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

—tp <target> [target...]

Specify the type(s) of the target processor(s) to enable generation of
PGI Unified Binary executables.

Chapter 3. Using Optimization &
Parallelization

Source code that is readable, maintainable, and produces correct results is not always organized for efficient
execution. Normally, the first step in the program development process involves producing code that executes
and produces the correct results. This first step usually involves compiling without much worry about
optimization. After code is compiled and debugged, code optimization and parallelization become an issue.
Invoking one of the PGI compiler commands with certain options instructs the compiler to generate optimized
code. Optimization is not always performed since it increases compilation time and may make debugging
difficult. However, optimization produces more efficient code that usually runs significantly faster than code
that is not optimized.

The compilers optimize code according to the specified optimization level. Using the —O, -Mvect , —M pa,
and —Mconcur , you can specify the optimization levels. In addition, you can use several -M<pgflag> switches
to control specific types of optimization and parallelization.

This chapter describes the optimization options displayed in the following list.

—fast —Mpfi —Mvect
—Mconcur —Mpfo -0
—Mipa=fast —Munroll

This chapter also describes how to choose optimization options to use with the PGI compilers. This overview
will help if you are just getting started with one of the PGI compilers, or wish to experiment with individual
optimizations. Complete specifications of each of these options is available in Chapter 15, “Command-Line
Options Reference’.

Overview of Optimization

In general, optimization involves using transformations and replacements that generate more efficient

code. This is done by the compiler and involves replacements that are independent of the particular target
processor’s architecture as well as replacements that take advantage of the x86 or x04 architecture, instruction
set and registers. For the discussion in this and the following chapters, optimization is divided into the
following categories:

21

PGI® User's Guide

Local Optimization

This optimization is performed on a block-by-block basis within a program’s basic blocks. A basic block is
a sequence of statements in which the flow of control enters at the beginning and leaves at the end without
the possibility of branching, except at the end. The PGI compilers perform many types of local optimization
including: algebraic identity removal, constant folding, common sub-expression elimination, redundant load
and store elimination, scheduling, strength reduction, and peephole optimizations.

Global Optimization

This optimization is performed on a program unit over all its basic blocks. The optimizer performs control-
flow and data-flow analysis for an entire program unit. All loops, including those formed by IFs and GOTOs,
are detected and optimized. Global optimization includes: constant propagation, copy propagation, dead store
elimination, global register allocation, invariant code motion, and induction variable elimination.

Loop Optimization: Unrolling, Vectorization, and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling options.
Vectorization transforms loops to improve memory access performance and make use of packed SSE
instructions which perform the same operation on multiple data items concurrently. Unrolling replicates the
body of loops to reduce loop branching overhead and provide better opportunities for local optimization,
vectorization and scheduling of instructions. Performance for loops on systems with multiple processors may
also improve using the parallelization features of the PGI compilers.

Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (IPA) allows use of information across function call boundaries to perform
optimizations that would otherwise be unavailable. For example, if the actual argument to a function is in fact
a constant in the caller, it may be possible to propagate that constant into the callee and perform optimizations
that are not valid if the dummy argument is treated as a variable. A wide range of optimizations are enabled

or improved by using IPA, including but not limited to data alignment optimizations, argument removal,
constant propagation, pointer disambiguation, pure function detection, F90/F95 array shape propagation, data
placement, vestigial function removal, automatic function inlining, inlining of functions from pre-compiled
libraries, and interprocedural optimization of functions from pre-compiled libraries.

Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of that function. This
optimization will sometimes speed up execution by eliminating the function call and return overhead. Function
inlining may also create opportunities for other types of optimization. Function inlining is not always beneficial.
When used improperly it may increase code size and generate less efficient code.

Profile-Feedback Optimization (PFO)

22

Profile-feedback optimization (PFO) makes use of information from a trace file produced by specially
instrumented executables which capture and save information on branch frequency, function and subroutine
call frequency, semi-invariant values, loop index ranges, and other input data dependent information that
can only be collected dynamically during execution of a program. By definition, use of profile-feedback

Chapter 3. Using Optimization & Parallelization

optimization is a two-phase process: compilation and execution of a specially-instrumented executable,
followed by a subsequent compilation which reads a trace file generated during the first phase and uses the
information in that trace file to guide compiler optimizations.

Getting Started with Optimizations

Your first concern should be getting your program to execute and produce correct results. To get your
program running, start by compiling and linking without optimization. Use the optimization level —00 or select
—g to perform minimal optimization. At this level, you will be able to debug your program easily and isolate any
coding errors exposed during porting to x86 or x64 platforms.

If you want to get started quickly with optimization, a good set of options to use with any of the PGI compilers
is—fast —M pa=f ast . For example:

$ pgf 95 -fast -M pa=fast prog.f

For all of the PGI Fortran, C, and C++ compilers, the —f ast , —M pa=f ast options generally produce code
that is well-optimized without the possibility of significant slowdowns due to pathological cases.

The —f ast option is an aggregate option that includes a number of individual PGI compiler options;
which PGI compiler options are included depends on the target for which compilation is performed. The
—M pa=f ast option invokes interprocedural analysis including several IPA suboptions.

For C++ programs, add - M nl i ne=I evel s: 10 --no_excepti ons:

$ pgcpp -fast -M pa=fast -Mnline=l evel s:10 --no_excepti ons prog.cc

Note

A C++ program compiled with - - no_except i ons will fail if the program uses exception handling.

By experimenting with individual compiler options on a file-by-file basis, further significant performance gains
can sometimes be realized. However, depending on the coding style, individual optimizations can sometimes
cause slowdowns, and must be used carefully to ensure performance improvements. In addition to - f ast , the
optimization flags most likely to further improve performance are - O3, - Mpf i , - Mpf 0, - M nl i ne, and on
targets with multiple processors - Mconcur .

In addition, the —~Msaf ept r option can significantly improve performance of C/C++ programs in which there
is known to be no pointer aliasing. However, for obvious reasons this command-line option must be used
carefully.

Three other options which are extremely useful are - hel p, - M nf o, and - dr yr un.
—help

As described in “Help with Command-line Options,” on page 16, you can see a specification of any command-
line option by invoking any of the PGI compilers with - hel p in combination with the option in question,
without specifying any input files.

For example:

$ pgf95 -help -0
Readi ng rcfile /usr/pgi/linux86-64/7.0/bin/.pgf95rc

23

PGI® User's Guide

-g<n>] Set optimzation level, -Q0 to -O4, default -2

Or you can see the full functionality of - hel p itself, which can return information on either an individual
option or groups of options; type:
$ pgf 95 -hel p -help
Readi ng rcfile /usr/pgi_rel/linux86-64/7.0/bin/.pgf95rc
- hel p[=gr oups| asn| debug| | anguage| | i nker | opt | ot her | overal |
phase| prepro| suffi x| switch|target]|variabl e]

—Minfo

You can use the - M nf o option to display compile-time optimization listings. When this option is used, the
PGI compilers issue informational messages to stderr as compilation proceeds. From these messages, you
can determine which loops are optimized using unrolling, SSE instructions, vectorization, parallelization,
interprocedural optimizations and various miscellaneous optimizations. You can also see where and whether
functions are inlined.

You can use the - Mhegi nf o option to display informational messages listing why certain optimizations are
inhibited.

For more information on -Minfo, refer to “~M<pgflag> Optimization Controls,” on page 229

—dryrun

The —dr yr un option can be useful as a diagnostic tool if you need to see the steps used by the compiler driver
to preprocess, compile, assemble and link in the presence of a given set of command line inputs. When you
specify the —dr yr un option, these steps will be printed to stderr but are not actually performed. For example,
you can use this option to inspect the default and user-specified libraries that are searched during the link
phase, and the order in which they are searched by the linker.

The remainder of this chapter describes the —0 options, the loop unroller option —Munr ol | , the vectorizer
option —Mvect , the auto-parallelization option —Mconcur , the interprocedural analysis optimization —M pa,
and the profile-feedback instrumentation (~Mpf i) and optimization (—Mpf o) options. You should be able to
get very near optimal compiled performance using some combination of these switches.

Local and Global Optimization using -O

24

Using the PGI compiler commands with the —Olevel option (the capital O is for Optimize), you can specify any
of the following optimization levels:

-00
Level zero specifies no optimization. A basic block is generated for each language statement.

-01
Level one specifies local optimization. Scheduling of basic blocks is performed. Register allocation is
performed.

-02
Level two specifies global optimization. This level performs all level-one local optimization as well as level-
two global optimization. If optimization is specified on the command line without a level, level 2 is the
default.

Chapter 3. Using Optimization & Parallelization

-03
Level three specifies aggressive global optimization. This level performs all level-one and level-two
optimizations and enables more aggressive hoisting and scalar replacement optimizations that may or may
not be profitable.

—04
Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of guarded
invariant floating point expressions.

Note

If you use the -0 option to specify optimization and do not specify a level, then level two optimization
(-02) is the default.

Level-zero optimization specifies no optimization (—00). At this level, the compiler generates a basic block for
each statement. Performance will almost always be slowest using this optimization level. This level is useful for
the initial execution of a program. It is also useful for debugging, since there is a direct correlation between
the program text and the code generated.

Level-one optimization specifies local optimization (=01). The compiler performs scheduling of basic blocks
as well as register allocation. Local optimization is a good choice when the code is very irregular, such as code
that contains many short statements containing IF statements and does not contain loops (DO or DO WHILE
statements). Although this case rarely occurs, for certain types of code, this optimization level may perform
better than level-two (—02).

The PGI compilers perform many different types of local optimizations, including but not limited to:

- Algebraic identity removal - Peephole optimizations
- Constant folding - Redundant load and store elimination
- Common subexpression elimination - Strength reductions

- Local register optimization

Level-two optimization (—02 or —0) specifies global optimization. The —f ast option generally will specify
global optimization; however, the —f ast switch varies from release to release, depending on a reasonable
selection of switches for any one particular release. The —O or —02 level performs all level-one local
optimizations as well as global optimizations. Control flow analysis is applied and global registers are allocated
for all functions and subroutines. Loop regions are given special consideration. This optimization level is a
good choice when the program contains loops, the loops are short, and the structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but not limited to:

- Branch to branch elimination - Global register allocation

- Constant propagation - Invariant code motion

- Copy propagation - Induction variable elimination
- Dead store elimination

25

PGI® User's Guide

You can explicitly select the optimization level on the command line. For example, the following command line
specifies level-two optimization which results in global optimization:

$ pgf95 -2 prog. f

Specifying —O on the command-line without a level designation is equivalent to —02. The default optimization
level changes depending on which options you select on the command line. For example, when you select the
—g debugging option, the default optimization level is set to level-zero (—00). However, you can use the -gopt
option to generate debug information without perturbing optimization if you need to debug optimized code.
Refer to “Default Optimization Levels,” on page 42 for a description of the default levels.

As noted above, the —f ast option includes —02 on all x86 and x64 targets. If you wish to override this with
—03 while maintaining all other elements of —f ast , simply compile as follows:

$ pgf95 -fast -3 prog.f

Scalar SSE Code Generation

26

For all processors prior to Intel Pentium 4 and AMD Opteron/Athlon64, for example Intel Pentium III and
AMD AthlonXP/MP processors, scalar floating-point arithmetic as generated by the PGI Workstation compilers
is performed using x87 floating-point stack instructions. With the advent of SSE/SSE2 instructions on Intel
Pentium 4/Xeon and AMD Opteron/Athlon64, it is possible to perform all scalar floating-point arithmetic using
SSE/SSE2 instructions. In most cases, this is beneficial from a performance standpoint.

The default on 32-bit Intel Pentium II/IIT (—tp p6, —tp piii, etc.) or AMD AthlonXP/MP (—tp k7) is to use x87
instructions for scalar floating-point arithmetic. The default on Intel Pentium 4/Xeon or Intel EMO4T running a
32-bit operating system (~tp p7), AMD Opteron/Athlon64 running a 32-bit operating system (—tp k8-32), or
AMD Opteron/Athlon64 or Intel EM64T processors running a 64-bit operating system (—tp k8-64 and —tp p7-
64 respectively) is to use SSE/SSE2 instructions for scalar floating-point arithmetic. The only way to override
this default on AMD Opteron/Athlon64 or Intel EM64T processors running a 64-bit operating system is to
specify an older 32-bit target (for example —tp k7 or —tp piii).

Note

There can be significant arithmetic differences between calculations performed using x87 instructions
versus SSE/SSE2.

By default, all floating-point data is promoted to IEEE 80-bit format when stored on the x87 floating-point
stack, and all x87 operations are performed register-to-register in this same format. Values are converted
back to IEEE 32-bit or IEEE 64-bit when stored back to memory (for REAL/float and DOUBLE PRECISION/
double data respectively). The default precision of the x87 floating-point stack can be reduced to IEEE 32-bit
or IEEE 64-bit globally by compiling the main program with the —pc {32 | 64} option to the PGI Workstation
compilers, which is described in detail in Chapter 2, “Using Command Line Options”. However, there is no
way to ensure that operations performed in mixed precision will match those produced on a traditional load-
store RISC/UNIX system which implements IEEE 64-bit and IEEE 32-bit registers and associated floating-point
arithmetic instructions.

In contrast, arithmetic results produced on Intel Pentium 4/Xeon, AMD Opteron/Athlon64 or Intel EMOG4T
processors will usually closely match or be identical to those produced on a traditional RISC/UNIX system if
all scalar arithmetic is performed using SSE/SSE2 instructions. You should keep this in mind when porting

Chapter 3. Using Optimization & Parallelization

applications to and from systems which support both x87 and full SSE/SSE2 floating-point arithmetic. Many
subtle issues can arise which affect your numerical results, sometimes to several digits of accuracy.

Loop Unrolling using —Munroll

This optimization unrolls loops, executing multiple instances of the loop during each iteration. This reduces
branch overhead, and can improve execution speed by creating better opportunities for instruction scheduling.
A loop with a constant count may be completely unrolled or partially unrolled. A loop with a non-constant
count may also be unrolled. A candidate loop must be an innermost loop containing one to four blocks of
code. The following shows the use of the —Munr ol | option:

$ pgf 95 -Munrol | prog.f

The —Munr ol | option is included as part of —f ast on all x86 and x64 targets. The loop unroller expands the
contents of a loop and reduces the number of times a loop is executed. Branching overhead is reduced when
a loop is unrolled two or more times, since each iteration of the unrolled loop corresponds to two or more
iterations of the original loop; the number of branch instructions executed is proportionately reduced. When a
loop is unrolled completely, the loop’s branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is completely unrolled or unrolled
two or more times, opportunities for improved scheduling may be presented. The code generator can take
advantage of more possibilities for instruction grouping or filling instruction delays found within the loop.
Example 3.1 and Example 3.2 show the effect of code unrolling on a segment that computes a dot product.

Example 3.1. Dot Product Code

REAL*4 A(100), B(100), Z

| NTEGER |
DO I =1, 100
Z=2z+Ai) * B(i)
END DO

END

Example 3.2. Unrolled Dot Product Code

REAL*4 A(100), B(100), Z
| NTEGER |
DO 1=1, 100, 2

Z=2Z+ A(i) * B(i)
Z =Z + A(i+1) * B(i+1)
END DO

END

Using the —~M nf o option, the compiler informs you when a loop is being unrolled. For example, a message
indicating the line number, and the number of times the code is unrolled, similar to the following will display
when a loop is unrolled:

dot :
5, Loop unrolled 5 tinmes

Using the c:<m> and n:<m> sub-options to —Munr ol | , or using —Mhounr ol | , you can control whether
and how loops are unrolled on a file-by-file basis. Using directives or pragmas as specified in Chapter 6,

27

PGI® User's Guide

“Using Directives and Pragmas”, you can precisely control whether and how a given loop is unrolled. Refer
to Chapter 2, “Using Command Line Options”, for a detailed description of the —Munr ol | option.

Vectorization using -Mvect

The —Mvect option is included as part of —f ast on all x86 and x64 targets. If your program contains
computationally-intensive loops, the —Mvect option may be helpful. If in addition you specify —Minfo,

and your code contains loops that can be vectorized, the compiler reports relevant information on the

optimizations applied.

When a PGI compiler command is invoked with the —Mvect option, the vectorizer scans code searching for
loops that are candidates for high-level transformations such as loop distribution, loop interchange, cache
tiling, and idiom recognition (replacement of a recognizable code sequence, such as a reduction loop, with
optimized code sequences or function calls). When the vectorizer finds vectorization opportunities, it internally
rearranges or replaces sections of loops (the vectorizer changes the code generated; your source code’s loops
are not altered). In addition to performing these loop transformations, the vectorizer produces extensive data
dependence information for use by other phases of compilation and detects opportunities to use vector or
packed Streaming SIMD Extensions (SSE) instructions on processors where these are supported.

The —Mvect option can speed up code which contains well-behaved countable loops which operate on large
REAL, REAL*4, REAL*8, INTEGER*4, COMPLEX or COMPLEX DOUBLE arrays in Fortran and their C/C++
counterparts. However, it is possible that some codes will show a decrease in performance when compiled
with —Mvect due to the generation of conditionally executed code segments, inability to determine data
alignment, and other code generation factors. For this reason, it is recommended that you check carefully

whether particular program units or loops show improved performance when compiled with this option
enabled.

Vectorization Sub-options

28

The vectorizer performs high-level loop transformations on countable loops. A loop is countable if the
number of iterations is set only before loop execution and cannot be modified during loop execution. Some

of the vectorizer transformations can be controlled by arguments to the —Mvect command line option. The
following sections describe the arguments that affect the operation of the vectorizer. In addition, some of these
vectorizer operations can be controlled from within code using directives and pragmas. For details on the use
of directives and pragmas, refer to Chapter 6, “Using Directives and Pragmas,” on page 63.

The vectorizer performs the following operations:

* Loop interchange

e Loop splitting

e Loop fusion

e Memory-hierarchy (cache tiling) optimizations

¢ Generation of SSE instructions on processors where these are supported

e Generation of prefetch instructions on processors where these are supported

e Loop iteration peeling to maximize vector alignment

Chapter 3. Using Optimization & Parallelization

e Alternate code generation

By default, -Mvect without any sub-options is equivalent to:
- Mrect =assoc, cachesi ze=c
where c is the actual cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer options. These defaults
may vary depending on the target system.

Assoc Option

The option —Mrect =assoc instructs the vectorizer to perform associativity conversions that can change
the results of a computation due to a round-off error (-Mvect =noassoc disables this option). For
example, a typical optimization is to change one arithmetic operation to another arithmetic operation that
is mathematically correct, but can be computationally different and generate faster code. This option is
provided to enable or disable this transformation, since a round-off error for such associativity conversions
may produce unacceptable results.

Cachesize Option

The option —Mrect =cachesi ze: n instructs the vectorizer to tile nested loop operations assuming a data
cache size of n bytes. By default, the vectorizer attempts to tile nested loop operations, such as matrix multiply,
using multi-dimensional strip-mining techniques to maximize re-use of items in the data cache.

SSE Option

The option —Mrect =sse instructs the vectorizer to automatically generate packed SSE (Streaming SIMD
Extensions), SSE2, and prefetch instructions when vectorizable loops are encountered. SSE instructions, first
introduced on Pentium III and AthlonXP processors, operate on single-precision floating-point data, and
hence apply only to vectorizable loops that operate on single-precision floating-point data. SSE2 instructions,
first introduced on Pentium 4, Xeon and Opteron processors, operate on double-precision floating-point

data. Prefetch instructions, first introduced on Pentium IIT and AthlonXP processors, can be used to improve
the performance of vectorizable loops that operate on either 32-bit or 64-bit floating-point data. Refer to

Table 2, “Processor Options,” on page xxvi for a concise list of processors that support SSE, SSE2 and prefetch
instructions.

Note

Program units compiled with —~Mvect =sse will not execute on Pentium, Pentium Pro, Pentium II or
first generation AMD Athlon processors. They will only execute correctly on Pentium III, Pentium 4,
Xeon, EM64T, AthlonXP, Athlon64 and Opteron systems running an SSE-enabled operating system.

Prefetch Option

The option —Mrect =pr ef et ch instructs the vectorizer to automatically generate prefetch instructions when
vectorizable loops are encountered, even in cases where SSE or SSE2 instructions are not generated. Usually,
explicit prefetching is not necessary on Pentium 4, Xeon and Opteron because these processors support

29

PGI® User's Guide

hardware prefetching; nonetheless, it sometimes can be worthwhile to experiment with explicit prefetching.
Prefetching can be controlled on a loop-by-loop level using prefetch directives, which are described in detail
in “Prefetch Directives ,” on page 69.

Note

Program units compiled with —~Mvect =pr ef et ch will not execute correctly on Pentium, Pentium
Pro, or Pentium II processors. They will execute correctly only on Pentium III, Pentium 4, Xeon,
EM64T, AthlonXP, Athlon64 or Opteron systems. In addition, the prefetchw instruction is only
supported on AthlonXP, Athlon64 or Opteron systems and can cause instruction faults on non-AMD
processors. For this reason, the PGI compilers do not generate prefetchw instructions by default on
any target.

In addition to these sub-options to —Mvect , several other sub-options are supported. Refer to the description
of -M[no]vect in Chapter 15, “Command-Line Options Reference” for a detailed description of all available
sub-options.

Vectorization Example Using SSE/SSE2 Instructions

30

One of the most important vectorization options is - Mvect =sse. When you use this option, the compiler
automatically generates SSE and SSE2 instructions, where possible, when targeting processors on which
these instructions are supported. This process can improve performance by up to a factor of two compared
with the equivalent scalar code. All of the PGI Fortran, C and C++ compilers support this capability. Table 2,
“Processor Options,” on page xxvi shows which x86 and x64 processors support these instructions.

Prior to release 7.0 - Mrect =sse was omitted from the compiler switch - f ast but included in - f ast sse.
Since release 7.0 - f ast is synonymous with - f ast sse and therefore includes - Mrect =sse.

In the program in Example 3.3, “Vector operation using SSE instructions”, the vectorizer recognizes the vector
operation in subroutine 'loop' when either the compiler switch - Mrect =sse or - f ast is used. This example
shows the compilation, informational messages, and runtime results using the SSE instructions on an AMD
Opteron processor-based system, along with issues that affect SSE performance.

First note that the arrays in Example 3.3 are single-precision and that the vector operation is done using a
unit stride loop. Thus, this loop can potentially be vectorized using SSE instructions on any processor that
supports SSE or SSE2 instructions. SSE operations can be used to operate on pairs of single-precision floating-
point numbers, and do not apply to double-precision floating-point numbers. SSE2 instructions can be used
to operate on quads of single-precision floating-point numbers or on pairs of double-precision floating-point
numbers.

Loops vectorized using SSE or SSE2 instructions operate much more efficiently when processing vectors that
are aligned to a cache-line boundary. You can cause unconstrained data objects of size 16 bytes or greater
to be cache-aligned by compiling with the —~Mcache_al i gn switch. An unconstrained data object is a data
object that is not a common block member and not a member of an aggregate data structure.

Note

For stack-based local variables to be properly aligned, the main program or function must be
compiled with —~Mcache_al i gn.

Chapter 3. Using Optimization & Parallelization

The —Mcache_al i gn switch has no effect on the alignment of Fortran allocatable or automatic arrays. If
you have arrays that are constrained, such as vectors that are members of Fortran common blocks, you must
specifically pad your data structures to ensure proper cache alignment; -Mcache_al i gn causes only the
beginning address of each common block to be cache-aligned.

The following examples show the results of compiling the example code with and without —~Mvect =sse.

Example 3.3. Vector operation using SSE instructions

pr ogr am vect or _op
paraneter (N = 9999)

real *4 x(N), y(N), z(N, WN)

doi =1, n
y(i) =i
z(i) = 2*i
Wi) = 4%i
enddo
do j =1, 200000
call loop(x,y,z,w 1.0e0, N
enddo
print *, x(1),x(771),x(3618), x(6498), x(9999)
end

subroutine | oop(a,b,c,d,s,n)

integer i, n
real *4 a(n), b(n), c(n), d(n),s
doi =1, n

a(i) =b(i) +c(i) - s * d(i)
enddo

end

Assume the preceding program is compiled as follows, where - Mrect =nosse disables SSE vectorization:

% pgf 95 -fast - Mect=nosse -M nfo vadd. f
vect or _op:

4, Loop unrolled 4 tinmes
| oop:

18, Loop unrolled 4 tines

The following output shows a sample result if the generated executable is run and timed on a standalone AMD
Opteron 2.2 Ghz system:

% /bin/time vadd
-1. 000000 -771. 000 -3618. 000 - 6498. 00
- 9999. 00

5. 39user 0.00system 0: 05. 40el apsed 99%CP

Now, recompile with SSE vectorization enabled, and you see results similar to these:

% pgf 95 -fast -Mnfo vadd.f -o vadd
vect or _op:
4, Unrolled inner |loop 8 tines
Loop unrolled 7 times (conpletely unroll ed)
| oop:
18, Generated 4 alternate | oops for the inner |oop
Cener ated vector sse code for inner |oop
Generated 3 prefetch instructions for this |oop

Notice the informational message for the loop at line 18.

31

PGI® User's Guide

e The first two lines of the message indicate that the loop has been vectorized, SSE instructions have been
generated, and four alternate versions of the loop have also been generated. The loop count and alignments
of the arrays determine which of these versions is executed.

e The last line of the informational message indicates that prefetch instructions have been generated for three
loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:

% /bin/tinme vadd
-1. 000000 -771.000 -3618.00 -6498. 00
-9999.0

3. 59user 0.00system 0: 03. 59¢el apsed 100%CPU
The result is 2 50% speed-up over the equivalent scalar, that is, the non-SSE, version of the program.

Speed-up realized by a given loop or program can vary widely based on a number of factors:

* When the vectors of data are resident in the data cache, performance improvement using vector SSE or SSE2
instructions is most effective.

e If data is aligned properly, performance will be better in general than when using vector SSE operations on
unaligned data.

e If the compiler can guarantee that data is aligned properly, even more efficient sequences of SSE
instructions can be generated.

e The efficiency of loops that operate on single-precision data can be higher. SSE2 vector instructions can
operate on four single-precision elements concurrently, but only two double-precision elements.

Note

Compiling with —~Mvect =sse can result in numerical differences from the executables generated
with less optimization. Certain vectorizable operations, for example dot products, are sensitive

to order of operations and the associative transformations necessary to enable vectorization (or
parallelization).

Auto-Parallelization using -Mconcur

32

With the - Mconcur option the compiler scans code searching for loops that are candidates for auto-
parallelization. - Mconcur must be used at both compile-time and link-time. When the parallelizer finds
opportunities for auto-parallelization, it parallelizes loops and you are informed of the line or loop being
parallelized if the - M nf o option is present on the compile line. See “~M<pgflag> Optimization Controls,” on
page 229, for a complete specification of - Mconcur .

Aloop is considered parallelizable if doesn't contain any cross-iteration data dependencies. Cross-iteration
dependencies from reductions and expandable scalars are excluded from consideration, enabling more loops
to be parallelizable. In general, loops with calls are not parallelized due to unknown side effects. Also, loops
with low trip counts are not parallelized since the overhead in setting up and starting a parallel loop will likely
outweigh the potential benefits. In addition, the default is to not parallelize innermost loops, since these often
by definition are vectorizable using SSE instructions and it is seldom profitable to both vectorize and parallelize

Chapter 3. Using Optimization & Parallelization

the same loop, especially on multi-core processors. Compiler switches and directives are available to let you
override most of these restrictions on auto-parallelization.

Auto-parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the —~Mconcur command
line option. The following sections describe these arguments that affect the operation of the vectorizer. In
addition, these vectorizer operations can be controlled from within code using directives and pragmas. For
details on the use of directives and pragmas, refer to Chapter 6, “Using Directives and Pragmas”.

By default, -Mconcur without any sub-options is equivalent to:

- Mconcur =di st : bl ock

This enables parallelization of loops with blocked iteration allocation across the available threads of execution.
These defaults may vary depending on the target system.

Altcode Option

The option —Mconcur =al t code instructs the parallelizer to generate alternate serial code for parallelized
loops. If altcode is specified without arguments, the parallelizer determines an appropriate cutoff length and
generates serial code to be executed whenever the loop count is less than or equal to that length. If altcode:n
is specified, the serial altcode is executed whenever the loop count is less than or equal to n. If noaltcode is
specified, no alternate serial code is generated.

Dist Option

The option —Mconcur =di st : { bl ock| cycl i c} option specifies whether to assign loop iterations to the
available threads in blocks or in a cyclic (round-robin) fashion. Block distribution is the default. If cyclic is
specified, iterations are allocated to processors cyclically. That is, processor 0 performs iterations 0, 3, 6, etc.;
processor 1 performs iterations 1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

Cncall Option

The option —Mconcur =cncal | specifies that it is safe to parallelize loops that contain subroutine or function
calls. By default, such loops are excluded from consideration for auto-parallelization. Also, no minimum loop
count threshold must be satisfied before parallelization will occur, and last values of scalars are assumed to be
safe.

The environment variable NCPUS is checked at runtime for a parallel program. If NCPUS is set to 1, a parallel
program runs serially, but will use the parallel routines generated during compilation. If NCPUS is set to

a value greater than 1, the specified number of processors will be used to execute the program. Setting
NCPUS to a value exceeding the number of physical processors can produce inefficient execution. Executing a
program on multiple processors in an environment where some of the processors are being time-shared with
another executing job can also result in inefficient execution.

As with the vectorizer, the - Mconcur option can speed up code if it contains well-behaved countable loops
and/or computationally intensive nested loops that operate on arrays. However, it is possible that some codes
will show a decrease in performance on multi-processor systems when compiled with - Mconcur due to
parallelization overheads, memory bandwidth limitations in the target system, false-sharing of cache lines, or

33

PGI® User's Guide

other architectural or code-generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to Chapter 5,
“Using OpenMP”. 1t is possible that insertion of explicit parallelization directives or pragmas, and use of the
—np compiler option might enable the application to run in parallel.

Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler, programmers will often
note loops that are seemingly parallel, but are not parallelized. In this subsection, we look at some examples of
common situations where parallelization does not occur.

Innermost Loops

As noted earlier in this chapter, the PGI compilers will not parallelize innermost loops by default, because it is
usually not profitable. You can override this default using the command-line option —Mconcur =i nner nost .

Timing Loops

Often, loops will occur in programs that are similar to timing loops. The outer loop in the following example is
one such loop.

doj =1, 2
doi =1, n
a(i) = b(i) + c(i)
1 enddo
enddo

The outer loop above is not parallelized because the compiler detects a cross-iteration dependence in the
assignment to a(i) . Suppose the outer loop were parallelized. Then both processors would simultaneously
attempt to make assignments into a(1: n) . Now in general the values computed by each processor for

a(1: n) will differ, so that simultaneous assignment into a(1: n) will produce values different from
sequential execution of the loops.

In this example, values computed for a(1: n) don’t depend on j , so that simultaneous assignment by both
processors will not yield incorrect results. However, it is beyond the scope of the compilers’ dependence
analysis to determine that values computed in one iteration of a loop don’t differ from values computed in
another iteration. So the worst case is assumed, and different iterations of the outer loop are assumed to
compute different values for a(1: n) . Is this assumption too pessimistic? If j doesn’t occur anywhere within
a loop, the loop exists only to cause some delay, most probably to improve timing resolution. It is not usually
valid to parallelize timing loops; to do so would distort the timing information for the inner loops.

Scalars

34

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate cases that
present problems. In the first case, scalars appear to be expandable, but appear in non-innermost loops, as in
the following example.

doj =1, n
X = b(j)
doi =1, n

a(i,j) =x+c(i,j)

Chapter 3. Using Optimization & Parallelization

enddo
enddo

There are a number of technical problems to be resolved in order to recognize expandable scalars in non-
innermost loops. Until this generalization occurs, scalars like x in the preceding code segment inhibit
parallelization of loops in which they are assigned. In the following example, scalar k is not expandable, and it
is not an accumulator for a reduction.

k =1
doi =1, n
doj =1, n
1 a(j,i) = b(k) * x
enddo
k =i
2 if (i .gt. nf2) k =n - (i - n/2)
enddo

If the outer loop is parallelized, conflicting values are stored into k by the various processors. The variable k
cannot be made local to each processor because the value of k must remain coherent among the processors.
It is possible the loop could be parallelized if all assignments to k are placed in critical sections. However, it

is not clear where critical sections should be introduced because in general the value for k could depend on
another scalar (or on k itself), and code to obtain the value of other scalars must reside in the same critical

section.

In the example above, the assignment to k within a conditional at label 2 prevents k from being recognized
as an induction variable. If the conditional statement at label 2 is removed, k would be an induction variable
whose value varies linearly with j , and the loop could be parallelized.

Scalar Last Values

During parallelization, scalars within loops often need to be privatized, that is, each execution thread has its
own independent copy of the scalar. Problems can arise if a privatized scalar is accessed outside the loop. For
example, consider the following loop:
for (i =1; i<N i++){

if(f(x[i]) >5.0) t =x[i];
}

vV = t;

The value of t may not be computed on the last iteration of the loop. Normally, if a scalar is assigned within
a loop and used following the loop, the PGI compilers save the last value of the scalar. However, if the loop
is parallelized and the scalar is not assigned on every iteration, it may be difficult, without resorting to costly
critical sections, to determine on what iteration t is last assigned. Analysis allows the compiler to determine
that a scalar is assigned on each iteration and hence that the loop is safe to parallelize if the scalar is used
later, as illustrated in the following example.

for (i =1; i <n; i++) {
if (x[i] >0.0) {
t = 2.0;
}
el se {
t =3.0;
yli] = ...t;
}
}
vV = t;

35

PGI® User's Guide

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be
privatizable, but if it is used after the loop, it is unsafe to parallelize. Examine the following loop in which each
use of t within the loop is reached by a definition from the same iteration.

for (i =1; i <N i++){
if(x[i] > 0.0){
t = x[i];
ylil = t
}
}
v = t;

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since the compiler may
not be able to detect on which iteration of the parallelized loop t is last assigned. The compiler detects

the previous cases. When a scalar is used after the loop but is not defined on every iteration of the loop,
parallelization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the programmer

may use a directive or pragma to let the compiler know the loop is safe to parallelize. The Fortran directive
saf e_| ast val informs the compiler that, for a given loop, all scalars are assigned in the last iteration of the
loop; thus, it is safe to parallelize the loop. We could add the following line to any of our previous examples.

cpgi $I safe_l astval

The resulting code looks similar to this:

cpgi $I safe_l astval
for (i =1; i<N i++){

if(f(x[i]) >5.0) t =x[i];
}

vV =t;

In addition, 2 command-line option —Msafe_lastval, provides this information for all loops within the routines
being compiled, which essentially provides global scope.

Processor-Specific Optimization and the Unified Binary

36

Different processors have differences, some subtle, in hardware features such as instruction sets and cache
size. The compilers make architecture-specific decisions about things such as instruction selection, instruction
scheduling, and vectorization. By default, the PGI compilers produce code specifically targeted to the type

of processor on which the compilation is performed. That is, the default is to use all supported instructions
wherever possible when compiling on a given system. As a result, executables created on a given system may
not be usable on previous generation systems. For example, executables created on a Pentium 4 may fail to
execute on a Pentium III or Pentium II.

All PGI compilers have the capability of generating unified binaries, which provide a low-overhead means for
generating a single executable that is compatible with and has good performance on more than one hardware
platform.

You can use the —t p option to control compilation behavior by specifying the processor or processors with
which the generated code is compatible. The compilers generate and combine into one executable multiple

Chapter 3. Using Optimization & Parallelization

binary code streams, each optimized for a specific platform. At runtime, the one executable senses the
environment and dynamically selects the appropriate code stream. For specific information on the —t p option,
see —tp <target> [,target...] .

Executable size is automatically controlled via unified binary culling. Only those functions and subroutines
where the target affects the generated code have unique binary images, resulting in a code-size savings of from
10% to 90% compared to generating full copies of code for each target.

Programs can use PGI Unified Binary even if all of the object files and libraries are not compiled as unified
binaries. Like any other object file, you can use PGI Unified Binary object files to create programs or libraries.
No special start up code is needed; support is linked in from the PGI libraries.

The -Mpfi option disables generation of PGI Unified Binary. Instead, the default target auto-detect rules for the
host are used to select the target processor.

Interprocedural Analysis and Optimization using —Mipa

The PGI Fortran, C and C++ compilers use interprocedural analysis (IPA) that results in minimal changes

to makefiles and the standard edit-build-run application development cycle. Other than adding —M pa to

the command line, no other changes are required. For reference and background, the process of building a
program without IPA is described below, followed by the minor modifications required to use IPA with the PGI
compilers. While the PGCC compiler is used here to show how IPA works, similar capabilities apply to each of
the PGI Fortran, C and C++ compilers.

Note

The examples use Linux file naming conventions. On Windows, ‘.0’ files would be *.obj’ files, and
‘a.out’ files would be ‘.exe’ files.

Building a Program Without IPA — Single Step

Using the pgcc command-level compiler driver, multiple source files can be compiled and linked into a single
executable with one command. The following example compiles and links three source files:
% pgcc -0 a.out filel.c file2.c file3.c

In actuality, the pgcc driver executes several steps to produce the assembly code and object files
corresponding to each source file, and subsequently to link the object files together into a single executable
file. Thus, the command above is roughly equivalent to the following commands performed individually:

% pgcc -S -0 filel.s filel.c

%as -o filel.o filel.s

% pgcc -S -0 file2.s file2.c

%as -o file2.0 file2.s

% pgcc -S -0 file3.s file3.c

%as -o file3.0 file3.s

% pgcc -0 a.out filel.o file2.0 file3.0

If any of the three source files is edited, the executable can be rebuilt with the same command line:
% pgcc -0 a.out filel.c file2.c file3.c

This always works as intended, but has the side-effect of recompiling all of the source files, even if only one has
changed. For applications with a large number of source files, this can be time-consuming and inefficient.

37

PGI® User's Guide

Building a Program Without IPA - Several Steps

It is also possible to use individual pgcc commands to compile each source file into a corresponding object
file, and one to link the resulting object files into an executable:

% pgcc -c filel.c
% pgcc -c file2.c
% pgcc -c file3.c
% pgcc -0 a.out filel.o file2.0 file3.o0

The pgcce driver invokes the compiler and assembler as required to process each source file, and invokes
the linker for the final link command. If you modify one of the source files, the executable can be rebuilt by
compiling just that file and then relinking:

% pgcc -c filel.c
% pgcc -0 a.out filel.o file2.0 file3.0

Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using the nake utility on systems
where it is supported. Suppose you create a makef i | e containing the following lines:

a.out: filel.o file2.0 file3.0
pgcc $(OPT) -0 a.out filel.o file2.0 file3.0
filel.o: filel.c
pgcc $(OPT) -c filel.c
file2.0: file2.c
pgcc $(OPT) -c file2.c
file3.o: file3.c
pgcc $(OPT) -c file3.c

It is then possible to type a single make command:
% make

The nake utility determines which object files are out of date with respect to their corresponding source files,
and invokes the compiler to recompile only those source files and to relink the executable. If you subsequently
edit one or more source files, the executable can be rebuilt with the minimum number of recompilations using
the same single make command.

Building a Program with IPA

38

Interprocedural analysis and optimization (IPA) by the PGI compilers alters the standard and make utility
command-level interfaces as little as possible. IPA occurs in three phases:

e Collection: Create a summary of each function or procedure, collecting the useful information for
interprocedural optimizations. This is done during the compile step if the —-M pa switch is present on the
command line; summary information is collected and stored in the object file.

» Propagation: Process all the object files to propagate the interprocedural summary information across
function and file boundaries. This is done during the link step, when all the object files are combined, if the
—Mipa switch is present on the link command line.

e Recompile/Optimization: Recompile each of the object files with the propagated interprocedural
information, producing a specialized object file. This process is also done during the link step when the
—M pa switch is present on the link command line.

Chapter 3. Using Optimization & Parallelization

When linking with —M pa, the PGI compilers automatically regenerate IPA-optimized versions of each object
file, essentially recompiling each file. If there are IPA-optimized objects from a previous build, the compilers
will minimize the recompile time by reusing those objects if they are still valid. They will still be valid if the IPA-
optimized object is newer than the original object file, and the propagated IPA information for that file has not
changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the application with the TPA-
optimized object files. The IPA-optimized object files are saved in the same directory as the original object
files, for use in subsequent program builds.

Building a Program with IPA - Single Step

By adding the —-M pa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:

% pgcc -M pa=fast -0 a.out filel.c file2.c file3.c

Just like compiling without —M pa, the driver executes several steps to produce the assembly and object files
to create the executable:

% pgcc -Mpa=fast -S -o filel.s filel.c

%as -o filel.o filel.s

% pgcc -Mpa=fast -S -o file2.s file2.c

%as -o file2.0 file2.s

% pgcc -Mpa=fast -S -o file3.s file3.c

%as -o file3.0 file3.s

% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

In the last step, an IPA linker is invoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to recompile
them with interprocedural information. This creates three new objects with mangled names:

filel ipa5_a.out.o00.0, file2_ ipa5_a.out.o00.0, file2_ipa5_a.out.o00.0

The system linker is then invoked to link these IPA-optimized objects into the final executable. Later, if one of
the three source files is edited, the executable can be rebuilt with the same command line:

% pgcc -M pa=fast -0 a.out filel.c file2.c file3.c

This will work, but again has the side-effect of compiling each source file, and recompiling each object file at
link time.

Building a Program with IPA - Several Steps

Just by adding the —-M pa command-line switch, it is possible to use individual pgcc commands to compile
each source file, followed by a command to link the resulting object files into an executable:

% pgcc -M pa=fast -c filel.c
% pgcc -Mpa=fast -c file2.c
% pgcc -M pa=fast -c file3.c
% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes the
IPA linker for the final link command. If you modify one of the source files, the executable can be rebuilt by
compiling just that file and then relinking:

% pgcc -M pa=fast -c filel.c

39

PGI® User's Guide

% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

When the IPA linker is invoked, it will determine that the IPA-optimized object for fi | e1. o

(filel_i pa5_a. out. 00. 0) is stale, since it is older than the object filel.0, and hence will need to be
rebuilt, and will reinvoke the compiler to generate it. In addition, depending on the nature of the changes

to the source file filel.c, the interprocedural optimizations previously performed for file2 and file3 may now
be inaccurate. For instance, IPA may have propagated a constant argument value in a call from a function

in filel.c to a function in file2.c; if the value of the argument has changed, any optimizations based on that
constant value are invalid. The IPA linker will determine which, if any, of any previously created IPA-optimized
objects need to be regenerated, and will reinvoke the compiler as appropriate to regenerate them. Only those
objects that are stale or which have new or different IPA information will be regenerated, which saves on
compile time.

Building a Program with IPA Using Make

As in the previous two sections, programs can be built with IPA using the make utility, just by adding the
—M pa command-line switch:

OPT=-M pa=fast a.out: filel.o file2.0 file3.0
pgcc $(OPT) -0 a.out filel.o file2.0 file3.0
filel.o: filel.c
pgcc $(OPT) -c filel.c
file2.0: file2.c
pgcc $(OPT) -c file2.c
file3.0: file3.c
pgcc $(OPT) -c filed.c

Using the single make command invokes the compiler to generate any object files that are out-of-date, then
invoke pgcc to link the objects into the executable; at link time, pgcc calls the IPA linker to regenerate any
stale or invalid IPA-optimized objects.

% nmake

Questions about IPA

40

1. Why is the object file so large?

An object file created with —M pa contains several additional sections. One is the summary information
used to drive the interprocedural analysis. In addition, the object file contains the compiler internal
representation of the source file, so the file can be recompiled at link time with interprocedural
optimizations. There may be additional information when inlining is enabled. The total size of the object
file may be 5-10 times its original size. The extra sections are not added to the final executable.

2. What if I compile with —Mipa and link without —Mipa?

The PGI compilers generate a legal object file, even when the source file is compiled with —M pa. If
you compile with —M pa and link without —M pa, the linker is invoked on the original object files. A
legal executable will be generated; while this will not have the benefit of interprocedural optimizations,
any other optimizations will apply.

3. What if I compile without —Mipa and link with —Mipa?

At link time, the IPA linker must have summary information about all the functions or routines used
in the program. This information is created only when a file is compiled with —M pa. If you compile

Chapter 3. Using Optimization & Parallelization

a file without —M pa and then try to get interprocedural optimizations by linking with —M pa, the IPA
linker will issue a message that some routines have no IPA summary information, and will proceed to
run the system linker using the original object files. If some files were compiled with —M pa and others
were not, it will determine the safest approximation of the IPA summary information for those files not
compiled with —M pa, and use that to recompile the other files using interprocedural optimizations.

4. Can I build multiple applications in the same directory with —Mipa?

Yes. Suppose you have three source files: mai n1. c, mai n2. ¢, and sub. c, where sub. c is shared
between the two applications. Suppose you build the first application with —M pa, using this command:

% pgcc -M pa=fast -o appl mainl.c sub.c
The the IPA linker creates two IPA-optimized object files:
mai n1_i pa4_appl. o sub_i pad4_appl. oo

It uses them to build the first application. Now suppose you build the second application using this
command:

% pgcc - M pa=fast -0 app2 nmin2.c sub.c
The IPA linker creates two more IPA-optimized object files:

mai N2_i pa4_app2. oo sub_i pa4_app2. 0o

Note

There are now three object files for sub. c: the original sub. o, and two IPA-optimized
objects, one for each application in which it appears.

Note

5. How is the mangled name for the IPA-optimized object files generated?

The mangled name has '_ipa' appended, followed by the decimal number of the length of the
executable file name, followed by an underscore and the executable file name itself. The suffix is
changed to .00 (on Linux) or .0obj (on Windows) so linking *.0 or *.obj does not pull in the IPA-
optimized objects. If the IPA linker determines that the file would not benefit from any interprocedural
optimizations, it does not have to recompile the file at link time and uses the original object.

Profile-Feedback Optimization using -Mpfi/-Mpfo

The PGI compilers support many common profile-feedback optimizations, including semi-invariant value
optimizations and block placement. These are performed under control of the —Mpf i /~Mpf o command-line
options.

When invoked with the —Mpf i option, the PGI compilers instrument the generated executable for collection
of profile and data feedback information. This information can be used in subsequent compilations that
include the —\Vpf o optimization option. —Vpf i must be used at both compile-time and link-time. Programs
compiled with —Mpf i include extra code to collect run-time statistics and write them out to a trace file. When
the resulting program is executed, a profile feedback trace file pgf i . out is generated in the current working
directory.

41

PGI® User's Guide

Note

Programs compiled and linked with —Mpf i execute more slowly due to the instrumentation and data
collection overhead. You should use executables compiled with —Mpf i only for execution of training
runs.

When invoked with the —Mpf o option, the PGI compilers use data from a pgf i . out profile feedback
tracefile to enable or enhance certain performance optimizations. Use of this option requires the presence of a
pgfi . out trace file in the current working directory.

Default Optimization Levels

The following table shows the interaction between the —O<level> ,—g, and —M<opt> options. In the table,
level can be 0, 1, 2, 3 or 4, and <opt> can be vect, concur, unroll or ipa. The default optimization level is
dependent upon these command-line options.

Table 3.1. Optimization and —O, —g and —-M<opt> Options

Optimize Option Debug Option -M<opt> Option Optimization Level
none none none 1

none none —M<opt> 2

none -g none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel <=2 none or —g —M<opt> 2

Code that is not optimized yet compiled using the option —00 can be significantly slower than code generated
at other optimization levels. The -M<opt> option, where <opt> is vect, concur, unroll or ipa, sets the
optimization level to 2 if no —O options are supplied. The —f ast and —f ast sse options set the optimization
level to a target-dependent optimization level if no —O options are supplied.

Local Optimization Using Directives and Pragmas

42

Command-line options let you specify optimizations for an entire source file. Directives supplied within a
Fortran source file and pragmas supplied within a C or C++ source file provide information to the compiler
and alter the effects of certain command-line options or the default behavior of the compiler. (Many directives
have a corresponding command-line option).

While a command line option affects the entire source file that is being compiled, directives and pragmas let
you do the following:

* Apply, or disable, the effects of a particular command-line option to selected subprograms or to selected
loops in the source file (for example, an optimization).

e Globally override command-line options.

* Tune selected routines or loops based on your knowledge or on information obtained through profiling.

Chapter 3. Using Optimization & Parallelization

Chapter 6, “Using Directives and Pragmas” provides details on how to add directives and pragmas to your
source files.

Execution Timing and Instruction Counting

As this chapter shows, once you have a program that compiles, executes and gives correct results, you may
optimize your code for execution efficiency. Selecting the correct optimization level requires some thought
and may require that you compare several optimization levels before arriving at the best solution. To compare
optimization levels, you need to measure the execution time for your program. There are several approaches
you can take for timing execution. You can use shell commands that provide execution time statistics, you can
include function calls in your code that provide timing information, or you can profile sections of code. Timing
functions available with the PGI compilers include 3F timing routines, the SECNDS pre-declared function

in PGF77 or PGF95, or the SYSTEM_CLOCK or CPU_CLOCK intrinsics in PGF95 or PGHPF. In general, when
timing a program, you should try to eliminate or reduce the amount of system level activities such as program
loading, 1/0 and task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK effectively within an F90/
F95 or HPF program unit.

Example 3.4. Using SYSTEM_CLOCK code fragment

integer :: nprocs, hz, clockO, clockl
real :: time
integer, allocatable :: t(:)

Thpf$ distribute t(cyclic)
#if defined (HPF)

al l ocate (t(nunber_of processors()))
#tel i f defined (_OPENWVP)

al l ocate (t(OWP_GET_NUM THREADS()))
#el se

allocate (t(1))
#endi f

call system clock (count_rate=hz)
|

call system cl ock(count=cl ock0)
< do wor k>

call system cl ock(count=cl ockl)
!

t = (clockl - clock0)
time = real (sum(t)) / (real(hz) * size(t))

Portability of Multi-Threaded Programs on Linux

PGI has created two libraries - libpgbind and libnuma - to handle the variations between various
implementations of Linux.

Some older versions of Linux are lacking certain features that support multi-processor and multi-core systems,
in particular, the system call 'sched_setaffinity' and the numa library libnuma. The PGI run-time library uses
these features to implement some —Mconcur and —np operations.

These variations have led to the creation of two PGI libraries, libpgbind and libnuma. These libraries are used
on all 32-bit and 64-bit Linux systems. These libraries are not needed on Windows.

43

PGI® User's Guide

When a program is linked with the system libnuma library, the program depends on the libnuma library in
order to run. On systems without a system libnuma library, the PGI version of libnuma provides the required
stubs so that the program links and executes properly.

If the program is linked with libpgbind and libnuma, the differences between systems is masked by the
different versions of libpgbind and libnuma. In particular, PGI provides two versions of libpgbind - one for
systems with working support for sched_setaffinity and another for systems that do not.

When a program is deployed to the target system, the proper set of libraries, real or stub, should be deployed
with the program.

This facility requires that the program be dynamically linked with libpgbind and libnuma.

libpgbind

On some versions of Linux, the system call sched_setaffinity does not exist or does not work. The library
libpgbind is used to work around this problem.

During installation, a small test program is compiled, linked, and executed. If the test program compiles, links,
and executes successfully, the installed version of libpgbind calls the system sched_setaffinity, otherwise the
stub version is installed.

libnuma

44

Not all systems have libnuma. Typically, only numa systems will have this library. PGI supplies a stub version of
libnuma which satisfies the calls from the PGI runtime to libnuma. Note that libnuma is a shared library that is
linked dynamically at runtime.

The reason to have a numa library on all systems is to allow multi-threaded programs (e.g. compiled with
—Mconcur or —np) to be compiled, linked, and executed without regard to whether the host or target
systems has a numa library. When the numa library is not available, a multi-threaded program still runs
because the calls to the numa library are satisfied by the PGI stub library.

During installation, the installation procedure checks for the existence of a real libnuma among the system
libraries. If the real library is not found, the PGI stub version is substituted.

Chapter 4. Using Function Inlining

Function inlining replaces a call to a function or a subroutine with the body of the function or subroutine. This
can speed up execution by eliminating parameter passing and function/subroutine call and return overhead.

It also allows the compiler to optimize the function with the rest of the code. Note that using function inlining
indiscriminately can result in much larger code size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

* Automatic inlining - During the compilation process, a hidden pass precedes the compilation pass.
This hidden pass extracts functions that are candidates for inlining. The inlining of functions occurs as the
source files are compiled.

e Inline libraries - You create inline libraries, for example using the pgf95 compiler driver and the
—Mext ract and —o options. There is no hidden extract pass but you must ensure that any files that depend
on the inline library use the latest version of the inline library.

There are important restrictions on inlining. Inlining only applies to certain types of functions. Refer to
“Restrictions on Inlining,” on page 49 for more details on function inlining limitations.

This chapter describes how to use the following options related to function inlining:

—Mext ract
—M nli ne

—M ecursi ve

Invoking Function Inlining

To invoke the function inliner, use the - M nl i ne option. If you do not specify an inline library, the compiler
performs a special prepass on all source files named on the compiler command line before it compiles any of
them. This pass extracts functions that meet the requirements for inlining and puts them in a temporary inline
library for use by the compilation pass.

Several - M nl i ne suboptions let you determine the selection criteria for functions to be inlined. These
suboptions include:

45

PGI® User's Guide

except:f unc
Inlines all eligible functions except f unc, a function in the source text. You can us a comma-separated list
to specify multiple functions.

[name:]f unc
Inlines all functions in the source text whose name matches f unc. You can us a comma-separated list to
specify multiple functions.

[size:]n
Inlines functions with a statement count less than or equal to n, the specified size.

Note

The size n may not exactly equal the number of statements in a selected function; the size
parameter is merely a rough gauge.

levels:n
Inlines n level of function calling levels. The default number is one (1). Using a level greater than one
indicates that function calls within inlined functions may be replaced with inlined code. This approach
allows the function inliner to automatically perform a sequence of inline and extract processes.

[lib:]fi 1 e. ext
Instructs the inliner to inline the functions within the library file f i | e. ext . If no inline library is
specified, functions are extracted from a temporary library created during an extract prepass.

Tip

Create the library file using the - Mext r act option.

If you specify both a function name and a size n, the compiler inlines functions that match the function name
or have n or fewer statements.

If 2 name is used without a keyword, then a name with a period is assumed to be an inline library and a name
without a period is assumed to be a function name. If 2 number is used without a keyword, the number is
assumed to be a size.

In the following example, the compiler inlines functions with fewer than approximately 100 statements in the
source file mypr og. f and writes the executable code in the default output file a. out .
$ pgf 95 - M nl i ne=si ze: 100 nyprog. f

Refer to “—M Options by Category,” on page 219 for more information on the - M nl i ne options.

Using an Inline Library

46

If you specify one or more inline libraries on the command line with the - M nl i ne option, the compiler does
not perform an initial extract pass. The compiler selects functions to inline from the specified inline library.

If you also specify a size or function name, all functions in the inline library meeting the selection criteria are
selected for inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the - M nl i ne option, the compiler inlines every
function in the inline library that matches a function in the source text.

Chapter 4. Using Function Inlining

In the following example, the compiler inlines the function pr oc from the inline library | i b. i | and writes
the executable code in the default output file a. out .

$ pgf 95 -M nline=nane: proc, lib:lib.il myprog.f
The following command line is equivalent to the preceding line, with the exception that in the following
example does not use the keywords nane: and | i b: . You typically use keywords to avoid name conflicts

when you use an inline library name that does not contain a period. Otherwise, without the keywords, a period
informs the compiler that the file on the command line is an inline library.

$ pgf95 -Mnline=proc,lib.il myprog.f

Creating an Inline Library

You can create or update an inline library using the - Mext r act command-line option. If you do not specify
selection criteria with the - Mext r act option, the compiler attempts to extract all subprograms.

Several - Mext r act options let you determine the selection criteria for creating or updating an inline library.
These selection criteria include:

func
Extracts the function f unc. You can us a comma-separated list to specify multiple functions.

[name:]f unc
Extracts the functions whose name matches f unc, a function in the source text.

[size:]n
Limits the size of the extracted functions to functions with a statement count less than or equal to n, the
specified size.

Note

The size n may not exactly equal the number of statements in a selected function; the size
parameter is merely a rough gauge.

[lib:]ext.lib
Stores the extracted information in the library directory ext . I i b.

If no inline library is specified, functions are extracted to a temporary library created during an extract
prepass for use during the compilation stage.

When you use the - Mext r act option, only the extract phase is performed; the compile and link phases

are not performed. The output of an extract pass is a library of functions available for inlining. This output is
placed in the inline library file specified on the command line with the —o filename specification. If the library
file exists, new information is appended to it. If the file does not exist, it is created. You can use a command
similar to the following:

$ pgf95 -Mextract=lib:lib.il myfunc.f

You can use the - M nl i ne option with the - Mext r act option. In this case, the extracted library of functions
can have other functions inlined into the library. Using both options enables you to obtain more than one
level of inlining. In this situation, if you do not specify a library with the —~M nl i ne option, the inline process

47

PGI® User's Guide

consists of two extract passes. The first pass is a hidden pass implied by the —M nl i ne option, during which
the compiler extracts functions and places them into a temporary library. The second pass uses the results of
the first pass but puts its results into the library that you specify with the —o option.

Working with Inline Libraries

An inline library is implemented as a directory with each inline function in the library stored as a file using an
encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents for the inline library.
This is a printable, ASCII file which can be examined to find out information about the library contents, such
as names and sizes of functions, the source file from which they were extracted, the version number of the
extractor which created the entry, etc.

Libraries and their elements can be manipulated using ordinary system commands.

e Inline libraries can be copied or renamed.
e Elements of libraries can be deleted or copied from one library to another.

e Thel s or di r command can be used to determine the last-change date of a library entry.

Dependencies

When a library is created or updated using one of the PGI compilers, the last-change date of the library
directory is updated. This allows a library to be listed as a dependence in a makefile or a PVF property and
ensures that the necessary compilations are performed when a library is changed.

Updating Inline Libraries - Makefiles

48

If you use inline libraries you need to be certain that they remain up to date with the source files into which
they are inlined. One way to assure inline libraries are updated is to include them in a makefile. The makefile
fragment in the following example assumes the file uti I s. f contains a number of small functions used in
the files par ser . f and al | oc. f . The makefile also maintains the inline library ut i I s. i | . The makefile
updates the library whenever you change uti I s. f or one of the include files it uses. In turn, the makefile
compiles par ser . f and al | oc. f whenever you update the library.

Example 4.1. Sample Makefile

SRC = nydir

FC = pgf 95

FFLAGS = -2

mai n. o: $(SRC)/main. f $(SRC)/ gl obal . h
$(FC) $(FFLAGS) -c $(SRC)/ main. f

utils.o: $(SRC)/utils.f $(SRC)/global .h $(SRC)/utils.h
$(FC) $(FFLAGS) -c $(SRO)/utils.f

utils.il: $(SRO)/utils.f $(SRC)/global.h $(SRC)/utils.h
$(FC) $(FFLAGS) -Mextract=15 -o utils.il utils.f

parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il

$(FC) $(FFLAGS) -Mnline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRO)/alloc.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Mnline=utils.il -c $(SRC)/all oc. f

myprog: main.o utils.o parser.o alloc.o
$(FC) -0 nyprog main.o utils.o parser.o alloc.o

Chapter 4. Using Function Inlining

Error Detection during Inlining

To request inlining information from the compiler when you invoke the inliner, specify the —Minfo=inline
option. For example:

$ pgf95 -Mnline=nylib.il -Mnfo=inline nyext.f
Examples

Assume the program dhry consists of a single source file dhry.f. The following command line builds an
executable file for dhry in which proc7 is inlined wherever it is called:

$ pgf 95 dhry.f -Mnline=proc7

The following command lines build an executable file for dhr y in which proc7 plus any functions of
approximately 10 or fewer statements are inlined (one level only).

Note

The specified functions are inlined only if they are previously placed in the inline library, t enp. i I ,
during the extract phase.

$ pgf95 dhry.f -Mextract=lib:tenp.il
$ pgf 95 dhry.f -Mnline=10, proc7,tenp.il

Using the same source file dhry.f, the following example builds an executable for dhr y in which all functions
of roughly ten or fewer statements are inlined. Two levels of inlining are performed. This means that if function
A calls function B, and B calls C, and both B and C are inlinable, then the version of B which is inlined into A
will have had C inlined into it.

$ pgf95 dhry.f -Mnline=size: 10, evels: 2

Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

Main or BLOCK DATA programs.

Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or EQUIVALENCE statements.

Subprograms containing FORMAT statements.

e Subprograms containing multiple entries.
A Fortran subprogram is not inlined if any of the following applies:

o [t is referenced in a statement function.

e A common block mismatch exists; in other words, the caller must contain all common blocks specified
in the callee, and elements of the common blocks must agree in name, order, and type (except that the
caller's common block can have additional members appended to the end of the common block).

 An argument mismatch exists; in other words, the number and type (size) of actual and formal parameters
must be equal.

49

PGI® User's Guide

* A name clash exists, such as a call to subroutine xyz in the extracted subprogram and a variable named
xyz in the caller.

The following types of C and C++ functions cannot be inlined:

e Functions containing switch statements
¢ Functions which reference a static variable whose definition is nested within the function

e Function which accept a variable number of arguments
Certain C/C++ functions can only be inlined into the file that contains their definition:

o Static functions
¢ Functions which call a static function

¢ Functions which reference a static variable

50

Chapter 5. Using OpenMP

The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program Interface. The
PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program Interface. The OpenMP
shared-memory parallel programming model is defined by a collection of compiler directives or pragmas,
library routines, and environment variables that can be used to specify shared-memory parallelism in Fortran,
C and C++ programs. The Fortran directives and C/C++ pragmas include a parallel region construct for
writing coarse grain SPMD programs, work-sharing constructs which specify that DO loop iterations or
C/C++ for loop iterations should be split among the available threads of execution, and synchronization
constructs. The data environment is controlled either by using clauses on the directives or pragmas, or

with additional directives or pragmas. Run-time library routines are provided to query the parallel runtime
environment, for example to determine how many threads are participating in execution of a parallel region.
Finally, environment variables are provided to control the execution behavior of parallel programs. For more
information on OpenMP, see www.openmp.org.

Fortran directives and C/C++ pragmas allow users to place hints in the source code to help the compiler
generate better assembly code. You typically use directives and pragmas to control the actions of the compiler
in a particular portion of a program without affecting the program as a whole. You place them in your source
code where you want them to take effect. Typically they stay in effect from the point where included until the
end of the compilation unit or until another directive or pragma changes its status.

Fortran Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers when
the option —np is specified on the command line. The form of a parallelization directive is:

sentinel directive_nane [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with these rules:

Be one of these: '$OMP, CSOMP, or *$OMP.

Must start in column 1 (one).

Must appear as a single word without embedded white space.

The sentinel marking a DOACROSS directive is CS$.

51

PGI® User's Guide

The directive_name can be any of the directives listed in Table 5.1, “Directive and Pragma Summary Table,”
on page 53. The valid clauses depend on the directive. Chapter 16, “OpenMP Reference Information”
provides a list of directives and their clauses, their usage, and examples.

In addition to the sentinel rules, the directive must also comply with these rules:

e Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply to the directive
line.

e Initial directive lines must have a space or zero in column six.

e Continuation directive lines must have a character other than a space or a zero in column six. Continuation
lines for CSDOACROSS directives are specified using the C$& sentinel.

e Directives which are presented in pairs must be used in pairs.
Clauses associated with directives have these characteristics:

e The order in which clauses appear in the parallelization directives is not significant.

e Commas separate clauses within the directives, but commas are not allowed between the directive name and
the first clause.

e (Clauses on directives may be repeated as needed, subject to the restrictions listed in the description of each
clause.

C/C++ Parallelization Pragmas

52

Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by the PGCC C and
C++ compilers when the option -mp is specified on the command line. The form of a parallelization pragma
is:

#pragma onp pragme_nane [cl auses]

The format for pragmas include these standards:

e The pragmas follow the conventions of the C and C++ standards.

e Whitespace can appear before and after the #.

* Preprocessing tokens following the #pragma omp are subject to macro replacement.
e The order in which clauses appear in the parallelization pragmas is not significant.

* Spaces separate clauses within the pragmas.

e (Clauses on pragmas may be repeated as needed subject to the restrictions listed in the description of each
clause.

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be a statement or compound
statement (a sequence of statements beginning with { and ending with }) that has a single entry and a single
exit. No statement or compound statement is a C/C++ structured block if there is a jump into or out of that
statement.

Chapter 5. Using OpenMP

Directive and Pragma Recognition

The compiler option —np enables recognition of the parallelization directives and pragmas. The use of this
option also implies:

—Mreentrant
Local variables are placed on the stack and optimizations, such as -Mnoframe, that may result in non-
reentrant code are disabled.

—Miomutex
For directives, critical sections are generated around Fortran I/0 statements.

For pragmas, calls to I/0 library functions are system-dependent and are not necessarily guaranteed to be
thread-safe. 1/0 library calls within parallel regions should be protected by critical regions, as shown in the
examples in Chapter 16, “OpenMP Reference Information”, to ensure they function correctly on all systems.

Directive and Pragma Summary Table

The following table provides a brief summary of the directives and pragmas that PGI supports. For complete
information on these statement and examples, refer to Chapter 16, “OpenMP Reference Information”.

Table 5.1. Directive and Pragma Summary Table

Fortran Directive and C/C++ Description
Pragma
“ATOMIC ,” on page 244 Semantically equivalent to enclosing a single statement

in the CRITCIAL...END CRITICAL directive or omp critical

omp atomic pragma. Note: Only certain statements are allowed.
“BARRIER,” on page 244 Synchronizes all threads at a specific point in a program

' so that all threads complete work to that point before any
omp barrier thread continues.
“CRITICAL ... END CRITICAL and omp |Defines a subsection of code within a parallel region, a
critical ,” on page 245 critical section, which is executed one thread at a time.
“DO ... END DO and omp for,” on |Provides a mechanism for distribution of loop iterations
page 247 across the available threads in a parallel region.
“C$DOACROSS ,” on page 246 Specifies that the compiler should parallelize the loop to

which it applies, even though that loop is not contained
within a parallel region.

“FLUSH and omp flush pragma ,” on |When this appears, all processor-visible data items, or,
page 249 when a list is present (FLUSH [list]), only those specified
in the list, are written to memory, thus ensuring that all the
threads in a team have a consistent view of certain objects

in memory.
“MASTER ... END MASTER and omp | Designates code that executes on the master thread and that
master pragma ” is skipped by the other threads.

53

PGI® User's Guide

Fortran Directive and C/C++
Pragma

Description

“ORDERED ,” on page 251

omp ordered

Defines a code block that is executed by only one thread at
a time, and in the order of the loop iterations; this makes
the ordered code block sequential, while allowing parallel
execution of statements outside the code block.

“PARALLEL DO ,” on page 254

omp parallel for

Enables you to specify which loops the compiler should
parallelize.

“PARALLEL ... END PARALLEL and
omp parallel ,” on page 251

Supports a fork/join execution model in which a single
thread executes all statements until a parallel region is
encountered.

“PARALLEL SECTIONS ,” on page
255

omp parallel sections

Defines a non-iterative work-sharing construct without the
need to define an enclosing parallel region.

“PARALLEL WORKSHARE ,” on page
256

Provides a short form method for including 2 WORKSHARE
directive inside a PARALLEL construct.

“SECTIONS ... END SECTIONS ,” on
page 257

omp sections

Defines a non-iterative work-sharing construct within a
parallel region.

“SINGLE ... END SINGLE,” on page
2578

omp master

Designates code that executes on a single thread and that is
skipped by the other threads.

“THREADPRIVATE ,” on page 258

omp threadprivate

When a common block or variable that is initialized
appears in this directive or pragma, each thread’s copy is
initialized once prior to its first use.

“WORKSHARE ... END WORKSHARE,”
on page 259

omp for

Provides a mechanism to effect parallel execution of non-
iterative but implicitly data parallel constructs.

Directive and Pragma Clauses

54

Some directives and pragmas accept clauses that further allow a user to control the scope attributes of
variables for the duration of the directive or pragma. Not all clauses are allowed on all directives, so the
clauses that are valid are included with the description of the directive and pragma. Typically, if no data scope
clause is specified for variables, the default scope is share.

Table 16.2, “Directive and Pragma Clauses ,” on page 260 provides a brief summary of the clauses
associated with OPENMP directives and pragmas that PGI supports.

Chapter 5. Using OpenMP

For complete information on these clauses, refer to the OpenMP documentation available on the WorldWide
Web.

Run-time Library Routines

User-callable functions are available to the Fortran and to the OpenMP C/C++ programmer to query and alter
the parallel execution environment.

Any C/C++ program unit that invokes these functions should include the statement #include <omp.h>.
The onp. h include file contains definitions for each of the C/C++ library routines and two required type

definitions. For example, to use the onp_get _num t hr eads function, use this syntax:
#i ncl ude <onp. h>
int onmp_get _num t hreads(voi d);

The following table summarizes the run-time library calls.

Note

The Fortran call is shown first followed by the equivalent C++ call.

Table 5.2. Run-time Library Call Summary

Run-time Library Call with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region.

By default, the value returned by this function is equal to the value of the environment variable
OVP_NUM_THREADS or to the value set by the last previous call to omp_set_num_threads().

Fortran i nteger onp_get num t hreads()

C/C++ #i ncl ude <onp. h> int onp_get_numt hreads(void);

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine or function can only be called from a serial region of code. If it is called from
within a parallel region, or from within a subroutine or function that is called from within a parallel
region, the results are undefined. Further, this subroutine or function has precedence over the
OVP_NUM THREADS environment variable.

Fortran subroutine onp_set_num t hreads(scal ar _i nt eger _exp)

C/C++ #i ncl ude <onp. h> void onp_set_num threads(int num_t hreads);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

Fortran i nteger onp_get _thread_nun()

99

PGI® User's Guide

56

Run-time Library Call with Examples

C/C++ #i ncl ude <onp. h> int onp_get_thread_num voi d);

omp_get_max_threads
Returns the maximum value that can be returned by calls to omp_get_num_threads().
If omp_set_num_threads() is used to change the number of processors, subsequent calls to

omp_get_max_threads() return the new value. Further, this function returns the maximum value
whether executing from a parallel or serial region of code.

Fortran i nteger function onp_get _nmax_threads()

C/C++ #i ncl ude <onp. h> voi d onp_get _max_t hreads(voi d)

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran i nteger function onp_get_num procs()

C/C++ #i ncl ude <onp. h> int onp_get_num procs(void);

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a
stack for a newly created thread.

This value may not be the size of the stack of the current thread.

Fortran lonmp_get _stack_size interface
function onp_get _stack_size ()
use onp_lib_kinds
i nteger (ki nd=OVP_STACK_SI ZE_KI ND)
onp_get _stack_si ze
end function onp_get_stack_si ze
end interface

C/C++ #i ncl ude <onp. h> size_t onp_get_stack_size(void);

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a
stack for a newly created thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread
cannot be changed. In the PGI implementation, all OpenMP or auto-parallelization threads are created
just prior to the first parallel region; therefore, only calls to onp_set _st ack_si ze() that occur
prior to the first region have an effect.

Fortran: subroutine onp_set _stack_si ze(integer (Kl ND=OW_STACK_SI| ZE_KI ND))

C/C++ #i ncl ude <onp. h> voi d onp_set _stack_si ze(size_t);

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns . TRUE. for directives and non-zero for pragmas if called from within a parallel region and
. FALSE. for directives and zero for pragmas if called outside of a parallel region. When called

Chapter 5. Using OpenMP

Run-time Library Call with Examples

from within a parallel region that is serialized, for example in the presence of an IF clause evaluating
. FALSE. for directives and zero for pragmas, the function returns . FALSE. for directives and zero
for pragmas.

Fortran I ogi cal function onp_in_parallel/()

C/C++ #i ncl ude <onp. h> int onp_in_parallel(void);

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine onp_set _dynam c(scal ar_| ogi cal _exp)

C/C++ #i ncl ude <onp. h> voi d onp_set _dynam c(i nt dynam c_t hreads);

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for
execution of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. for directives and zero for pragmas.

Fortran | ogi cal function onp_get dynam c()

C/C++ #i ncl ude <onp. h> voi d onp_get _dynam c(void);

omp_set_nested

Allows enabling/disabling of nested parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine onp_set _nested(scal ar_| ogi cal _exp)

C/C++ #i ncl ude <onp. h> voi d onp_set _nested(int nested);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution
of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. for directives and zero for pragmas.

Fortran | ogi cal function onp_get nested()

C/C++ #i ncl ude <onp. h> int onp_get nested(void);

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value for directives and as a
floating-point double value for pragmas.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran doubl e precision function onp_get_wtime()

C/C++ #i ncl ude <onp. h> doubl e onp_get _wi me()

omp_get_wtick

o7

PGI® User's Guide

58

Run-time Library Call with Examples

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value for Fortran
directives and as a floating-point double value for C/C++ pragmas.

Fortran

doubl e precision function onp_get_wtick()

C/C++

#i ncl ude <onp. h> doubl e onp_get_wt i ck()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to
make a call to this routine.

Fortran

subroutine onp_init_|ock(integer_var)

C/C++

#i ncl ude <onp. h> void onp_init_|lock(onp_l ock_t *I ock);
voi d onp_init_nest_| ock(onp_nest_|ock_t *Iock);

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran

subroutine onp_destroy_| ock(integer_var)

C/C++

#i ncl ude <onp. h> void onp_destroy_| ock(onp_| ock_t *I| ock);
voi d onp_destroy_nest | ock(onp_nest | ock_t *I| ock);

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with

alock, it is illegal to make a call to this routine.

Fortran

subroutine onp_set | ock(i nteger_var)

C/C++

#i ncl ude <onp. h> voi d onp_set _| ock(onp_| ock_t *I ock);
voi d onp_set _nest | ock(onp_nest | ock_t *I| ock);

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with i nt eger _var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran

subrouti ne onp_unset _| ock(i nteger_var)

C/C++

#i ncl ude <onp. h> voi d onp_unset | ock(onp_Il ock_t *I ock);
voi d onp_unset _nest | ock(onp_nest | ock_t *I ock);

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns . TRUE. for directives and non-zero for pragmas if the thread gains ownership
of the lock; otherwise it returns . FALSE. for directives and zero for pragmas. If the variable is not
already associated with a lock, it is illegal to make a call to this routine.

Fortran

| ogi cal function onp_test_| ock(integer_var)

C/C++

#i ncl ude <onp.h> int onp_test_| ock(onp_| ock_t *I| ock);

Chapter 5. Using OpenMP

Run-time Library Call with Examples

‘i nt onp_test_nest_| ock(onmp_nest | ock_t *Iock);

Environment Variables

You can use OpenMP environment variables to control the behavior of OpenMP programs. These environment
variables allow you to set and pass information that can alter the behavior of directives and pragmas.

The following summary table is a quick reference for the OPENMP environment variables that PGI uses.
Detailed descriptions of each of these variables immediately follows the table.

Table 5.3. OpenMP-related Environment Variable Summary Table

Environment Variable |Default Description

OMP_DYNAMIC FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) the dynamic adjustment of the number of
threads.

OMP_NESTED FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) nested parallelism.

OMP_NUM_THREADS |1 Specifies the number of threads to use during execution of
parallel regions.

OMP_SCHEDULE STATIC with Specifies the type of iteration scheduling and optionally the

chunk size of 1 |chunk size to use for omp for and omp parallel for loops

that include the run-time schedule clause.

OMP_STACK_SIZE Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin
or sleep when idle. The values are ACTIVE and PASSIVE.

OMP_DYNAMIC

OVP_DYNAM C currently has no effect. Typically this variable enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads.

OMP_NESTED

OVP_NESTED currently has no effect. Typically this variable enables (TRUE) or disables (FALSE) nested
parallelism.

OMP_NUM_THREADS

OVP_NUM_THREADS specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported with
the same functionality. In the event that both OVP_NUM_THREADS and NCPUS are defined, the value of
OVP_NUM THREADS takes precedence.

59

PGI® User's Guide

NOTE

OVP_NUM_THREADS threads is used to execute the program regardless of the number of physical
processors available in the system. As a result, you can run programs using more threads than
physical processors and they execute correctly. However, performance of programs executed in this
manner can be unpredictable, and oftentimes will be inefficient.

OMP_SCHEDULE

OVP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO loop directives and
for omp for and omp parallel for loop pragmas that include the SCHEDULE (RUNTIME) clause, described in
“Schedule Clause,” on page 261. The default value for this variable is STATIC

If the optional chunk size is not set, a chunk size of 1 is assumed except in the case of a static schedule. For a
static schedule, the default is as defined in “DO ... END DO and omp for ,” on page 247.

Examples of the use of OVP_SCHEDULE are as follows:

For Fortran: For C/C++:

$ setenv OVP_SCHEDULE " STATIC, 5" $ setenv OVP_SCHEDULE "static, 5"
$ setenv OVP_SCHEDULE " GUI DED, 8" $ setenv OVP_SCHEDULE "gui ded, 8"
$ setenv OVP_SCHEDULE " DYNAM C' $ setenv OVP_SCHEDULE "dynami c"

OMP_STACK_SIZE

OVP_STACK_SI ZE is an OpenMP 3.0 feature that controls the size of the stack for newly-created threads.
This variable overrides the default stack size for a newly created thread. The value is a decimal integer followed
by an optional letter B, K, M, or G, to specify bytes, kilobytes, megabytes, and gigabytes, respectively. If no letter
is used, the default is kilobytes. There is no space between the value and the letter; for example, one megabyte
is specified 1M. The following example specifies a stack size of 8 megabytes.

$ setenv OMP_STACK_SI ZE 8M

The API functions related to OMP_STACK_SIZE are onp_set _st ack_si ze and onp_get _st ack_si ze.

The environment variable OVP_STACK_SI ZE is read on program start-up. If the program changes its own
environment, the variable is not re-checked.

This environment variable takes precedence over MPSTKZ, described in “MPSTKZ,” on page 94. Once a
thread is created, its stack size cannot be changed.

In the PGI implementation, threads are created prior to the first parallel region and persist for the life

of the program. The stack size of the main program is set at program start-up and is not affected by
OWP_STACK_SI ZE. For more information on controlling the program stack size in Linux, refer to “Running
Parallel Programs on Linux,” on page 9.

OMP_WAIT_POLICY

OVP_WAI T_POLI CY sets the behavior of idle threads - specifically, whether they spin or sleep when idle. The
values are ACTIVE and PASSIVE, with ACTIVE the default. The behavior defined by OVP_WAI T_POLI CY is also
shared by threads created by auto-parallelization.

60

Chapter 5. Using OpenMP

e Threads are considered idle when waiting at a barrier, when waiting to enter a critical region, or when
unemployed between parallel regions.

e Threads waiting for critical sections always busy wait (ACTIVE).

e Barriers always busy wait (ACTIVE), with calls to sched_yi el d determined by the environment variable
MP_SPI N, described in “MP_SPIN,” on page 95.

 Unemployed threads during a serial region can either busy wait using the barrier (ACTIVE) or politely wait
using 2 mutex (PASSIVE). This choice is set by OVP_WAI T_PQLI CY, so the default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop waiting to
restart in a parallel region. This mechanism allows for very quick entry into parallel regions, a condition which
is good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on 2 mutex in the operating system and consume no CPU time until
being restarted. Passive idle is best when a program has long periods of serial activity or when the program
runs on a2 multi-user machine or otherwise shares CPU resources.

61

62

Chapter 6. Using Directives and
Pragmas

It is often useful to be able to alter the effects of certain command line options or default behavior of the
compiler. Fortran directives and C/C++ pragmas provide pragmatic information that control the actions of

the compiler in a particular portion of a program without affecting the program as a whole. That is, while a
command line option affects the entire source file that is being compiled, directives and pragmas apply, or
disable, the effects of a command line option to selected subprograms or to selected loops in the source file,
for example, to optimize a specific area of code. Use directives and pragmas to tune selected routines or loops.

PGI Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:

I pgi $g directive
I pgi $r directive
I pgi $I directive
Ipgi $ directive

Note

If the input is in fixed format, the comment character must begin in column 1 and either * or C is
allowed in place of !.

The scope indicator occurs after the §$; this indicator controls the scope of the directive. Some directives
ignore the scope indicator. The valid scopes, shown above, are:

8
(global) indicates the directive applies to the end of the source file.

(routine) indicates the directive applies to the next subprogram.

(loop) indicates the directive applies to the next loop (but not to any loop contained within the loop
body). Loop-scoped directives are only applied to DO loops.

63

PGI® User's Guide

blank
indicates that the default scope for the directive is applied.

The body of the directive may immediately follow the scope indicator. Alternatively, any number of blanks may
precede the name of the directive. Any names in the body of the directive, including the directive name, may
not contain embedded blanks. Blanks may surround any special characters, such as a comma or an equal
sign.

The directive name, including the directive prefix, may contain upper or lower case letters, and the case is not
significant. Case is significant for any variable names that appear in the body of the directive if the command
line option —Mupcase is selected. For compatibility with other vendors’ directives, the prefix cpgi$ may be
substituted with cdi r $ or cvd$.

Note

If the input is in fixed format, the comment character must begin in column 1.

PGI Proprietary C and C++ Pragmas

Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Many pragmas have
a corresponding command-line option. Pragmas may also toggle an option, selectively enabling and disabling
the option.

The general syntax of a pragma is:
#pragma [scope] pragnma- body
The optional scope field is an indicator for the scope of the pragma; some pragmas ignore the scope indicator.

The valid scopes are:

global
indicates the pragma applies to the entire source file.

routine
indicates the pragma applies to the next function.

loop
indicates the pragma applies to the next loop (but not to any loop contained within the loop body). Loop-
scoped pragmas are only applied to for and while loops.

If a scope indicator is not present, the default scope, if any, is applied. Whitespace must appear after the
pragma keyword and between the scope indicator and the body of the pragma. Whitespace may also surround
any special characters, such as a comma or an equal sign. Case is significant for the names of the pragmas and
any variable names that appear in the body of the pragma.

PGI Proprietary Optimization Fortran Directive and C/C++ Pragma Summary

The following table summarizes the supported Fortran directives and C/C++ pragmas. The following terms are
useful in understanding the table.

64

Chapter 6. Using Directives and Pragmas

e Functionality is a brief summary of the way to use the directive or pragma. For a complete description, refer
to Chapter 17, “Directives and Pragmas Reference,” on page 263.

e Many of the directives and pragmas can be preceded by NO. The default entry indicates the default for the

directive or pragma. N/A appears if a default does not apply.

* The scope entry indicates the allowed scope indicators for each directive or pragma, with L for loop, R for
routine, and Gfor global. The default scope is surrounded by parentheses and N/A appears if the directive
or pragma is not available in the given language.

Note

The “*” in the scope indicates this:

For routine-scoped directive
The scope includes the code following the directive or pragma until the end of the routine.

For globally-scoped directive

The scope includes the code following the directive or pragma until the end of the file rather

than for the entire file.

The name of a directive or pragma may also be prefixed with —M. For example, the directive —Mbounds is

equivalent to bounds and —Mopt is equivalent to opt; and the pragma —Mnoassoc is equivalent to noassoc, and
—Mvintr is equivalent to vintr.

Table 6.1. Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summary

Directive or Functionality Default Fortran C/C++
pragma Scope Scope
altcode Do/don’t generate alternate code for altcode (L)RG (L)RG
(noaltcode) vectorized and parallelized loops.
assoc (noassoc) |Do/don’t perform associative 4sS0C (LRG (LRG
transformations.
bounds Do/don’t perform array bounds checking. [nobounds (R)G* R)G
(nobounds)
cncall (nocncall) |Loops are considered for parallelization, |nocncall (L)RG (L)RG
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.
concur Do/don’t enable auto-concurrentization of | concur (L)RG (L)RG
(noconcur) loops.
depchk Do/don’t ignore potential data depchk (L)RG (L)RG
(nodepchk) dependencies.
eqvchk Do/don’t check EQUIVALENCE for data |eqvchk (L)RG N/A
(noeqvchk) dependencies.
fcon (nofcon) Do/don’t assume unsuffixed real constants | nofcon N/A (R)G

are single precision.

65

PGI® User's Guide

Directive or Functionality Default Fortran C/C++

pragma Scope Scope

invarif (noinvarif) |Do/don’t remove invariant if constructs |invarif (LRG (LRG
from loops.

ivdep Ignore potential data dependencies. ivdep (L)RG N/A

Istval (nolstval) Do/don’t compute last values. Istval (LRG (LRG

opt Select optimization level. N/A R)G (R)G

safe (nosafe) Do/don’t treat pointer arguments as safe. |safe N/A (R)G

safe_lastval Parallelize when loop contains a scalar |not enabled (L) (L)
used outside of loop.

safeptr (nosafeptr) |Do/don’t ignore potential data nosafeptr N/A L(R)G
dependencies to pointers.

single (nosingle) | Do/don’t convert float parameters to nosingle N/A (R)G*
double.

tp Generate PGI Unified Binary code N/A (R)G (R)G
optimized for specified targets.

unroll (nounroll) |Do/don’t unroll loops. nounroll (LRG (LRG

vector (novector) |Do/don't perform vectorizations. vector (L)RG* (LRG

vintr (novintr) Do/don’t recognize vector intrinsics. vintr (L)RG (L)RG

Scope of Fortran Directives and Command-Line options

66

During compilation the effect of a directive may be to either turn an option on, or turn an option off. Directives
apply to the section of code following the directive, corresponding to the specified scope, which may include
the following loop, the following routine, or the rest of the program. This section presents several examples
that show the effect of directives as well as their scope.

Consider the following Fortran code:

i nteger maxtine, time
paranmeter (n = 1000, maxtinme = 10)

doubl e precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtine
doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

When compiled with —Mvect , both interior loops are interchanged with the outer loop.

$ pgf 95 - Mrect dirvectl.f

Directives alter this behavior either globally or on a routine or loop by loop basis. To assure that vectorization
is not applied, use the novect or directive with global scope.

Chapter 6. Using Directives and Pragmas

cpgi $g novect or
i nteger maxtine, time
parameter (n = 1000, maxtime = 10)
doubl e precision a(n,n), b(n,n), c(n,n)
do tinme = 1, maxtinme
doi =1, n
doj =1, n
c(ij) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

In this version, the compiler disables vectorization for the entire source file. Another use of the directive
scoping mechanism turns an option on or off locally, either for a specific procedure or for a specific loop:

i nteger maxtine, tine

paranmeter (n = 1000, maxtinme = 10)

doubl e precision a(n,n), b(n,n), c(n,n)
cpgi $I novect or

do tinme = 1, maxtine

doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

Loop level scoping does not apply to nested loops. That is, the directive only applies to the following loop.
In this example, the directive turns off vector transformations for the top-level loop. If the outer loop were a
timing loop, this would be a practical use for a loop-scoped directive.

Scope of C/C++ Pragmas and Command-Line Options

During compilation a pragma either turns an option on or turns an option off. Pragmas apply to the section
of code corresponding to the specified scope - either the entire file, the following loop, or the following or
current routine. This section presents several examples showing the effect of pragmas and the use of the
pragma scope indicators.

Note

In all cases, pragmas override a corresponding command-line option.

For pragmas that have only routine and global scope, there are two rules for determining the scope of a
pragma. We cover these special scope rules at the end of this section. Consider the program:

mai n() {
float a[100][100], b[2100][100], c[100][100];
int tinme, maxtime, n, i, j;
maxt i me=10;
n=100;
for (tinme=0; tinme<maxtine;tinme++)

for (j=0; j<n;j++)

for (i=0; i<n;i++)

clilli]l =alillj] + bLi][jl;
67

PGI® User's Guide

68

}

When this is compiled using the -Mrect command-line option, both interior loops are interchanged with the
outer loop. Pragmas alter this behavior either globally or on a routine or loop by loop basis. To ensure that
vectorization is not applied, use the novect or pragma with global scope.

mai n() {
#pragma gl obal novect or

float a[100][100], b[2100][100], c[100][100];
int tinme, maxtime, n, i, j;

maxt i me=10;

n=100;

for (tinme=0; tinme<maxtine;tinme++)

for (j=0; j<n;j++)
for (i=0; i<n;i++)

: c[i][j] =a[i][j] + b[i][j];

In this version, the compiler does not perform vectorization for the entire source file. Another use of the
pragma scoping mechanism turns an option on or off locally either for a specific procedure or for a specific
loop. The following example shows the use of a loop-scoped pragma.

mai n() {

float a[100][100], b[2100][100], c[100][100];
int time, maxtime, n, i, j;

maxt i me=10;

n=100;
#pragma | oop novect or

for (tinme=0; tinme<maxtine;time++)

for (j=0; j<n;j++)
for (i=0; i<n;i++)

: c[i][il =alillil + bLi][il;

Loop level scoping does not apply to nested loops. That is, the pragma only applies to the following loop. In
this example, the pragma turns off vector transformations for the top-level loop. If the outer loop were a timing
loop, this would be a practical use for a loop-scoped pragma. The following example shows routine pragma
scope:

#i ncl ude "mat h. h"
funcl() {
#pragma routi ne novect or

float a[100][2100], b[2100][100];
float c[100][2100], d[2100][100];
int i,j;

for (i=0;i<100;i++)

for (j=0;j<100;]j ++)

a[i][j] =a[i][j] + b[i][j] * c[i][j];
}C[i][j] =c[i][j] +b[i][i] * dli][j];
func2() {
float a[200][200], b[200][200];
float c[200][200], d[200][200];
int i,j;
for (i=0;i<200;i++)

for (j=0;j<200;]j++)

a[i][j] =a[i][j] + b[i][j] * c[i][j];

c[i][j] =c[i][J] + b[i][j] * d[i][j];

Chapter 6. Using Directives and Pragmas

}

When this source is compiled using the —~Mrect command-line option, func2 is vectorized but func1 is not
vectorized. In the following example, the global novector pragma turns off vectorization for the entire file.

#i ncl ude "math. h"
funcl() {
#pragma gl obal novect or
float a[100][100], b[2100][100];
float c[100][2100], d[2100][100];
int i,j;
for (i=0;i<100;i ++)
for (j=0;j<100;j ++)
ali][il =alillil + bLil[i]l * clillil;
}C[i][j] =c[il[j] + bLil[i] * d[i][il;
func2() {
float a[200][200], b[200][200];
float c[200][200], d[200][200];
int i,j;
for (i=0;i<200;i++)
for (j=0;]j<200;]j++)
ali][il =alillil + bLil[i]l * clillil;
}C[i][j] =c[il[j] + bLil[i] * d[i][il;

Special Scope Rules

Special rules apply for a pragma with loop, routine, and global scope. When the pragma is placed within a
routine, it applies to the routine from its point in the routine to the end of the routine. The same rule applies
for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which affect code
immediately following the pragma:

e bounds and fcon — The bounds and fcon pragmas behave in a similar manner to pragmas with loop scope.
That is, they apply to the code following the pragma.

e opt and safe — When the opt, and safe pragmas are placed within a routine, they apply to the entire routine
as if they had been placed at the beginning of the routine.

Prefetch Directives

When vectorization is enabled using the -Mvect or —Mpr ef et ch compiler options, or an aggregate option
such as —fast that incorporates —Mvect, the PGI compilers selectively emit instructions to explicitly prefetch
data into the data cache prior to first use. It is possible to control how these prefetch instructions are emitted
using prefetch directives. These directives only have an effect when vectorization or prefetching are enabled
on the command-line. See Table 2, “Processor Options,” on page xxvi for a list of processors that support
prefetch instructions.

The syntax of a prefetch directive is as follows:

csmem prefetch <var1>[, <var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

69

PGI® User's Guide

Format Requirements

NOTE

The sentinel for prefetch directives is c§mem, which is distinct from the cpgi$ sentinel used for
optimization directives. Any prefetch directives that use the cpgi$ sentinel will be ignored by the PGI
compilers.

* The "c" must be in column 1.
e Either * or ! is allowed in place of c.
* The scope indicators g, r and | used with the cpgi$ sentinel are not supported.

e The directive name, including the directive prefix, may contain upper or lower case letters and is case
insensitive (case is not significant).

* Any variable names that appear in the body of the directive are case sensitive if the command line option
—Mupcase is selected.

Sample Usage

Example 6.1. Prefetch Directive Use

This example uses prefetch directives to prefetch data in a matrix multiplication inner loop where a row of one
source matrix has been gathered into a contiguous vector.

real *8 a(mn), b(n,p), c(mp), arow(n)

doj =1, p
c$mem prefetch arowm(1), b(1,j)
c$mem prefetch arowm 5), b(5,j)
c$mem prefetch arowm9),b(9,j)
do k =1, n, 4
c$mem prefetch arow(k+12), b(k+12,j)
c(i,j) =c(i,j) +arowmk) * b(k,j)

c(i,j) =c(i,j) + aromk+1) * b(k+1,j)
c(i,j) =c(i,j) + aromk+2) * b(k+2,j)
c(i,j) =c(i,j) + aromk+3) * b(k+3,j)
enddo
enddo

This pattern of prefetch directives causes the compiler to emit prefetch instructions whereby elements of ar ow
and b are fetched into the data cache starting four iterations prior to first use. By varying the prefetch distance
in this way, it is sometimes possible to reduce the effects of main memory latency and improve performance.

IDEC$ Directive

70

PGI Fortran compilers for Microsoft Windows support several de-facto standard Fortran directives that help
with interlanguage calling and importing and exporting routines to and from DLLs. These directives all take the
form:

| DEC$ directive

Chapter 6. Using Directives and Pragmas

Format Requirements
You must follow the following format requirements for the directive to be recognized in your program:

e The directive must begin in line 1 when the file is fixed format or compiled with —M i xed.

e The directive prefix !DEC$ requires a space between the prefix and the directive keyword ATTRIBUTES.

The ! must begin the prefix when compiling Fortran 90 freeform format.

The characters G or * can be used in place of ! in either form of the prefix when compiling fixed-form (F77-
style) format.

The directives are completely case insensitive.

ALIAS Directive

This directive specifies an alternative name with which to resolve a routine.

The syntax for the ALIAS directive is either of the following:
I DEC$ ALI AS routine_nane , external _nane
I DEC$ ALI AS routine_nane : external _nane

In this syntax, ext er nal _name is used as the external name for the specified r out i ne_nane.

If ext er nal _nane is an identifier name, the name (in uppercase) is used as the external name for the
specified r out i ne_nane. If ext er nal _nane is a character constant, it is used as-is; the string is not
changed to uppercase, nor are blanks removed.

You can also supply an alias for a routine using the ATTRIBUTES directive, described in the next section:
I DEC$ ATTI RIBUTES ALIAS : 'alias_nanme' :: routine_nane

This directive specifies an alternative name with which to resolve a routine, as illustrated in the following code
fragment that provides external names for three routines. In this fragment, the external name for sub1 is
nanel, for sub2 is nane2, and for sub3 is nane3.

subrouti ne sub
IDEC$ alias subl , 'nanel
IDEC$ alias sub2 : 'nane2
| DEC$ attributes alias : 'name3' :: sub3

ATTRIBUTES Directive

| DEC$ ATTRI BUTES <l i st>

where <list> is one of:

ALIAS : 'alias_name' :: routine_name
Specifies an alternative name with which to resolve routine_name.

C :: routine_name
Specifies that the routine r out i ne_name will have its arguments passed by value. When a routine
marked C is called, arguments, except arrays, are sent by value. For characters, only the first character is
passed. The standard Fortran calling convention is pass by reference.

71

PGI® User's Guide

DLLEXPORT :: name
Specifies that 'name’ is being exported from a DLL.

DLLIMPORT :: name
Specifies that 'name’ is being imported from a DLL.
REFERENCE :: name

Specifies that the argument 'name' is being passed by reference. Often this attribute is used in conjunction
with STDCALL, where STDCALL refers to an entire routine; then individual arguments are modified with

REFERENCE.
STDCALL :: routine_name

Specifies that routine 'routine_name' will have its arguments passed by value. When a routine marked

STDCALL is called, arguments (except arrays and characters) will be sent by value. The standard Fortran
calling convention is pass by reference.

VALUE :: name
Specifies that the argument 'name' is being passed by value.

DISTRIBUTE Directive

The syntax for the DISTRIBUTE directive is either of the following:
| DEC$ DI STRI BUTE PO NT

| DEC$ DI STRI BUTEPO NT

This directive is front-end based, and tells the compiler at what point within a loop to split into two loops.

subroutine dist(a,b,n)
i nteger i
i nteger n
i nteger a(*)
i nteger b(*)
doi =1,n
a(i) = a(i)+2
I DEC$ DI STRI BUTE PO NT
b(i) = b(i)*4
enddo
end subroutine

ALIAS Directive

| DEC$ ALI AS

is the same as 'DEC$ ATTRIBUTES ALIAS

C$PRAGMA C

72

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, OSX, and SUA systems,
an underscore is appended to Fortran global names, including names of functions, subroutines, and common
blocks. This mechanism distinguishes Fortran name space from C/C++ name space.

You can use C$PRAGMA C in the Fortran program to call a G/C++ function from Fortran. The statement would
look similar to this:

Chapter 6. Using Directives and Pragmas

C$PRAGVMA C(name[, nane] .. .)

NOTE

This statement directs the compiler to recognize the routine 'name' as a C function, thus preventing
the Fortran compiler from appending an underscore to the routine name.

On Win32 systems the CSPRAGMA C as well as the attributes C and STDCALL may effect other changes on
argument passing as well as on the names of the routine. For more information on this topic, refer to “Win32
Calling Conventions,” on page 120.

73

74

Chapter 7. Creating and Using
Libraries

A library is a collection of functions or subprograms that are grouped for reference and ease of linking. This
chapter discusses issues related to PGI-supplied compiler libraries. Specifically, it addresses the use of C/C++
builtin functions in place of the corresponding libc routines, creation of dynamically linked libraries, known as
shared objects or shared libraries, and math libraries.

Note

This chapter does not duplicate material related to using libraries for inlining, described in “Creating
an Inline Library,” on page 47 or information related to run-time library routines available to OpenMP
programmers, described in “Run-time Library Routines,” on page 55.

This chapter has examples that include the following options related to creating and using libraries.

—Bdynamic —fpic —Mmakeimplib
—Bstatic —implib <file> -0

—C -1 —shared
—def<file> —Mmakedll

Using builtin Math Functions in C/C++

The name of the math header file is mat h. h. Include the math header file in all of your source files that use a
math library routine as in the following example, which calculates the inverse cosine of pi/3.

#i ncl ude <mat h. h>
#define Pl 3.1415926535
voi d mai n()

{
doubl e x, vy;
x = PlI/3.0;
y = acos(Xx);
}

75

PGI® User's Guide

Including mat h. h will cause PGCC C and C++ to use builtin functions, which are much more efficient
than library calls. In particular, the following intrinsics calls will be processed using builtins if you include
mat h. h:

abs atan atan2 oS
exp fabs fmax fmaxf
fmin fminf log log10
pow sin sqrt tan

Creating and Using Shared Object Files on Linux

76

All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike statically linked
object and library files, shared object files link and resolve references with an executable at runtime via a
dynamic linker supplied with your operating system. The PGI compilers must generate position independent
code to support creation of shared objects by the linker. However, this is not the default. You must create
object files with position independent code and shared object files that will include them.

The following steps describe how to create and use a shared object file.
1. Create an object file with position independent code.

To do this, compile your code with the appropriate PGI compiler using the —f pi ¢ option, or one of the
equivalent options, such as —f PI C, —Kpi ¢, and —KPI C, which are supported for compatibility with
other systems. For example, use the following command to create an object file with position independent

code using pgf95:
% pgf 95 -c -fpic tobeshared.f

2. Produce a shared object file.
To do this, use the appropriate PGI compiler to invoke the linker supplied with your system. It is customary
to name such files using a . so filename extension. On Linux, you do this by passing the —shar ed option

to the linker:
% pgf 95 -shared -o tobeshared. so tobeshared. o

Note

Compilation and generation of the shared object can be performed in one step using both the
—f pi ¢ option and the appropriate option for generation of a shared object file.

3. Use a shared object file.

To do this, us the appropriate PGI compiler to compile and link the program which will reference functions
or subroutines in the shared object file, and list the shared object on the link line, as shown here:
% pgf 95 -0 myprog myprog.f tobeshared. so

4. Make the executable available.

You now have an executable mypr og which does not include any code from functions or
subroutines in t obeshar ed. so, but which can be executed and dynamically linked to that code.

Chapter 7. Creating and Using Libraries

By default, when the program is linked to produce mypr og, no assumptions are made on the

location of t obeshar ed. so. Therefore, for mypr og to execute correctly, you must initialize the
environment variable LD_LI BRARY_PATH to include the directory containing t obeshar ed. so.

If LD LI BRARY_PATH s already initialized, it is important not to overwrite its contents. Assuming

you have placed t obeshar ed. so in a directory / honme/ myuser nane/ bi n, you can initialize

LD_LI BRARY_PATH to include that directory and preserve its existing contents, as shown in the following:

% setenv LD LI BRARY_PATH "$LD LI BRARY_PATH': / hone/ nmyuser nane/ bi n

If you know that t obeshar ed. so will always reside in a specific directory, you can create the executable
mypr og in a form that assumes this using the —R link-time option. For example, you can link as follows:

% pgf 95 -0 myprog myprof.f tobeshared.so - R home/ myuser nanme/ bi n

Note

As with the —L option, there is no space between —R and the directory name.

If the —R option is used, it is not necessary to initialize LD_LI BRARY_PATH. In the previous

example, the dynamic linker will always look in / home/ myuser name/ bi n to resolve references to

t obeshar ed. so. By default, if the LD_LI BRARY_PATH environment variable is not set, the linker will
only search / usr/1iband/1i b for shared objects.

The command | dd is a useful tool when working with shared object files and executables that reference
them. When applied to an executable, as shown in the following example, | dd lists all shared object files
referenced in the executable along with the pathname of the directory from which they will be extracted.

% | dd mypr og

If the pathname is not hard-coded using the-R option, and if LD_LI BRARY_PATH is not initialized, the
pathname is listed as “not found”. For more information on | dd, its options and usage, see the online man
page for | dd.

Creating and Using Shared Object Files in SFU and 32-bit SUA

Note

The information included in this section is valid for 32-bit only.

The 32-bit version of PGI Workstation for SFU and SUA uses the GNU | d for its linker, unlike previous versions
that used the Windows LI NK. EXE. With this change, the PGI compilers and tools for SFU and 32-bit SUA are
now able to generate shared object (. so) files. You use the —shar ed switch to generate a shared object file.

The following example creates a shared object file, hel | 0. so, and then creates a program called hel | o that
uses it.

1. Create a shared object file.

To produce a shared object file, use the appropriate PGI compiler to invoke the linker supplied with your
system. It is customary to name such files using a . so filename extension. In the following example, we use

hel | o. so:
77

PGI® User's Guide

% pgcc -shared hello.c -o hello.so

2. Create a program that uses the shared object, in this example, hel | 0. so:
% pgcc hi.c hello.so -0 hello

Shared Object Error Message

When running a program that uses a shared object, you may encounter an error message similar to the
following:

hello: error in |oading shared libraries hello.so
cannot open shared object file: No such file or directory

This error message either means that the shared object file does not exist or that the location of this file is not
specified in your LD_LI BRARY_PATH variable. To specify the location of the . so, add the shared object’s
directory to your LD_LI BRARY_PATH variable. For example, the following command adds the current
directory to your LD_LI BRARY_PATH variable using C shell syntax:

% setenv LD_LI BRARY_PATH "$LD_LI BRARY_PATH':"./"

Shared Object-Related Compiler Switches

78

The following switches support shared object files in SFU and SUA. For more detailed information on these
switches, refer to Chapter 15, “Command-Line Options Reference,” on page 163.

—shared
Used to produce shared libraries

—Bdynamic
Passed to linker; specify dynamic binding

Note

On Windows, -Bstatic and -Bdynamic must be used for bo#h compiling and linking.

—Bstatic
Passed to linker; specify static binding

—Bstatic_pgi
Use to link static PGI libraries with dynamic system libraries; implies —Mhor pat h.

—L<libdir>
Passed to linker; add directory to library search path.

—Mnorpath
Don't add —r pat h paths to link line.

—Mnostartup
Do not use standard linker startup file.

—Mnostdlib
Do not use standard linker libraries.

—R<Idarg>
Passed to linker; just link symbols from object, or add directory to run time search path.

Chapter 7. Creating and Using Libraries

PGI Runtime Libraries on Windows

The PGI runtime libraries on Windows are available in both static and dynamicallyy-linked (DLL) versions. The
static libraries are used by default.

e You can use the dynamically-linked version of the routine by specifying —Bdynani c at both compile and
link time.

* You can explicitly specify static linking, the default, by using -Bstatic at compile and link time.

For details on why you might choose one type of linking over another type, refer to “Creating and Using
Dynamic-Link Libraries on Windows,” on page 80.

Creating and Using Static Libraries on Windows

The Microsoft Library Manager (LI B. EXE) is the tool that is typically used to create and manage a static
library of object files on Windows. L1 B is provided with the PGI compilers as part of the Microsoft Open Tools.
Refer to www.msdn2.com for a complete LI B reference - searching for LI B. EXE. For a list of available
options, invoke LI B with the / ? switch.

For compatibility with legacy makefiles, PGI provides wrappers for L1 B and L1 NK called ar. This version of ar
is compatible with Womdpws amd pbject-file formats.

PGi also provides ranlib as a placeholder for legacy makefile support.

ar command

The ar command is a legacy archive wrapper that interprets legacy ar command line options and translates
these to L1 NK/ LI B options. You can use it to create libraries of object files.

Syntax:
The syntax for the ar command is this:
ar [options] [archive] [object file].
Where:
e The first argument must be a command line switch, and the leading dash on the first option is optional.
* The single character options, such as —d and —v, may be combined into a single option, as —dv.
Thus,ar dv,ar -dv, andar -d -v all mean the same thing.
e The first non-switch argument must be the library name.
¢ One (and only one) of —d, —r , -t , or —x must appear on the command line.
Options

The options available for the ar command are these:

79

PGI® User's Guide

—
This switch is for compatibility; it is ignored.

—d
The named object files are deleted from the library.

-
The named object files are replaced in or added to the library.

ranlib command

The r anl i b command is a wrapper that allows use of legacy scripts and makefiles that use the r anl i b
command. The command actually does nothing; it merely exists for compatibility.

Syntax:
The syntax for the r anl i b command is this:

DOS> ranlib [options] [archive]

Options

The options available for the r anl i b command are these:

—help
Short help information is printed out.

-V
Version information is printed out.

Creating and Using Dynamic-Link Libraries on Windows

There are several differences between static and dynamic-link libraries on Windows. Libraries of either
type are used when resolving external references for linking an executable, but the process differs for each
type of library. When linking with a static library, the code needed from the library is incorporated into

the executable. When linking with a DLL, external references are resolved using the DLL's import library,
not the DLL itself. The code in the DLL associated with the external references does not become a part of
the executable. The DLL is loaded when the executable that needs it is run. For the DLL to be loaded in this
manner, the DLL must be in your path.

Static libraries and DLLs also handle global data differently. Global data in static libraries is automatically
accessible to other objects linked into an executable. Global data in a DLL can only be accessed from
outside the DLL if the DLL exports the data and the image that uses the data imports it. To this end

the C compilers support the Microsoft storage class extensions __decl spec(dl | i nport) and

__decl spec(dl | export). These extensions may appear as storage class modifiers and enable functions
and data to be imported and exported:

extern int __decl spec(dllinport)
i ntfunc();
float __decl spec(dl| export) fdata;

80

Chapter 7. Creating and Using Libraries

The PGI Fortran compilers support the DECSATTRIBUTES extensions DLLI MPORT and DLLEXPORT:

cDEC$ ATTRI BUTES DLLEXPORT :: object [,object] ...
cDEC$ ATTRI BUTES DLLI MPORT :: object [,object] ...

Here c is one of G, ¢, !, or *. object is the name of the subprogram or common block that is exported or
imported. Note that common block names are enclosed within slashes (/). In example:

cDEC$ ATTRI BUTES DLLI MPORT :: intfunc
| DEC$ ATTRI BUTES DLLEXPORT :: /fdata/

For more information on these extensions, refer to “/DEC$ Directive,” on page 70.
The Examples in this section further illustrate the use of these extensions.
To create a DLL from the command line, use the —~MmakedIl option.

The following switches apply to making and using DLLs with the PGI compilers:

—Bdynamic
Compile for and link to the DLL version of the PGI runtime libraries. This flag is required when linking
with any DLL built by the PGI compilers. This flag corresponds to the / MD flag used by Microsoft’s cl
compilers.

—Bstatic
Compile for and link to the static version of the PGI runtime libraries. This flag corresponds to the / MT
flag used by Microsoft’s cl compilers.

—Mmakedll
Generate a dynamic-link library or DLL. Implies —Bdynanmi c.

—Mmakeimplib
Generate an import library without generating a DLL. Use this flag when you want to generate an import
library for a DLL but are not yet ready to build the DLL itself. This situation might arise, for example, when
building DLLs with mutual imports, as shown in Example 7.4, “Build DLLs Containing Circular Mutual
Imports: Fortran,” on page 86.

—o <file>
Passed to the linker. Name the DLL or import library <file>.

—def <file>
When used with —Mraked! I , this flag is passed to the linker and a . def file named <file> is generated
for the DLL. The . def file contains the symbols exported by the DLL. Generating a . def file is not
required when building a DLL but can be a useful debugging tool if the DLL does not contain the symbols
that you expect it to contain.

When used with —Mrakei npl i b, this flag is passed to lib which requires a . def file to create an import
library. The . def file can be empty if the list of symbols to export are passed to | i b on the command line
or explicitly marked as dl | expor t in the source code.

—implib <file>
Passed to the linker. Generate an import library named <file> for the DLL. A DLL’s import library is the
interface used when linking an executable that depends on routines in a DLL.

81

PGI® User's Guide

82

To use the PGI compilers to create an executable that links to the DLL form of the runtime, use the compiler
flag —Bdynami c. The executable built will be smaller than one built without —Bdynani c; the PGI runtime
DLLs, however, must be available on the system where the executable is run. The —Bdynani ¢ flag must be

used when an executable is linked against a DLL built by the PGI compilers.

The following examples outline how to use —Bdynani c, —Mraked! | and —Mrakei npl i b to build and use
DLLs with the PGI compilers.

Example 7.1. Build a DLL: Fortran

In this example we build a DLL out of a single source file, obj ect 1. f, which exports data and a subroutine
using DLLEXPORT. The main source file, pr og1. f , uses DLLI MPORT to import the data and subroutine
from the DLL.

objectl.f

subroutine subl(i)
| DEC$ ATTRI BUTES DLLEXPORT :: subl
i nteger i
common /acommon/ adata
i nt eger adata
| DEC$ ATTRI BUTES DLLEXPORT :: /acommon/
print * "subl adata", adata
print *, "subl i ",
adata =
end

progl. f

progr am progl
common /aconmon/ adat a

i nteger adata
ext ernal subl

| DEC$ ATTRI BUTES DLLI MPORT:: subl, /acomon/
adata = 11
call subl(12)
print *, "main adata", adata
end

Step 1: Create the DLL obj 1. dI | and its import library obj 1. | i b using the following series of commands:

% pgf 95 - Bdynami c -c objectl.f
% pgf 95 - Mrakedl | object 1. obj -o obj1.dl

Step 2: Compile the main program:
% pgf 95 -Bdynamic -0 progl progl.f -defaultlib:obj1

The —MdIl switch causes the compiler to link against the PGI runtime DLLs instead of the PGI runtime static
libraries. The —Mdll switch is required when linking against any PGI-compiled DLL, such as obj 1. dlI | . The
#defaultlib: switch specifies that obj 1. I i b, the DLL’s import library, should be used to resolve imports.

Step 3: Ensure that obj 1. dI | is in your path, then run the executable pr og1 to determine if the DLL was
successfully created and linked:

Chapter 7. Creating and Using Libraries

% progl

subl adata 11
subl i 12

mai n adata 12

Should you wish to change obj 1. dI | without changing the subroutine or function interfaces, no rebuilding
of pr og1 is necessary. Just recreate obj 1. dl | and the new obj 1. dI | is loaded at runtime.

Example 7.2. Build a DLL: C

In this example, we build a DLL out of a single source file, obj ect 2. c, which exports data and a subroutine
using __decl spec(dl | export). The main source file, pr og2. c, uses __decl spec(dl | i mport) to
import the data and subroutine from the DLL.

object2.c

int _ decl spec(dl | export) data;
voi d __ decl spec(dl | export)

func2(int i)

{
printf("func2: data == %\ n", data);
printf("func2: i == %\n", i);
data = i;

}

prog2.c

int _ decl spec(dllinport) data;
void __decl spec(dllinport) func2(int);
i nt
mai n()
{
data = 11;
func2(12);
printf("main: data == %l\n", data);
return O;

Step 1: Create the DLL obj 2. dI | and its import library obj 2. | i b using the following series of commands:

% pgcc -Bdynamic -c object2.c
% pgcc - Mmakedl | obj ect2.0bj -o obj2.dll

Step 2: Compile the main program:
% pgcc -Bdynanmic -0 prog2 prog2.c -defaul tlib:obj2

The —Bdynani ¢ switch causes the compiler to link against the PGI runtime DLLs instead of the PGI runtime
static libraries. The —Bdynani ¢ switch is required when linking against any PGI-compiled DLL such as

obj 2. dI I . The #def aul t1i b: switch specifies that obj 2. | i b, the DLL’s import library, should be used
to resolve the imported data and subroutine in pr 0og2. c.

Step 3: Ensure that obj 2. dI | is in your path, then run the executable pr og2 to determine if the DLL was
successfully created and linked:

83

PGI® User's Guide

84

% prog2

func2: data == 11
func2: i == 12
mai n: data == 12

Should you wish to change obj 2. dI | without changing the subroutine or function interfaces, no rebuilding
of pr og2 is necessary. Just recreate obj 2. dl | and the new obj 2. dI | is loaded at runtime.

Example 7.3. Build DLLs Containing Circular Mutual Imports: C

In this example we build two DLLs, obj 3. dI | and obj 4. dI | , each of which imports a routine that is
exported by the other. To link the first DLL, the import library for the second DLL must be available. Usually an
import library is created when a DLL is linked. In this case, however, the second DLL cannot be linked without
the import library for the first DLL. When such circular imports exist, an import library for one of the DLLs
must be created in a separate step without creating the DLL. The PGI drivers call the Microsoft | i b tool to
create import libraries in this situation. Once the DLLs are built, we can use them to build the main program.

/* object3.c */

void __decl spec(dllinport) func_4b(void);

void __decl spec(dl | export)

func_3a(voi d)

{
printf("func_3a, calling a routine in obj4.dlI\n");
func_4b();

}

voi d __decl spec(dl | export)

func_3b(voi d)

{

}

/* objectd.c */

void _ decl spec(dllinport) func_3b(void);
void _ decl spec(dl | export)

func_4a(voi d)

{

printf("func_3b\n");

printf("func_4a, calling a routine in obj3.dl[\n");
func_3b();

}

voi d _ decl spec(dl | export)

func_4b(voi d)

{

}

[* prog3.c */

void __ decl spec(dllinport) func_3a(void);
void __ decl spec(dllinport) func_4a(void);
i nt

mai n()

{

printf("func_4b\n");

func_3a();
func_4a();
return O;

Chapter 7. Creating and Using Libraries

Step 1: Use —Mrakei npl i b with the PGI compilers to build an import library for the first DLL without
building the DLL itself.

% pgcc -Bdynanmic -c object3.c
% pgcc - Mmakei nmplib -0 obj3.1ib object3. obj

The —def =<def f i | e> option can also be used with —Mvakei npl i b. Use a . def file when you need to
export additional symbols from the DLL. A . def file is not needed in this example because all symbols are
exported using __decl spec(dl | export).

Step 2: Use the import library, obj 3. I i b, created in Step 1, to link the second DLL.

% pgcc -Bdynanmic -c object4.c
% pgcc - Mmakedl | -o obj4.dll object4.obj -defaultlib:obj3

Step 3: Use the import library, obj 4. | i b, created in Step 2, to link the first DLL.

% pgcc - Mhakedl |l -0 obj3.dl|l object3.obj -defaultlib:obj4

Step 4: Compile the main program and link against the import libraries for the two DLLs.
% pgcc -Bdynanmic prog3.c -o prog3 -defaultlib:obj3 -defaultlib:obj4

Step 5: Execute pr og3. exe to ensure that the DLLs were create properly.

% prog3
func_3a, calling a routine in obj4.dll
func_4b
func_4a, calling a routine in obj3.dlI
func_3b

85

PGI® User's Guide

86

Example 7.4. Build DLLs Containing Circular Mutual Imports: Fortran

In this example we build two DLLs when each DLL is dependent on the other, and use them to build the main
program. In the following source files, object2.f95 makes calls to routines defined in object3.f95, and vice
versa. This situation of mutual imports requires two steps to build each DLL.

In this example we build two DLLs, obj 2. dI | and obj 3. dI | , each of which imports a routine that is
exported by the other. To link the first DLL, the import library for the second DLL must be available. Usually an
import library is created when a DLL is linked. In this case, however, the second DLL cannot be linked without
the import library for the first DLL. When such circular imports exist, an import library for one of the DLLs
must be created in a separate step without creating the DLL. The PGI drivers call the Microsoft | i b tool to
create import libraries in this situation. Once the DLLs are built, we can use them to build the main program.

obj ect 2. f95

subrouti ne func_2a
external func_3b
| DEC$ ATTRI BUTES DLLEXPORT :: func_2a
| DEC$ ATTRI BUTES DLLI MPORT :: func_3b
print*, "func_2a, calling a routine in obj3.dlI"
call func_3b()
end subroutine

subrouti ne func_2b
| DEC$ ATTRI BUTES DLLEXPORT :: func_2b
print*, "func_2b"
end subroutine

obj ect 3. f 95

subroutine func_3a
external func_2b
| DEC$ ATTRI BUTES DLLEXPORT :: func_3a
| DEC$ ATTRI BUTES DLLI MPORT :: func_2b
print*, “func_3a, calling a routine in obj2.dlI"
call func_2b()
end subroutine

subrouti ne func_3b
I DEC$ ATTRI BUTES DLLEXPORT :: func_3b
print*,"func_3b"
end subroutine

prog2. f 95

program prog2
external func_2a
external func_3a
| DEC$ ATTRI BUTES DLLI MPORT :: func_2a
| DEC$ ATTRI BUTES DLLI MPORT :: func_3a
cal |l func_2a()
call func_3a()
end program

Step 1: Use —Mrakei npl i b with the PGI compilers to build an import library for the first DLL without
building the DLL itself.

% pgf 95 - Bdynami c -c object2.f95
% pgf 95 - Mrakei nplib -0 obj 2.1ib object 2. obj

Chapter 7. Creating and Using Libraries

Tip

The -def=<deffile> option can also be used with -Mmakeimplib. Use a .def file when you need to
export additional symbols from the DLL. A .def file is not needed in this example because all symbols
are exported using DLLEXPORT.

Step 2: Use the import library, obj 2. I i b, created in Step 1, to link the second DLL.

% pgf 95 - Bdynami c -c object3.f95
% pgf 95 - Mmakedl | -0 obj3.dl|l object3.obj -defaultlib:obj2

Step 3: Use the import library, obj 3. 1 i b, created in Step 2, to link the first DLL.
% pgf 95 - Mmakedl | -0 obj2.dl|l object2.obj -defaultlib:obj3

Step 4: Compile the main program and link against the import libraries for the two DLLs.
% pgf 95 - Bdynami c prog2.f95 -0 prog2 -defaultlib:obj2 -defaultlib:obj3

Step 5: Execute pr og2 to ensure that the DLLs were created properly:

% prog2
func_2a, calling a routine in obj3.dllI
func_3b
func_3a, calling a routine in obj2.dll
func_2b

Example 7.5. Import a Fortran module from a DLL

In this example we import a Fortran module from a DLL. We use the source file my_nodul e_def . f 90 to
create 2 DLL containing a Fortran module. We then use the source file my_modul e_use. f 90 to build a
program that imports and uses the Fortran module from ny_nodul e_def . f 90.

def nod. f 90

nodul e testm
type a_type
integer :: an_int
end type a_type
type(a_type) :: a, b
| DEC$ ATTRI BUTES DLLEXPORT :: a, b
cont ai ns
subroutine print_a
| DEC$ ATTRI BUTES DLLEXPORT :: print_a
wite(*,*) a%an_int
end subroutine

subroutine print_b
| DEC$ ATTRI BUTES DLLEXPORT :: print_b
wite(*,*) b%n_int
end subroutine
end nodul e

usenod. f 90

use testm
a%an int = 1
b%n _int = 2
call print_a
call print_b
end

87

PGI® User's Guide

Step 1: Create the DLL.

% pgf 90 - Mmakedl | -o defnod.dl| defnod.f90
Creating library defnod.lib and object defnod.exp

Step 2: Create the exe and link against the import library for the imported DLL.

% pgf 90 - Bdynani c -0 usenod usennd. f90 -defaultlib:defrnod.lib

Step 3: Run the exe to ensure that the module was imported from the DLL properly.

% usenod
1
2

Using LIB3F

The PGI Fortran compilers include complete support for the de facto standard LIB3F library routines on both
Linux and Windows operating systems. See the PGI Fortran Reference manual for a complete list of available
routines in the PGI implementation of LIB3F.

LAPACK, BLAS and FFTs

Pre-compiled versions of the public domain LAPACK and BLAS libraries are included with the PGI compilers.
The LAPACK library is called | i bl apack. a or on Windows, | i bl apack. | i b. The BLAS library is called

| i bbl as. a or on Windows, | i bbl as. | i b. These libraries are installed to $PG / <t ar get >/ | i b, where
<target> is replaced with the appropriate target name (linux86, linux86-64, 0sx86, 0sx86-64, win32, win64,
sfu32, sua32, or suab4).

To use these libraries, simply link them in using the —I option when linking your main program:

% pgf 95 nyprog.f -I|lapack -1 Dbl as

Highly optimized assembly-coded versions of BLAS and certain FFT routines may be available for your
platform. In some cases, these are shipped with the PGI compilers. See the current release notes for the PGI

compilers you are using to determine if these optimized libraries exist, where they can be downloaded (if
necessary), and how to incorporate them into your installation as the default.

The C++ Standard Template Library

88

The PGC++ compiler includes a bundled copy of the STLPort Standard C++ Library. See the online Standard
C++ Library tutorial and reference manual at www.stlport.com for further details and licensing.

Chapter 8. Using Environment
Variables

Environment variables allow you to set and pass information that can alter the default behavior of the PGI
compilers and the executables which they generate. This chapter includes explanations of the environment
variables specific to PGI compilers. Other environment variables are referenced and documented in other
sections of this User’s Guide or the PGI Tools Guide.

* You use OpenMP environment variables to control the behavior of OpenMP programs. For consistency
related to the OpenMP environment, the details of the OpenMP-related environment variables are included
in Chapter 5, “Using OpenMP”.

* You can use environment variables to control the behavior of the PGDBG debugger or PGPROF profiler. For
a description of environment variables that affect these tools, refer to the PGI Tools Guide.

Setting Environment Variables

Before we look at the environment variables that you might use with the PGI compilers and tools, let’s take a
look at how to set environment variables. To illustrate how to set these variables in various environments, lets
look at how a user might initialize the shell environment prior to using the PGI compilers and tools.

Setting Environment Variables on Linux

Let’s assume that you want access to the PGI products when you log on. Let’s further assume that you installed
the PGI compilers in / opt / pgi and that the license file is in / opt / pgi /1 i cense. dat . For access at
startup, you can add the following lines to your startup file.

In csh, use these commands:

% setenv PG /opt/ pgi

% set env. MANPATH " $MANPATH': $PG /| i nux86/ 7. 1/ man
% setenv LM LI CENSE_FI LE $PA/1i cense. dat

% set path = ($PA/linux86/7.1/bin $path)

In bash, sh or ksh, use these commands:
% PG =/ opt/ pgi; export PG

89

PGI® User's Guide

% MANPATH=SMANPATH: $PG /| i nux86/ 7. 1/ man; export MANPATH
% LM LI CENSE_FI LE=$PA /| i cense. dat; export LM LI CENSE FI LE
% PATH=$PA /| i nux86/ 7. 1/ bi n: $PATH, export PATH

Setting Environment Variables on Windows

In Windows, when you access PGI Workstation 7.1 (Start | PGI Workstation 7.1), you have two options that
PGI provides for setting your environment variables - either the DOS command environment or the Cygwin
Bash environment. When you open either of these shells available to you, the default environment variables are
already set and available to you.

You may want to use other environment variables, such as the OpenMP ones. This section explains how to do
that.

Suppose that your home directory is C: t np. The following examples show how you might set the temporary
directory to your home directory, and then verify that it is set.

Command prompt:

From PGI Workstation 7.1, select PGI Workstation Tools | PGI Command Prompt (32-bit or 64-bit), and
enter the following:

DOS> set TMPDI R=C: t np
DOS> echo %MPDI R%
C\tnp
DOS>

Cygwin Bash prompt:
From PGI Workstation 7.1, select PGI Workstation (32-bit or 64-bit) and at the Cygwin Bash prompt, enter the

following

PG $ export TMPDI R=C:\\tnp
PG $ echo $TMPDI R

C\tnp

PG $

Setting Environment Variables on Mac OSX

Let’s assume that you want access to the PGi products when you log on. Let’s further assume that you installed
the PGI compilers in / opt / pgi and that the license file is in / opt / pgi / | i cense. dat . For access at
startup, you can add the following lines to your startup file.

For x64 0sx86-64 in a csh:

% set path = (/opt/pgi/osx86-64/7.0/bin $path)
% set env. MANPATH " $SMANPATH' : / opt / pgi / osx86- 64/ 7. 0/ man

For x64 0sx86-64 in a bash, zsh, or ksh:

% PATH=/ opt / pgi / 0sx86- 64/ 7. 0/ bi n: $PATH, export PATH
% MANPATH=$MANPATH: / opt / pgi / 0sx86- 64/ 7. 0/ man; export MANPATH

For x64 0sx86 in a csh:
% set path = (/opt/pgi/osx86/7.0/bin $path)

90

Chapter 8. Using Environment Variables

% set env. MANPATH " $MANPATH': / opt / pgi / 0sx86/ 7. 0/ man

For x64 0sx86 in a bash, zsh, or ksh:

% PATH=/ opt / pgi / 0sx86/ 7. 0/ bi n: $PATH

% export PATH

% MANPATH=$MANPATH: / opt / pgi / 0sx86/ 7. 0/ man
% export MANPATH

PGI-Related Environment Variables

For easy reference, the following summary table provides a quick listing of the OpenMP and PGI compiler-
related environment variables. Later in this chapter are more detailed descriptions of the environment
variables specific to PGI compilers and the executables they generate.

Table 8.1. PGl-related Environment Variable Summary Table

Environment Variable Description

FLEXLM_BATCH (Windows only) When set to 1, prevents interactive pop-ups from
appearing by sending all licensing errors and warnings to standard
out rather than to a pop-up window.

FORTRAN_OPT Allows the user to specify that the PGI Fortran compilers user VAX I/
O conventions.

GMON_OUT_PREFIX Specifies the name of the output file for programs tha are compiler
and linked with the —pg option.

LD_LIBRARY_ PATH Specifies a colon-separated set of directories where libraries should
first be searched, prior to searching the standard set of directories.

LM_LICENSE_FILE Specifies the full path of the license file that is required for running

the PGI software. On Windows, LM LI CENSE _FI LE does not
need to be set.

MANPATH Sets the directories that are seacrhed for manual pages associated
with the command that the user types.

MPSTKZ Increases the size of the stacks used by threads executing in parallel
regions. The value should be an integer <n> concatenated with Mor
mto specify stack sizes of n megabytes.

MP_BIND Specifies whether to bind processes or threads executing in a
parallel region to a physical processor.

MP_BLIST When MP_BI NDis yes, this variable specifically defines the thread-
CPU relationship, overriding the default values.

MP_SPIN Specifies the number of times to check a semaphore before calling
sched_yield() (on Linux) or _sleep() (on Windows).

MP_WARN Allows you to eliminate certain default warning messages.

NCPUS Sets the number of processes or threads used in parallel regions.

NCPUS_MAX Limits the maximum number of processors or threads that can be

used in a parallel region.

91

PGI® User's Guide

Environment Variable

Description

NO_STOP_MESSAGE

If used, the execution of a plain STOP statement does not produce
the message FORTRAN STOP.

OMP_DYNAMIC Currently has no effect. Enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads. The default is FALSE.
OMP_NESTED Currently has no effect. Enables (TRUE) or disables (FALSE)

nested parallelism. The default is FALSE.

OMP_NUM_THREADS

Specifies the number of threads to use during execution of parallel
regions. Default is 1.

OMP_SCHEDULE

Specifies the type of iteration scheduling and, optionally, the chunk
size to use for omp for and omp parallel for loops that include the
run-time schedule clause. The default is STATIC with chunk size = 1.

OMP_STACK_SIZE

Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY

Sets the behavior of idle threads, defining whether they spin or sleep
when idle. The values are ACTI VE and PASSI VE. The default is
ACTI VE.

PATH Determines which locations are searched for commands the user
may type.
PGI Specifies, at compile-time, the root directory where the PGI

compilers and tools are installed.

PGI_CONTINUE

If set, when a program compiled with—-Mchkf pst k is executed, the
stack is automatically cleaned up and execution then continues.

PGL_OBJSUFFIX

Allows you to control the suffix on generated object files.

PGI_STACK_USAGE

(Windows only) Allows you to explicitly set stack properties for your
program.

PGI_TERM

Controls the stack traceback and just-in-time debugging
functionality.

PGI_TERM_DEBUG

Overrides the default behavior when PG _TERMis set to debug.

PWD

Allows you to display the current directory.

STATIC_RANDOM_SEED

Forces the seed returned by RANDOM_SEED to be constant.

T™MP

Sets the directory to use for temporary files created during execution
of the PGI compilers and tools; interchangeable with TMPDI R.

TMPDIR

Sets the directory to use for temporary files created during execution
of the PGI compilers and tools.

PGI Environment Variables

You use the environment variables listed in Table 8.1, “PGI-related Environment Variable Summary Table” to
alter the default behavior of the PGI compilers and the executables which they generate. This section provides
more detailed descriptions about the variables in this table that are not OpenMP environment variables.

92

Chapter 8. Using Environment Variables

FLEXLM_BATCH

By default, on Windows the license server creates interactive pop-up messages to issue warning and errors.
You can use the environment variable FLEXLM BATCH to prevent interactive pop-up windows. To do this, set
the environment variable FLEXLM_BATCH to 1.

The following csh example prevents interactive pop-up messages for licensing warnings and errors:
% set FLEXLM BATCH = 1;

FORTRAN_OPT
FORTRAN_OPT allows the user to specify that the PGI Fortran compilers user VAX I/0 conventions.

e If FORTRAN_OPT exists and contains the value vaxi o, the record length in the open statement is in units
of 4-byte words, and the $ edit descriptor only has an effect for lines beginning with a space or a plus sign

(+).

e If this variable exists and contains the value f or mat _r el axed, an I/0 item corresponding to a numerical
edit descriptor (such as F, E, I, and so on) is not required to be a type implied by the descriptor.

The following example causes the PGI Fortran compilers to use VAX I/O conventions:
$ setenv FORTRAN OPT vaxio

GMON_OUT_PREFIX

GVON_OUT_PREFI X specifies the name of the output file for programs that are compiled and linked with the
- pg option. The default name is gnon. out . a.

If GVON_OUT_PREFI X is set, the name of the output file has GVON_OUT_PREFI X as a prefix.
Further, the suffix is the pid of the running process. The prefix and suffix are separated by a dot.
For example, if the output file is mygmon, then the full filename may look something similar to this:
GVON_OUT_PREFI X. mygnon. 0012348567.

The following example causes the PGI Fortran compilers to use pgout as the output file for programs
compiled and linked with the - pg option.

$ setenv GMON_QUT_PREFI X pgout

LD_LIBRARY_PATH

The LD_LI BRARY_PATH variable is a colon-separated set of directories specifying where libraries should
first be searched, prior to searching the standard set of directories. This variable is useful when debugging a
new library or using a nonstandard library for special purposes.

The following csh example adds the current directory to your LD_LI BRARY_PATH variable.
% setenv LD _LI BRARY_PATH "$LD_LI BRARY_PATH':"./"

LM_LICENSE_FILE

The LM LI CENSE_FI LE variable specifies the full path of the license file that is required for running the PGI
software.

93

PGI® User's Guide

For example, once the license file is in place, you can execute the following csh commands to make the
products you have purchased accessible and to initialize your environment for use of FLEXIm. These
commands assume that you use the default installation directory: / opt / pgi

% setenv PE /opt/ pgi
% setenv LM LI CENSE FILE "$LM LI CENSE FI LE":/opt/pgi/license. dat

To set the environment variable LM LI CENSE_FI LE to the full path of the license key file, do this:

[

. Open the System Properties dialog: Start | Control Panel | System.

Do

. Select the Advanced tab.

. Click the Environment Variables button.

(O 8]

e IfLM LI CENSE_FI LE is not already an environment variable, create a new system variable for it. Set
its value to the full path, including the name of the file, for the license key file, license.dat.

e If LM LI CENSE_FI LE already exists as an environment variable, append the path to the license file to
the variable’s current value using a semi-colon to separate entrie

If LM LI CENSE_FI LE is not already an environment variable, create a new system variable for it. Set its
value to the full path, including the name of the file, for the license key file, license.dat.

If LM LI CENSE_FI LE already exists as an environment variable, append the path to the license file to the
variable’s current value using a semi-colon to separate entrie

MANPATH

The MANPATH variable sets the directories that are searched for manual pages associated with the commands
that the user types. When using PGI products, it is important that you set your PATH to include the location of
the PGI products and then set the MANPATH variable to include the man pages associated with the products.

The following csh example targets x64 linux86-64 version of the compilers and tool s and allows the user
access to the manual pages associated with them.

% set path = (/opt/pgi/linux86-64/7.1/bin $path
% set env. MANPATH " $MANPATH': / opt / pgi /| i nux86- 64/ 7. 1/ man

MPSTKZ

MPSTKZ increases the size of the stacks used by threads executing in parallel regions. You typically use this
variable with programs that utilize large amounts of thread-local storage in the form of private variables or
local variables in functions or subroutines called within parallel regions. The value should be an integer <n>
concatenated with Mor mto specify stack sizes of n megabytes.

For example, the following setting specifies a stack size of 8 megabytes.
$ setenv MPSTKZ 8M

MP_BIND

You can set MP_BI NDto yes or y to bind processes or threads executing in a parallel region to physical
processor. Set it to 720 or 7 to disable such binding. The default is to not bind processes to processors. This

94

Chapter 8. Using Environment Variables

variable is an execution-time environment variable interpreted by the PGI runtime-support libraries. It does
not affect the behavior of the PGI compilers in any way.

Note

The MP_BI ND environment variable is not supported on all platforms.

$ setenv MP_BIND y

MP_BLIST

MP_BLI ST allows you to specifically define the thread-CPU relationship.

Note

This variable is only in effect when MP_BIND is yes .

While the MP_BI ND variable binds processors or threads to a physical processor, MP_BLIST allows you to
specifically define which thread is associated with which processor. The list defines the processor-thread
relationship order, beginning with thread 0. This list overrides the default binding.

For example, the following setting for MP_BLIST maps CPUs 3, 2, 1 and 0 to threads 0, 1, 2 and 3 respectively.

$ setenv MP_BLIST=3,2,1,0

MP_SPIN

When a thread executing in a parallel region enters a barrier, it spins on a semaphore. You can use MP_SPIN
to specify the number of times it checks the semaphore before calling sched_yi el d() (on Linux) or
_sleep() (onWindows). These calls cause the thread to be re-scheduled, allowing other processes to run.
The default values are 100 (on Linux) and 10000 (on Windows).

$ setenv MP_SPIN 200

MP_WARN

MP_WARN allows you to eliminate certain default warning messages.

By default, a warning is printed to stderr if you execute an OpenMP or auto-parallelized program with NCPUS
or OVP_NUM THREADS set to a value larger than the number of physical processors in the system.

For example, if you produce a parallelized executable a. out and execute as follows on a system with only one
processor:

% set env. OVP_NUM_THREADS 2

% a. out

War ni ng: OVP_NUM THREADS or NCPUS (2) greater
than avail abl e cpus (1)

FORTRAN STCP

Setting MP_WARN to NO eliminates these warning messages.

95

PGI® User's Guide

NCPUS

You can use the NCPUS environment variable to set the number of processes or threads used in parallel
regions. The default is to use only one process or thread, which is known as serial mode.

Note

OVP_NUM THREADS has the same functionality as NCPUS. For historical reasons, PGi supports
the environment variable NCPUS. If both OMP_NUM_THREADS and NCPUS are set, the value of
OMP_NUM_THREADS takes precedence.

Warning

Setting NCPUS to a value larger than the number of physical processors or cores in your system can
cause parallel programs to run very slowly.

NCPUS_MAX

You can use the NCPUS_MAX environment variable to limit the maximum number of processes or threads
used in a parallel program. Attempts to dynamically set the number of processes or threads to a higher value,
for example using set_omp_num_threads(), will cause the number of processes or threads to be set at the
value of NCPUS_MAX rather than the value specified in the function call.

NO_STOP_MESSAGE

If the NO_STOP_MESSAGE variable exists, the execution of a plain STOP statement does not produce the
message FORTRAN STOP. The default behavior of the PGI Fortran compilers is to issue this message.

PATH

The PATH variable sets the directories that are searched for commands that the user types. When using PGI
products, it is important that you set your PATH to include the location of the PGI products.

You can also use this variable to specify that you want to use only the linux86 version of the compilers and
tools, or to target linux86 as the default.

The following csh example targets x64 linux86-64 version of the compilers and tools.

% set path = (/opt/pgi/linux86-64/7.1/bin $path)

PGl

The PG environment variable specifies the root directory where the PGI compilers and tools are installed.
This variable is recognized at compile-time. If it is not set, the default value depends on your system as well as
which compilers are installed:

¢ On Linux, the default value of this variable is / opt / pgi .

* On Windows, the default value is C: \ Pr ogr am Fi | es\ PG , where C represents the system drive. If both
32- and 64-bit compilers are installed, the 32-bit compilers are inC: \ Pr ogr am Fi | es (x86)\ Pd

96

Chapter 8. Using Environment Variables

e For SFU/SUA compilers, the default value of this variable is / opt / pgi in the SFU/SUA file system. The
corresponding Windows-style path is C: / SFU opt / pgi for SFU and C: / W NDOWS/ SUA/ opt / pgi for
SUA, where C represents the system drive.

In most cases, if the PGI environment variable is not set, the PGI compilers and tools dynamically determine
the location of this root directory based on the instance of the compiler or tool that was invoked. However,
there are still some dependencies on the PGI environment variable, and it can be used as a convenience when
initializing your environment for use of the PGI compilers and tools.

For example, assuming you use csh and want the 64-bit linux86-64 versions of the PGI compilers and tools to
be the default, you would use this syntax:

% setenv PGA /usr/pgi

% set env. MANPATH " $MANPATH": $PA / | i nux86/ 6. 0/ man
% setenv LM LI CENSE_FI LE $PG /1i cense. dat

% set path = ($PA /i nux86-64/6.0/bin $pat h)

PGI_CONTINUE

You set the PG _CONTI NUE variable to specify the actions to take before continuing with execution. For
example, if the PG _CONTI NUE environment variable is set and a program compiled with —Mchkf pst k
is executed, the stack is automatically cleaned up and execution then continues. If PGI_CONTINUE is set to
verbose, the stack is automatically cleaned up, a warning message is printed, and then execution continues.

Note

There is a performance penalty associated with the stack cleanup.

PGI_OBJSUFFIX

You can set the PG _OBJSUFFI X environment variable to generate object files that have a specific suffix. For
example, if you set P@ _OBJSUFFI X to . o, the object files have a suffix of . o rather than . obj .

PGI_STACK_USAGE

(Windows only) The PG _STACK_USAGE variable (for Windows only) allows you to explicitly set stack
properties for your program. When the user compiles a program with the —~Mchkst k option and sets the
PGI_STACK_USAGE environment variable to any value, the program displays the stack space allocated and used
after the program exits. You might see something similar to the following message:

thread 0 stack: nmax 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. For more information on the
—Mechkst k option, refer to —Mchkstk.

PGI_TERM

The PG _TERMenvironment variable controls the stack traceback and just-in-time debugging functionality.
The runtime libraries use the value of ‘ to determine what action to take when a program abnormally
terminates.

97

PGI® User's Guide

The value of PGI_TERM is a comma-separated list of options. The commands for setting the environment
variable follow.

e In csh:
% setenv PG _TERM option[, option...]
e In bash or sh:

$ PG _TERM=option[, option...]
$ export PGA _TERM

e In the Windows Command Prompt:

C \> set PG _TERM-option[, option...]

Table 8.2 lists the supported values for opt i on. Following the table is a complete description of each option
that indicates specifically how you might apply the option.

By default, all of these options are disabled.

Table 8.2. Supported PGI_TERM Values

[no]debug Enables/disables just-in-time debugging (debugging invoked on error)
[no]trace Enables/disables stack traceback on error
[no]signal Enables/disables establishment of signal handlers for common signals
that cause program termination
[no]abort Enables/disables calling the system termination routine abort()
[no]debug

This enables/disables just-in-time debugging. The default is nodebug.

When PG _TERMis set to debug, the following command is invoked on error, unless you use
PG _TERM DEBUGto override this default.

pgdbg -text -attach <pid>
<pi d> is the process ID of the process being debugged.

The PGI_TERM_DEBUG environment variable may be set to override the default setting. For more information,
refer to “PGI_TERM_DEBUG,” on page 99.

[no]trace
This enables/disables the stack traceback. The default is not r ace.
[no]signal

This enables/disables the establishing signal handlers for the most common signals that cause program
termination. The default is nosi gnal . You can set t r ace and debug automatically enables si gnal .
Specifically setting nosi gnal allows you to override this behavior.

98

Chapter 8. Using Environment Variables

[no]abort

This enables/disables calling the system termination routine abort(). The default is noabor t . When
noabort is in effect the process terminates by calling _exi t (127) .

On Linux and SUA, when abor t is in effect, the abort routine creates a core file and exits with code 127.

On Windows, when abor t is in effect, the abort routine exits with the status of the exception received. For
example, if the program receives an access violation, abort() exits with status 0xC0000005.

A few runtime errors just print an error message and call exi t (127) , regardless of the status of PG _TERM
These are mainly errors such as specifying an invalid environment variable value where a traceback would not
be useful.

If it appears that abort() does not generate core files on a Linux system, be sure to unlimit the coredumpsize.
You can do this in these ways:

e Using csh:

% Ilimt coredunpsize unlimted
% setenv PG _TERM abort

e Using bash or sh:

$ulimit -c unlimted
$ export PG _TERMEabort

To debug a core file with pgdbg, start pgdbg with the -core option. For example, to view a core file named
“core” for a program named “a.out”:

$ pgdbg -core core a.out

For more information on why to use this variable, refer to “Stack Traceback and JIT Debugging,” on page
101.

PGI_TERM_DEBUG
The PG _TERM DEBUGvariable may be set to override the default behavior when PGI_TERM is set to debug.

The value of PG _TERM DEBUG should be set to the command line used to invoke the program. For example:
gdb --quiet --pid %

The first occurrence of %d in the PG _ TERM DEBUG string will be replaced by the process id. The program
named in the PG _TERM DEBUG string must be found on the currentPATH or specified with a full path name.

PWD

The PWD variable allows you to display the current directory.

STATIC_RANDOM_SEED

You can use STATI C_RANDOM SEED to force the seed returned by the Fortran 90/95 RANDOM_SEED
intrinsic to be constant. The first call to RANDOM_SEED without arguments resets the random seed to a

99

PGI® User's Guide

TMP

default value, then advances the seed by a variable amount based on time. Subsequent calls to RANDOM_SEED
without arguments reset the random seed to the same initial value as the first call. Unless the time is exactly the
same, each time a program is run a different random number sequence is generated. Setting the environment
variable STATI C_RANDOM SEEDto YES forces the seed returned by RANDOM _SEED to be constant, thereby
generating the same sequence of random numbers at each execution of the program.

You can use TP to specify the directory to use for placement of any temporary files created during execution
of the PGI compilers and tools. This variable is interchangeable with TMPDI R.

TMPDIR

You can use TMPDI Rto specify the directory to use for placement of any temporary files created during
execution of the PGI compilers and tools.

Using Environment Modules

100

On Linux, if you use the Environment Modules package, that is, the nodul e | oad command, PGI 7.1
includes a script to set up the appropriate module files.

Assuming your installation base directory is / opt / pgi , and your MODULEPATH environment variable is /
usr/ 1 ocal / Modul es/ nodul ef i | es, execute this command:

% /opt/pgi/linux86/7.1-1/etc/ modul efiles/pgi.nodule.install \
-all -install /usr/local/Mdul es/nodul efiles

This command creates module files for all installed versions of the PGI compilers. You must have write
permission to the nodul ef i | es directory to enable the module commands:

% nodul e | oad pgi 32/7.1
% nodul e | oad pgi 64/7.1
% nodul e | oad pgi/7.1

where "pgi/7.1" uses the 32-bit compilers on a 32-bit system and uses 64-bit compilers on a 64-bit system.

To see what versions are available, use this command:

% nodul e avail pgi

The nodul e | oad command sets or modifies the environment variables as indicated in the following table.

This Environment Variable... |Is set or modified to ...
cC Full path to pgcc

v Path to pgCC

\Y Full path to pgCC

CXX Path to pgCC

FC Full path to pgf95

F77 Full path to pgf77

Chapter 8. Using Environment Variables

This Environment Variable... |Is set or modified to ...

F90 Full path to pgf95

LD LI BRARY_PATH Prepends the PGI library directory

MANPATH Prepends the PGI man page directory

PATH Prepends the PGI compiler and tools bin directory
PG The base installation directory

PGI does not provide support for the Environment Modules package. For more information about the package,
go to: modules.sourceforge.net.

Stack Traceback and JIT Debugging

When a programming error results in a run-time error message or an application exception, a program will
usually exit, perhaps with an error message. The PGI run-time library includes a mechanism to override this
default action and instead print a stack traceback, start a debugger, or (on Linux) create a core file for post-
mortem debugging.

The stack traceback and just-in-time debugging functionality is controlled by an environment variable,
PGI_TERM. The run-time libraries use the value of PGI_TERM to determine what action to take when a
program abnormally terminates.

When the PGI runtime library detects an error or catches a signal, it calls the routine pgi _st op_her e()
prior to generating a stack traceback or starting the debugger. The pgi_stop_here routine is a convenient spot
to set a breakpoint when debugging a program.

For more information on PGI_Term and the supported values, refer to “PGI_TERM,” on page 97.

101

102

Chapter 9. Distributing Files -
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users
who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications
built using PGI compilers and tools. The application must be installed in such a way that the it executes
accurately on a system other than the one on which it was built, and which may be configured differently.

Deploying Applications on Linux
To successfully deploy your application on Linux, there are a number of issues to consider, including these:

¢ Runtime Libraries

64-bit Linux Systems

Redistribution of Files

Linux Portability of files and packages

¢ Licensing

Runtime Library Considerations

On Linux systems, the system runtime libraries can be linked to an application either statically, or dynamically,
For example, for the C runtime library, libc, you can use either the static version | i bc. a or the shared object
l'i bc. so. If the application is intended to run on Linux systems other than the one on which it was built, it is
generally safer to use the shared object version of the library. This approach ensures that the application uses
aversion of the library that is compatible with the system on which the application is running. Further, it works
best when the application is linked on a system that has an equivalent or earlier version of the system software
than the system on which the application will be run.

Note

Building on a newer system and running the application on an older system may not produce the
desired output.

103

PGI® User's Guide

To use the shared object version of a library, the application must also link to shared object versions of the
PGI runtime libraries. To execute an application built in such a way on a system on which PGI compilers are
not installed, those shared objects must be available.To build using the shared object versions of the runtime
libraries, use the - Bdynani ¢ option, as shown here:

$ pgf 90 - Bdynam c nyprog. f 90

64-bit Linux Considerations

On 64-bit Linux systems, 64-bit applications that use the - ncrmodel =medi umoption sometimes cannot be
successfully linked statically. Therefore, users with executables built with the - ncnodel =nedi umoption may
need to use shared libraries, linking dynamically. Also, runtime libraries built using the - f pi ¢ option use
32-bit offsets, so they sometimes need to reside near other runtime | i bs in a shared area of Linux program
memory.

Note

If your application is linked dynamically using shared objects, then the shared object versions of the
PGI runtime are required.

Linux Redistributable Files

There are two methods for installing the shared object versions of the runtime libraries required for
applications built with PGI compilers and tools: Linux Portability Package and manual distribution.

PGI provides the Linux Portability Package, an installation package that can be downloaded from the PGI web
site. In addition, when the PGI compilers are installed, there is a directory named REDI ST for each platform
(linux86 and linux86-64) that contains the redistributed shared object libraries. These may be redistributed by
licensed PGI customers under the terms of the PGI End-User License Agreement.

Restrictions on Linux Portability

You cannot expect to be able to run an executable on any given Linux machine. Portability depends on the
system you build on as well as how much your program uses system routines that may have changed from
Linux release to Linux release. For example, one area of significant change between some versions of Linux is
inl i bpt hr ead. so. PGI compilers use this shared object for the options - Mconcur (auto-parallel) and -
mp (OpenMP) programs.

Typically, portability is supported for forward execution, meaning running a program on the same or a later
version of Linux; but not for backward compatibility, that is, running on a prior release. For example, a user
who compiles and links a program under Suse 9.1 should not expect the program to run without incident on
a Red Hat 8.0 system, which is an earlier version of Linux. It 7ay run, but it is less likely. Developers might
consider building applications on earlier Linux versions for wider usage.

Installing the Linux Portability Package

You can download the Linux Portability Packages from the Downloads page at http://www.pgroup.com. First
download the package you need, then untar it, and run the install script. Then you can add the installation
directory to your library path.

104

Chapter 9. Distributing Files - Deployment

To use the installed libraries, you can either modify / et ¢/ | d. so. conf and run | dconfi g(1) or modify
the environment variable LD _LI BRARY_PATH, as shown here:

setenv LD_LI BRARY_PATH /usr/ | ocal / pgi
or

export LD_LI BRARY_PATH=/usr/| ocal / pgi

Licensing for Redistributable Files

The installation of the Linux Portability Package presents the standard PGI usage license. The I i bs can be
distributed for use with PGI compiled applications, within the provisions of that license.

The files in the REDIST directories may be redistributed under the terms of the End-User License Agreement
for the product in which they were included.

Deploying Applications on Windows
Windows programs may be linked statically or dynamically.

e A statically linked program is completely self-contained, created by linking to static versions of the PGI and
Microsoft runtime libraries.

e A dynamically linked program depends on separate dynamically-linked libraries (DLLs) that must be
installed on a system for the application to run on that system.

Although it may be simpler to install a statically linked executable, there are advantages to using the DLL
versions of the runtime, including these:

¢ Executable binary file size is smaller.
e Multiple processes can use DLLs at once, saving system resources.

* New versions of the runtime can be installed and used by the application without rebuilding the application.

Dynamically-linked Windows programs built with PGI compilers depend on dynamic run-time library files
(DLLs). These DLLs must be distributed with such programs to enable them to execute on systems where
the PGI compilers are not installed. These redistributable libraries include both PGI runtime libraries and
Microsoft runtime libraries.

PGl Redistributables

PGI Redistributable directories contain all of the PGI Linux runtime library shared object files or Windows
dynamically- linked libraries that can be re-distributed by PGI 7.1 licensees under the terms of the PGI End-
user License Agreement (EULA).

Microsoft Redistributables

The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools directory contains a
subdirectory named r edi st . PGI licensees may redistribute the files contained in this directory in accordance
with the terms of the PGI End-User License Agreement.

105

PGI® User's Guide

Microsoft supplies installation packages, vcr edi st _x86. exe and vcr edi st _x64. exe, containing these
runtime files. You can download these packages from www.microsoft.com.

Code Generation and Processor Architecture

The PGI compilers can generate much more efficient code if they know the specific x86 processor architecture
on which the program will run. When preparing to deploy your application, you should determine whether
you want the application to run on the widest possible set of x86 processors, or if you want to restrict the
application to run on a specific processor or set of processors. The restricted approach allows you to optimize
performance for that set of processors.

Different processors have differences, some subtle, in hardware features, such as instruction sets and cache
size. The compilers make architecture-specific decisions about such things as instruction selection, instruction
scheduling, and vectorization, all of which can have a profound effect on the performance of your application.

Processor- specific code generation is controlled by the - t p option, described in “~tp <target> [target...] ,”
on page 202. When an application is compiled without any - t p options, the compiler generates code for the
type of processor on which the compiler is run.

Generating Generic x86 Code

To generate generic x86 code, use one of the following forms of the- t p option on your command line:
-tp px | generate code for any x86 cpu type

-tp p6 | generate code for Pentium 2 or greater

While both of these examples are good choices for portable execution, most users have Pentium 2 or greater
CPUs.

Generating Code for a Specific Processor

You can use the - t p option to request that the compiler generate code optimized for a specific processor. The
PGI Release Notes contains a list of supported processors or you can look at the - t p entry in the compiler
output generated by using the - hel p option, described in “~help ,” on page 178.

Generating Code for Multiple Types of Processors in One Executable

106

PGI unified binaries provide a low-overhead method for a single program to run well on a number of
hardware platforms.

All 64-bit PGI compilers can produce PGI Unified Binary programs that contain code streams fully optimized
and supported for both AMD64 and Intel EMO4T processors using the - t p target option.

The compilers generate and combine multiple binary code streams into one executable, where each stream
is optimized for a specific platform. At runtime, this one executable senses the environment and dynamically
selects the appropriate code stream.

Different processors have differences, some subtle, in hardware features, such as instruction sets and cache
size. The compilers make architecture-specific decisions about such things as instruction selection, instruction

Chapter 9. Distributing Files - Deployment

scheduling, and vectorization. PGI unified binaries provide a low-overhead means for a single program to run
well on 2 number of hardware platforms.

Executable size is automatically controlled via unified binary culling. Only those functions and subroutines
where the target affects the generated code will have unique binary images, resulting in a code-size savings of
10-90% compared to generating full copies of code for each target.

Programs can use PGI Unified Binary even if all of the object files and libraries are not compiled as unified
binaries. Like any other object file, you can use PGI Unified Binary object files to create programs or libraries.
No special start up code is needed; support is linked in from the PGI libraries.

The - Mpf i option disables generation of PGI Unified Binary. Instead, the default target auto-detect rules for
the host are used to select the target processor.

Unified Binary Command-line Switches

The PGI Unified Binary command-line switch is an extension of the target processor switch, - t p, which may
be applied to individual files during compilation .

The target processor switch, - t p, accepts a comma-separated list of 64-bit targets and generates code
optimized for each listed target.

The following example generates optimized code for three targets:
-tp k8-64, p7-64, core2-64

A special target switch, - t p x64, is the same as -t p k8- 64, p7-64s.

Unified Binary Directives and Pragma

Unified binary directives and pragmas may be applied to functions, subroutines, or whole files. The directives
and pragmas cause the compiler to generate PGI Unified Binary code optimized for one or more targets. No
special command line options are needed for these pragmas and directives to take effect.

The syntax of the Fortran directive is this:
pgi $[g|r|] pgi tp [target]...

where the scope is g (global), r (routine) or blank. The default is r, routine.

For example, the following syntax indicates that the whole file, represented by g, should be optimized for both
k8_64 and p7_064.

pgi $g pgi tp k8 64 p7_64

The syntax of the C/C++ pragma is this:
#pragma [global [routine|] tp [target]...

where the scope is global, routine, or blank. The default is routine.

For example, the following syntax indicates that the next function should be optimized for k8_64, p7_64, and
core2_64.

#pragma routine tp k8 _64 p7_64 core2_64

107

108

Chapter 10. Inter-language Calling

This chapter describes inter-language calling conventions for C, C++, and Fortran programs using the PGI
compilers. The following sections describe how to call a Fortran function or subroutine from a C or C++
program and how to call a C or C++ function from a Fortran program. For information on calling assembly
language programs, refer to Chapter 18, “Run-time Environment”.

This chapter provides examples that use the following options related to inter-language calling. For more
information on these options, refer to Chapter 15, “Command-Line Options Reference,” on page 163.

-C - Mhonmmi n

Overview of Calling Conventions

This chapter includes information on the following topics:

Functions and subroutines in Fortran, C, and C++

Naming and case conversion conventions

Compatible data types

e Argument passing and special return values

Arrays and indexes

Win32 calling conventions

The sections “Inter-language Calling Considerations,” on page 110 through“Example - C++ Calling Fortran,”
on page 119 describe how to perform inter-language calling using the Linux/Win64/SUA convention.

Default Fortran calling conventions for Win32 differ, although Win32 programs compiled using the - Muni x
Fortran command-line option use the Linux/Win64 convention rather than the default Win32 conventions. All
information in those sections pertaining to compatibility of arguments applies to Win32 as well. For details
on the symbol name and argument passing conventions used on Win32 platforms, refer to “Win32 Calling
Conventions,” on page 120.

109

PGI® User's Guide

Inter-language Calling Considerations

In general, when argument data types and function return values agree, you can call a C or C++ function from
Fortran as well as call a Fortran function from C or C++. When data types for arguments do not agree, you may
need to develop custom mechanisms to handle them. For example, the Fortran COMPLEX type has a matching

type in C99 but does not have a matching type in C90; however, it is still possible to provide inter-language
calls but there are no general calling conventions for such cases.

Note

e Ifa C++ function contains objects with constructors and destructors, calling such a function from
either C or Fortran is not possible unless the initialization in the main program is performed from a
C++ program in which constructors and destructors are properly initialized.

e In general, you can call a C or Fortran function from C++ without problems as long as you use the
extern "C" keyword to declare the function in the C++ program. This declaration prevents name
mangling for the C function name. If you want to call a C++ function from C or Fortran, you also
have to use the extern "C" keyword to declare the C++ function. This keeps the C++ compiler
from mangling the name of the function.

* You can use the __cplusplus macro to allow a program or header file to work for both C and C++.
For example, the following defines in the header file stdio.h allow this file to work for both C and
C++.

#i fndef _STDIO H
#define STDIO H
#i fdef __cpl uspl us

extern "C' {
#endif /* __cplusplus */

. /* Functions and data types defined... */

#i fdef __cpl uspl us

}

#endif /* __cplusplus */
#endi f

* (C++ member functions cannot be declared ext er n, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

Functions and Subroutines

110

Fortran, C, and C++ define functions and subroutines differently.

For a Fortran program calling a C or C++ function, observe the following return value convention:

e When a C or C++ function returns a value, call it from Fortran as a function.

e When a C or C++ function does not return a value, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar type. Table 10.1, “Fortran and

C/C++ Data Type Compatibility,” on page 111 lists compatible types. If the call is to a Fortran subroutine,

Chapter 10. Inter-language Calling

a Fortran CHARACTER function, or a Fortran COVPLEX function, call it from C/C++ as a function that
returns void. The exception to this convention is when a Fortran subroutine has alternate returns; call such
a subroutine from C/C++ as a function returning i nt whose value is the value of the integer expression
specified in the alternate RETURN statement.

Upper and Lower Case Conventions, Underscores

By default on Linux, Win64, OSX, and SUA systems, all Fortran symbol names are converted to lower case.
C and C++ are case sensitive, so upper-case function names stay upper-case. When you use inter-language
calling, you can either name your C/C++ functions with lower-case names, or invoke the Fortran compiler
command with the option —Mupcase, in which case it will not convert symbol names to lower-case.

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, OSX, and SUA systems,
an underscore is appended to Fortran global names (names of functions, subroutines and common blocks).
This mechanism distinguishes Fortran name space from C/C++ name space. Use these naming conventions:

e Ifyou call a C/C++ function from Fortran, you should rename the C/C++ function by appending an
underscore or use CSPRAGMA C in the Fortran program. For more information on CSPRAGVA C, refer to
“C$PRAGMA C,” on page 72.

e If you call a Fortran function from C/C++, you should append an underscore to the Fortran function name
in the calling program.

Compatible Data Types

Table 10.1 shows compatible data types between Fortran and C/C++. Table 10.2, “Fortran and C/C++
Representation of the COVPLEX Type,” on page 112 shows how the Fortran COVPLEX type may be
represented in C/C++. If you can make your function/subroutine parameters as well as your return values
match types, you should be able to use inter-language calling.

Table 10.1. Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) |C/C++ Type Size (bytes)
character x char x 1
character®n x char x[n] n
real x float x 4
real*4 x float x 4
real*8 x double x 8
double precision double x 8
integer x int x 4
integer*1 x signed char x 1
integer®2 x short x 2
integer*4 x int x 4
integer*8 x long long x 8

1M

PGI® User's Guide

Fortran Type (lower case) |C/C++ Type Size (bytes)
logical x int x 4
logical*1 x char x 1
logical*2 x short x 2
logical*4 int x 4
logical*8 long long x 8

Table 10.2. Fortran and C/C++ Representation of the COVPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x;
complex*8 x struct {float r,i;} x;
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16
Note

For C/C++, the conpl ex type implies C99 or later.

Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members correspond to
the members of the common block. The name of the structure in C/C++ must have the added underscore. For
example, the Fortran common block:

| NTEGER |

COWPLEX C

DOUBLE COVPLEX CD
DOUBLE PRECI SI ON D
COMON /COM i, ¢, cd, d

is represented in C with the following equivalent:

extern struct {

int i;
struct {float real, inmg;} c;
struct {double real, inmag;} cd;
doubl e d;

} com;

and in C++ with the following equivalent:

112

Chapter 10. Inter-language Calling

extern "C' struct {
int i;

struct {float real, imag;} c;
struct {double real, imag;} cd;
doubl e d;

} com;
Tip

For global or external data sharing, ext ern “C’ is not required.

Argument Passing and Return Values

In Fortran, arguments are passed by reference, that is, the address of the argument is passed, rather than the
argument itself. In C/C++, arguments are passed by value, except for strings and arrays, which are passed
by reference. Due to the flexibility provided in C/C++, you can work around these differences. Solving the
parameter passing differences generally involves intelligent use of the & and * operators in argument passing
when C/C++ calls Fortran and in argument declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the string is also
passed to a calling function.

On Linux systems, or when using the UNIX calling convention on Windows (- Muni x), the compiler places
the length argument(s) at the end of the parameter list, following the other formal arguments. The length
argument is passed by value, not by reference.

Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to pass by value using
the %/AL function. If you enclose a Fortran parameter with %/AL() , the parameter is passed by value. For
example, the following call passes the integer i and the logical bvar by value.

integer*1 i
| ogi cal *1 bvar
call cvalue (WAL(i), WAL(bvar))

Character Return Values

“Functions and Subroutines,” on page 110 describes the general rules for return values for C/C++ and
Fortran inter-language calling. There is a special return value to consider. When a Fortran function returns a
character, two arguments need to be added at the beginning of the C/C++ calling function’s argument list:

o The address of the return character or characters

e The length of the return character

Example 10.1, “Character Return Parameters” illustrates the extra parameters, t mp and 10, supplied by the
caller:

113

PGI® User's Guide

Example 10.1. Character Return Parameters

I Fortran function returns a character
CHARACTER* (*) FUNCTI ON CHF(C1, 1)
CHARACTER* (*) C1
| NTEGER |

END

/[* C declaration of Fortran function */
extern void chf_();

char tnp[10];

char c1[9];

int i;

chf (tmp, 10, cl1, &, 9);

If the Fortran function is declared to return a character value of constant length, for example CHARACTER* 4
FUNCTI ON CHF() , the second extra parameter representing the length must still be supplied, but is not
used.

NOTE

The value of the character function is not automatically NULL-terminated.

Complex Return Values

When a Fortran function returns a complex value, an argument needs to be added at the beginning of the C/
C++ calling function’s argument list; this argument is the address of the complex return value. Example 10.2,
“COMPLEX Return Values” illustrates the extra parameter, cpl x, supplied by the caller.

Example 10.2. COMPLEX Return Values

COMPLEX FUNCTI ON CF(C, 1)
| NTEGER |

END

extern void cf_();

typedef struct {float real, imag;} cplXx;
cpl x ci;

int i;

cf _(&cl, &);

Array Indices

114

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++ arrays start
at 0 and Fortran arrays start at 1. If you adjust your array comparisons so that a Fortran second element is
compared to a C/C++ first element, and adjust similarly for other elements, you should not have problems
working with this difference. If this is not satisfactory, you can declare your Fortran arrays to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses column-
major order and C/C++ use row-major order. For one-dimensional arrays, this poses no problems. For two-
dimensional arrays, where there are an equal number of rows and columns, row and column indexes can
simply be reversed. For arrays other than single dimensional arrays, and square two-dimensional arrays, inter-
language function mixing is not recommended.

Chapter 10. Inter-language Calling

Examples

This section contains examples that illustrate inter-language calling.

Example - Fortran Calling C

Example 10.4, “C function cfunc_" shows a C function that is called by the Fortran main program shown
in Example 10.3, “Fortran Main Program fmain.f”. Notice that each argument is defined as a pointer, since
Fortran passes by reference. Also notice that the C function name uses all lower-case and a trailing "_"

Example 10.3. Fortran Main Program fmain.f

| ogi cal *1 bool 1

character letterl

i nteger*4 numintl, num nt2

real nunfloatl

doubl e precision nundoubl

i nteger*2 nunshorl

external cfunc

call cfunc (booll, letterl, num ntl, numnt2,
+ nunfl oat 1, nundoubl, nunshor1l)

wite(*, "(L2, A2, |15 15 F6.1, F6.1, 15)")
+ bool 1, letterl, numntl, numint2, nunfloatl,
+ nundoubl, nunshorl

end

Example 10.4. C function cfunc_

#defi ne TRUE Oxff
#defi ne FALSE 0
void cfunc_(booll, letterl, numntl, num nt2, nunfloatl,)\
nundoubl, nunshorl, len_letterl)

char *bool 1, *letterl

int *numntl, *num nt2;

float *nunfloat1;

doubl e *nundoubl

short *nunshor1;

int len_letterl

{

*pool 1 = TRUE; *letterl = 'v'; *nunmintl = 11; *numint2 = -44;

*nunfloatl = 39.6 ; *numdoubl = 39.2; *nunshorl = 981

}

Compile and execute the program fmain.f with the call to cfunc_ using the following command lines:

$ pgcc -c cfunc.c
$ pgf 95 cfunc.o fmain.f

Executing the a.out file should produce the following output:

Tv 11 -44 39.6 39.2 981

Example - C Calling Fortran

Example 10.6, “C Main Program cmain.c” shows a C main program that calls the Fortran subroutine shown in
Example 10.5, “Fortran Subroutine forts.f”. Notice that each call uses the & operator to pass by reference. Also
notice that the call to the Fortran subroutine uses all lower-case and a trailing "_"

115

PGI® User's Guide

Example 10.5. Fortran Subroutine forts.f

subroutine forts (booll, letterl, numntl
+ numint2, nunfloatl, nundoubl, nunshor 1)

| ogi cal *1 bool 1

character letterl

i nteger num ntl1, num nt2

doubl e precision nundoubl

real nunfloatl

i nteger*2 nunshor1

bool 1 = .true.
letterl = "v"
numntl = 11

numnt2 = -44

nunmdoubl = 902
nunfloatl = 39.6
nunmshor1l = 299
return

end

Example 10.6. C Main Program cmain.c

main () {

char bool 1, letterl;

int numntl, num nt?2;

float nunfl oat1;

doubl e nundoubil;

short nunshor 1;

extern void forts_ ();

forts (&bool 1, & etterl, &uni nt 1, &umi nt 2, &unf | oat 1, &undoubl, &unshor 1, 1);

printf(" % % % % 9%8. 1f % Of %\ n",
bool 1?" TRUE": "FALSE", | etter 1, num nt 1,
num nt 2, nunfloatl, nundoubl, nunshorl);

To compile this Fortran subroutine and C program, use the following commands:

$ pgcc -c¢ cnmin. f
$ pgf 95 -Miomain cmain.o forts. f

Executing the resulting a.out file should produce the following output:

TRUE v 11 -44 39.6 902 299

Example - C ++ Calling C

Example 10.8, “C++ Main Program cpmain.C Calling a C Function” shows a C++ main program that calls the
C function shown in Example 10.7, “Simple C Function cfunc.c”.

Example 10.7. Simple C Function cfunc.c

voi d cfunc(numl, nun®, res)

int numl, nunR, *res;

{

printf("func: a = % b = %l ptr ¢ = %\n", numl, nun®, res);
*res=nunil/ nun®;

printf("func: res = %\n", *res);

}
116

Chapter 10. Inter-language Calling

Example 10.8. C++ Main Program cpmain.C Calling a C Function

xtern "C' void cfunc(int n, int m int *p);
#i ncl ude <i ostreanr

mai n()
{
int a,b,c;
a=8;
b=2;
cout << "mmin: a = "<<a<<" b = "<<b<<"ptr c = "<<&c<< endl
cfunc(a, b, &) ;
cout << "mmin: res = "<<c<<endl ;
}

To compile this C function and C++ main program, use the following commands:

$ pgcc -c csub.c
$ pgcpp cpnain. C csub. o

Executing the resulting a.out file should produce the following output:

main: a=8b =2 ptr ¢ = Oxbffffb94
func: a =8 b =2 ptr ¢ = bffffb94
func: res = 4

main: res = 4

Example - C Calling C++

Example 10.10, “C Main Program cmain.c Calling a C++ Function” shows a C main program that calls the
C++ function shown in Example 10.9, “Simple C++ Function cpfunc.C with Extern C”.

Example 10.9. Simple C++ Function cpfunc.C with Extern C

#i ncl ude <i ostreanr
extern "C' void cpfunc(int numl,int nunR,int *res) {

cout << "func: a = "<<nunl<<" b = "<<nunm2<<"ptr c ="<<res<<end|
*res=nunil/ nun®;
cout << "func: res = "<<res<<endl;

Example 10.10. C Main Program cmain.c Calling a C++ Function

extern void cpfunc(int a, int b, int *c);
#i ncl ude <stdi o. h>
mai n() {
int a,b,c;
a=8;
b=2;
printf("main: a =% b =% ptr ¢c = %\n", a, b, &) ;
cpfunc(a, b, &c);
printf("main: res = %\n",c);

To compile this C function and C++ main program, use the following commands:

$ pgcc -c crmain.c
$ pgcpp cnmin. o cpsub. C

117

PGI® User's Guide

Executing the resulting a.out file should produce the following output:

main: a=8b =2 ptr ¢
func: a =8 b =2 ptr ¢
func: res = 4
main: res = 4

Oxbf f ff b94
bf f f f b94

Note that you cannot use the extern "C" form of declaration for an object’s member functions.

Example - Fortran Calling C++

118

The Fortran main program shown in Example 10.11, “Fortran Main Program fmain.f calling a C++ function”
calls the C++ function shown in Example 10.12, “C++ function cpfunc.C”. Notice that each argument is
defined as a pointer in the C++ function, since Fortran passes by reference. Also notice that the C++ function

name uses all lower-case and a trailing

Example 10.11. Fortran Main Program fmain.f calling a C++ function

| ogi cal *1 bool 1
character letterl
i nteger*4 numntl,
real nunfloatl

num nt 2

doubl e precision nundoubl

i nteger*2 nunshorl
external cfunc
call cpfunc (bool 1
+ numnt2, nunfloatl
wite(*, "(L2, A2

letterl, numntl,
nundoubl, nunshor 1)
15 15 F6.1, F6.1, I5)")

+ bool 1, letterl, nunmntl, num nt2, nunfloatl,

+ nundoubl, nunshorl
end

Example 10.12. C++ function cpfunc.C

#defi ne TRUE Oxf f

#defi ne FALSE 0

extern "C' {

extern void cpfunc_ (
char *bool 1, *letterl,
int *num ntl, *num nt2,
fl oat *nunfl oat 1,

doubl e *nundoubl,

short *nunshortl,

int len_letterl) ({
*pool 1 = TRUE, *letterl

'v'; *numntl = 11;

*numint2 = -44; *nunfloatl = 39.6; *nundoubl = 39. 2;

*nunshort1l = 981;

}
}

Assuming the Fortran program is in a file fmain.f, and the C++ function is in a file cpfunc.C, create an
executable, using the following command lines:

$ pgcpp -c¢ cpfunc. C
$ pgf 95 cpfunc.o fmain.f

Executing the a.out file should produce the following output:

Chapter 10. Inter-language Calling

Tv 11 -44 39.6 39.2 981

Example - C++ Calling Fortran

Example 10.13, “Fortran Subroutine forts.f” shows a Fortran subroutine called by the C++ main program
shown in Example 10.14, “C++ main program cpmain.C”. Notice that each call uses the & operator to pass by
reference. Also notice that the call to the Fortran subroutine uses all lower-case and a trailing "_":

Example 10.13. Fortran Subroutine forts.f

subroutine forts (booll, letterl, num ntl,
+ numint2, nunfloatl, nundoubl, nunshor 1)

| ogi cal *1 bool 1

character letterl

i nteger num nt1l, num nt2

doubl e precision nundoubl

real nunfloatl

i nteger*2 nunmshor1

booll = .true. ; letterl = "v"

numintl = 11 ; numnt2 = -44

nundoubl = 902 ; nunfloatl = 39.6 ; nunshorl = 299
return

end

Example 10.14. C++ main program cpmain.C

#i ncl ude <i ostreanr

extern "C'" { extern void forts_(char *,char *,int *,int *,
float *,double *,short *); }

mai n ()
{

char bool 1, letterl;

int numntl, num nt?2;

float nunfloatl;

doubl e nundoubl;

short nunshor1;

forts_(&bool 1, & etterl, &uni nt 1, &umi nt 2, &unf | oat 1,
&undoubl, &unshor 1) ;

cout << " booll =";

bool 1?cout << "TRUE ":cout << "FALSE "; cout <<endl;
cout << " letterl " << letterl <<endl;

cout << " numintl << num nt1l <<endl;

cout << " num nt2 " << num nt2 <<endl ;
cout << " nunfloatl = " << nunfloatl <<endl ;
cout << " nundoubl = " << nundoubl <<endl ;
cout << " numshorl = " << nunshorl <<endl ;

}

To compile this Fortran subroutine and C++ program, use the following command lines:
$ pgf95 -c forts.f
$ pgcpp forts.o cpmain.C -1 pgf95 -1 pgf 95 rpnl -1 pgf 952 \
-1 pgf 95rtl -1l pgftnrtl
Executing this C++ main should produce the following output:

bool 1 = TRUE

119

PGI® User's Guide

letterl = v
numntl = 11
numnt2 = -44

nunfloatl = 39.6
nunmdoubl = 902
nunmshor1l = 299

Note that you must explicitly link in the PGF95 runtime support libraries when linking pgf95-compiled
program units into C or C++ main programs. When linking pgf77 -compiled program units into C or C++
main programs, you need only link in —Ipgftnrtl.

Win32 Calling Conventions

A calling convention is a set of conventions that describe the manner in which a particular routine is executed.
A routine's calling conventions specify where parameters and function results are passed. For a stack-based
routine, the calling conventions determine the structure of the routine's stack frame.

The calling convention for C/C++ is identical between most compilers on Win32 and Linux/Win64. However,
Fortran calling conventions vary widely between legacy Win32 Fortran compilers and Linux/Win64 Fortran
compilers.

Win32 Fortran Calling Conventions

120

Four styles of calling conventions are supported using the PGI Fortran compilers for Win32: Default, C,
STDCALL, and UNIX.

¢ Default - Used in the absence of compilation flags or directives to alter the default.

e C or STDCALL - Used if an appropriate compiler directive is placed in a program unit containing the call.
The C and STDCALL conventions are typically used to call routines coded in C or assembly language that
depend on these conventions.

e UNIX - Used in any Fortran program unit compiled using the -Munix compilation flag. The following table
outlines each of these calling conventions.

Table 10.3. Calling Conventions Supported by the PGI Fortran Compilers

Convention Default STDCALL C UNIX
Case of symbol name Upper Lower Lower Lower
Leading underscore Yes Yes Yes Yes
Trailing underscore No No No Yes
Argument byte count added | Yes Yes No No
Arguments passed by Yes No* No* Yes
reference

Character argument length | After each char |No No End of
passed argument argument list
First character of character |No Yes Yes No
string and passed by value

Chapter 10. Inter-language Calling

Convention Default STDCALL C UNIX
varargs support No No Yes Yes
Caller cleans stack No No Yes Yes

* Except arrays, which are always passed by reference even in the STDCALL and C conventions

NOTE

While it is compatible with the Fortran implementations of Microsoft and several other vendors, the
C calling convention supported by the PGI Fortran compilers for Windows is not strictly compatible
with the C calling convention used by most C/C++ compilers. In particular, symbol names produced
by PGI Fortran compilers using the C convention are all lower case. The standard C convention is

to preserve mixed-case symbol names. You can cause any of the PGI Fortran compilers to preserve
mixed-case symbol names using the -Mupcase option, but be aware that this could have other
ramifications on your program.

Symbol Name Construction and Calling Example

This section presents an example of the rules outlined in Table 10.3, “Calling Conventions Supported by the
PGI Fortran Compilers,” on page 120. In the pseudocode shown in the following examples, %addr refers to
the address of a data item while %val refers to the value of that data item. Subroutine and function names are
converted into symbol names according to the rules outlined inTable 10.33. Consider the following subroutine
call:

call work (“ERR, a, b, n)

where a is a double precision scalar, b is a real vector of size n, and n is an integer.

e Default - The symbol name for the subroutine is constructed by pre-pending an underscore, converting
to all upper case, and appending an @ sign followed by an integer indicating the total number of bytes
occupied by the argument list. Byte counts for character arguments appear immediately following the
corresponding argument in the argument list. The following is an example of the pseudo-code for the above
call using Default conventions:

call _WORK@O0 (%addr(‘ERR),3, %addr(a), %addr(b), %addr(n))

e STDCALL - The symbol name for the subroutine is constructed by pre-pending an underscore, converting
to all lower case, and appending an @ sign followed by an integer indicating the total number of bytes
occupied by the argument list. Character strings are truncated to the first character in the string, which is
passed by value as the first byte in a 4-byte word. The following is an example of the pseudo-code for the
above call using STDCALL conventions:

call _work@0 (%al (‘E), %al(a), %ddr(b), %al (n))

Notice in this case that there are still 20 bytes in the argument list. However, rather than 5 4-byte quantities
as in the Default convention, there are 3 4-byte quantities and 1 8-byte quantity (the double precision value
ofa).

e (- The symbol name for the subroutine is constructed by pre-pending an underscore and converting to all
lower case. Character strings are truncated to the first character in the string, which is passed by value as

121

PGI® User's Guide

the first byte in a 4-byte word. The following is an example of the pseudo-code for the above call using C
conventions:

call _work (%Wal (‘E), %al (a), %ddr(b), %al (n))

e UNIX - The symbol name for the subroutine is constructed by pre-pending an underscore, converting to all
lower case, and appending an underscore. Byte counts for character strings appear in sequence following
the last argument in the argument list. The following is an example of the pseudo-code for the above call
using UNIX conventions:

call _work_ (%addr(‘'ERR), %addr(a), %addr(b), %addr(n), 3)

Using the Default Calling Convention

The Default calling convention is used if no directives are inserted to modify calling conventions and if the
- Muni x compilation flag is not used. Refer to “Symbol Name Construction and Calling Example,” on page
121 for a complete description of the Default calling convention.

Using the STDCALL Calling Convention

Using the STDCALL calling convention requires the insertion of a compiler directive into the declarations
section of any Fortran program unit which calls the STDCALL program unit. This directive has no effect when
the - Muni x compilation flag is used, meaning you cannot mix UNIX-style argument passing and STDCALL
calling conventions within the same file. In the following example syntax for the directive, work is the name of
the subroutine to be called using STDCALL conventions:

I DEC$ ATTRI BUTES STDCALL :: work

You can list more than one subroutine may be listed, separating them by commas. Refer to “Symbol Name
Construction and Calling Example,” on page 121 for a complete description of the implementation of
STDCALL.

NOTE

The directive prefix IDEC$ requires a space between the prefix and the directive keyword
ATTRIBUTES. The ! must begin the prefix when compiling using Fortran 90 freeform format. The
characters C or * can be used in place of ! in either form of the prefix when compiling used fixed-
form format. The directives are completely case insensitive.

Using the C Calling Convention

122

Using the C calling convention requires the insertion of a compiler directive into the declarations section of any
Fortran program unit which calls the C program unit. This directive has no effect when the -Munix compilation
flag is used, meaning you cannot mix UNIX-style argument passing and C calling conventions within the same
file. Syntax for the directive is as follows:

I DEC$ ATTRIBUTES C :: work

Where work is the name of the subroutine to be called using C conventions. More than one subroutine may be
listed, separated by commas. Refer to “Symbol Name Construction and Calling Example,” on page 121 for a
complete description of the implementation of the C calling convention.

Chapter 10. Inter-language Calling

Note

You can also use !MS$ ATTRIBUTES, as described in “ATTRIBUTES Directive,” on page 71.

Using the UNIX Calling Convention

Using the UNIX calling convention is straightforward. Any program unit compiled using -Munix compilation
flag will use the UNIX convention.

123

124

Chapter 11. Programming
Considerations for 64-Bit
Environments

PGI provides 64-bit compilers for the 64-bit Linux, Windows, SUA, and Apple operating systems running on the
x04 architecture. You can use these compilers to create programs that use 64-bit memory addresses. However,
there are limitations to how this capability can be applied. With the exception of Linux86-64, the object file
formats on all of the operating systems limit the total cumulative size of code plus static data to 2GB. This limit
includes the code and statically declared data in the program and in system and user object libraries. Linux86-
64 implements a mechanism that overcomes this limitations, as described in“Large Static Data in Linux,”

on page 126. This chapter describes the specifics of how to use the PGI compilers to make use of 64-bit
memory addressing.

The 64-bit Windows, Linux, SUA, and Apple environments maintain 32-bit compatibility, which means that 32-
bit applications can be developed and executed on the corresponding 64-bit operating system.

Note

The 64-bit PGI compilers are 64-bit applications which cannot run on anything but 64-bit CPUs
running 64-bit Operating Systems.

This chapter describes how to use the following options related to 64-bit programming.

-fPIC -mcmodel=medium -tp

-i8 -Mlarge_arrays

Data Types in the 64-Bit Environment

The size of some data types can be different in a 64-bit environment. This section describes the major
differences. Refer to Chapter 13, “Fortran, C and C++ Data Types” for detailed information.

125

PGI® User's Guide

C/C++ Data Types

On 32-bit Windows, int is 4 bytes, long is 4 bytes, and pointers are 4 bytes. On 64-bit windows, the size of an
int is 4 bytes, a long is 4 bytes, and a pointer is 8 bytes.

On the 32-bit Linux, SUA, and Apple operating systems, the size of an int is 4 bytes, a long is 4 bytes, and a
pointer is 4 bytes. On the 64-bit Linux, SUA, and Apple operating systems, the size of an int is 4 bytes, a long is
8 bytes, and a pointer is 8 bytes.

Fortran Data Types

In Fortran, the default size of the INTEGER type is 4 bytes. The - i 8 compiler option may be used to make the
default size of all INTEGER data in the program 8 bytes.

When using the - M ar ge_ar r ays option, described in “64-Bit Array Indexing,” on page 126, any 4-byte
INTEGER variables that are used to index arrays are silently promoted by the compiler to 8 bytes. This can lead
to unexpected consequences, so 8 byte INTEGER variables are recommended for array indexing when using -
Mlarge_arrays.

Large Static Data in Linux

Linux86-64 operating systems support two different memory models. The default model used by PGI compilers
is the small memory model, which can be specified using -mcmodel=small. This is the 32-bit model, which
limits the size of code plus statically allocated data, including system and user libraries, to 2GB. The medium
memory model, specified by -mcmodel=medium, allows combined code and static data areas (.text and .bss
sections) larger than 2GB. The - ncmodel =medi um option must be used on both the compile command and
the link command in order to take effect.

The Win64, SUA64, and 64-bit Apple operating systems do not have any support for large static data
declarations.

There are two drawbacks to using - ncnodel =nedi um First, there is increased addressing overhead to
support the large data range. This can affect performance, though the compilers seek to minimize the added
overhead through careful instruction generation. Second, -mcmodel=medium cannot be used for objects in
shared libraries, because there is no OS support for 64-bit dynamic linkage.

Large Dynamically Allocated Data

Dynamically allocated data objects in programs compiled by the 64-bit PGI compilers can be larger than 2GB.
No special compiler options are required to enable this functionality. The size of the allocation is only limited
by the system. However, to correctly access dynamically allocated arrays with more than 2G elements you
should use the - M ar ge_ar r ays option, described in the following section.

64-Bit Array Indexing

The 64-bit PGI compilers provide an option, - M ar ge_ar r ays, that enables 64-bit indexing of arrays. This
means that, as necessary, 64-bit INTEGER constants and variables are used to index arrays.

126

Note

Chapter 11. Programming Considerations for 64-Bit Environments

In the presence of - M ar ge_ar r ays, the compiler may silently promote 32-bit integers to 64 bits,

which can have unexpected side effects.

On Linux86-64, the - M ar ge_ar r ays option also enables single static data objects larger than 2 GB. This
option is the default in the presence of - ncmodel =medi um

Note

On Win64, static data may not be larger than 2GB.

Compiler Options for 64-bit Programming

The usual switches that apply to 64-bit programmers seeking to increase the data range of their applications

are in the table below.

Table 11.1. 64-bit Compiler Options

Option

Purpose

Considerations

-mcmodel=medium

Enlarge object size; Allow for
declared data the size of larger
than 2GB

Linux86-64 only. Slower execution.
Cannot be used with —fPIC. Objects cannot
be put into shared libraries

-Mlarge_arrays

Perform all array-location-to-
address calculations using 64-bit
integer arithmetic.

Slightly slower execution. Implicit with
—mcmodel=medium. Can be used with
—mcmodel=small. Win64 does not support
—Mlarge_arrays for static objects larger
than 2GB

constants not explicitly declared
INTEGER*4 are assumed to be
INTEGER*S.

-fPIC Position independent code. Dynamic linking restricted to a 32-bit
Necessary for shared libraries. |offset. External symbol references should
refer to other shared lib routines, rather
than the program calling them.
-i8 Al INTEGER functions, data, and |Users should take care to explicitly

declare INTEGER functions as INTEGER*4.

The following table summarizes the limits of these programming models:

Table 11.2. Effects of Options on Memory and Array Sizes

Combined Addr. Math |Max Size Gbytes
Comments
Compiler Options A ' AS DS TS
~tp k8-32 or-tp p7 (32 32 2 2 2 32-bit linux86 programs
—tp k8-64—-tp p7-64 |64 32 2 2 2 64-bit addr limited by
—mcmodel=small

127

PGI® User's Guide

Combined Addr. Math | Max Size Gbytes
Comments
Compiler Options A | AS DS TS
—tp k8-64 —fpic or |64 32 2 2 2 —fpic incompatible with

—mcmodel=medium
—-tp p7-64 —fpic

—tp k8-640r—tp p7- |64 64 >2 >2 >2 Enable full support for 64-bit
64 data addressing

—nctnodel =nedi um

Column Legend

A Address Type (A) -size in bits of data used for address calculations, 32-bit or 64-bit.

I Index Arithmetic (1)- bit-size of data used to index into arrays and other aggregate data
structures. If 32-bit, total range of any single data object is limited to 2GB.

AS Maximum Array Size (AS)- the maximum size in gigabytes of any single data object.

DS Maximum Data Size (DS)- max size in gigabytes combined of all data objects in .bss

TS Maximum Total Size (TS)- max size in gigabytes, in aggregate, of all executable code and

data objects in a running program.

Practical Limitations of Large Array Programming

The 64-bit addressing capability of the Linux86-64 and Win64 environments can cause unexpected issues
when data sizes are enlarged significantly. The following table describes the most common occurrences of
practical limitations of large array programming.

Table 11.3. 64-Bit Limitations

array initialization |Initializing a large array with a data statement may result in very large
assembly and object files, where a line of assembler source is required for
each element in the initialized array. Compilation and linking can be very
time consuming as well. To avoid this issue, consider initializing large arrays
in a loop at runtime rather than in a data statement.

stack space Stack space can be a problem for data that is stack-based. In Win64, stack
space can be increased by using the link-time switch, where N is the desired
stack size:

-W, -stack: N

In linux86-64, stack size is increased in the environment. (Note: setting
stacksize to unlimited often is not large enough.

limt stacksize new size I in csh
ulinmt —s new size I in bash
page swapping If your executable is much larger than the physical size of memory, page

swapping can cause it to run dramatically slower; it may even fail. This is

128

Chapter 11. Programming Considerations for 64-Bit Environments

not a compiler problem. Try smaller data sets to determine whether or not a
problem is due to page thrashing.

configured space |Be sure your linux86-64 system is configured with swap space sufficiently
large to support the data sets used in your application(s). If your
memory-+swap space is not sufficiently large, your application will likely
encounter a segmentation fault at runtime.

support for large |Arrays that are not dynamically allocated are limited by how the compiler
address offsets in | can express the ‘distance’ between them when generating code. A field in
object file format |the object file stores this ‘distance’ value, which is limited to 32-bits on
Win32, Win64, linux86, and linux86-64 with —mcmodel=small. It is 64-bits
on linux86-64 with —-mcmodel=medium. Note. Without the 64-bit offset
support in the object file format, large arrays cannot be declared statically or
locally stack-based.

Example: Medium Memory Model and Large Array in C

Consider the following example, where the aggregate size of the arrays exceeds 2GB.

% cat bi gadd.
#i ncl ude <stdi o. h>

#defi ne SI ZE 600000000 /* > 2GB/ 4 */

static float a[SlZE], b[SIZE;

i nt
mai n()
{
long long i, n, m
float c[SIZE]; /* goes on stack */
n = Sl ZE;
m = 0;
for (i =0; i <n; i += 10000) ({
a[i] =i + 1;
b[i] =2.0* (i +1);
c[i] = a[i] + b[i];
m=i;
}
printf("a[0] =% b[0]=%g c[0]=%g\n", a[0], b[O], c[0]);
printf("m%ld a[%1d]=%g b[%|d] =%gc[%|d]=%g\n", mma[n],mb[n,mc[m);
return O;
}

% pgcc —ntnodel =nedi um —o bi gadd bi gadd. c

When SIZE is greater than 2G/4, and the arrays are of type float with 4 bytes per element, the size of each array
is greater than 2GB. With pgcc, using the —-mcmodel=medium switch, a static data object can now be > 2GB in
size. Note that if you execute with the above settings in your environment, you may see the following:

% bi gadd
Segnent ati on fault

Execution fails because the stack size is not large enough. Try resetting the stack size in your environment:

%limt stacksize 3000M

129

PGI® User's Guide

Note that ‘limit stacksize unlimited’ will probably not provide as large a stack as we are using above.

% bi gadd
a[0] =1 b[0] =2 c[0] =3
n=599990000 a[599990000] =5. 9999e+08 b[599990000] =1. 19998e+09 c[599990000] =1. 79997e+09

The size of the bss section of the bigadd executable is now larger than 2GB:

% si ze — format =sysv bigadd | grep bss

. bss 4800000008 5245696

% si ze -—format=sysv bigadd | grep Total
Total 4800005080

Example: Medium Memory Model and Large Array in Fortran

130

The following example works with both the PGF95 and PGF77 compilers included in Release 7.0. Both
compilers use 64-bit addresses and index arithmetic when the —mcmodel=medium option is used.

Consider the following example:

% cat mat.f
pr ogr am mat
integer i, j, k, size, |, m n parameter (size=16000) ! >2GB
par anet er (mFsi ze, n=si ze)
real *8 a(mn),b(mn),c(mn),d
doi =1, m
doj =1, n
a(i,j)=10000. 0D0*dbl e(i) +dbl e(j)
b(i,j)=20000.0D0*dbl e(i) +dbl e(j)
enddo
enddo
I $onp parall el
I $onp do
doi =1, m
doj =1, n
c(i,j) =a(i,j) +b(i,j)
enddo
enddo
I $onp do
do i=1, m
do j 1, n
d 30000. 0D0*dbl e(i) +dbl e(j) +dbl e(j)
if(d .ne. c(i,j)) then
print * "err i=",i,"]=",]
print *, "c(i,j)=",c(i,])
print * "d=",d
st op
endi f
enddo
enddo
I $onp end parall el
print *, “M=",M”, N=",6N
print *, “c(MN =*“, c(mn)
end

When compiled with the PGF95 compiler using —mcmodel=medium:

% pgf 95 —np -0 mat mat.f —i 8 —ntnodel =nedi um

Chapter 11. Programming Considerations for 64-Bit Environments

% set env OVP_NUM THREADS 2
% mat

M = 16000 , N = 16000
c(MN = 480032000. 0000000

Example: Large Array and Small Memory Model in Fortran

The following example uses large, dynamically-allocated arrays. The code is divided into 2 main and
subroutine so you could put the subroutine into a shared library. Dynamic allocation of large arrays saves
space in the size of executable and saves time initializing data. Further, the routines can be compiled with 32-
bit compilers, by just decreasing the parameter size below.

% cat mat _al | 0. f 90

program nmat _al |l o
integer i, |j
i nteger size, m n
par anet er (size=16000)
par anet er (mesi ze, n=si ze)
doubl e precision, allocatable::a(:,:),b(:,:),c(:,:)
allocate(a(mn), b(mn), c(mn))
doi =100, m 1
do j =100, n, 1
a(i,j) = 10000.0D0 * dble(i) + dble(j)
b(i,j) = 20000.0D0 * dble(i) + dble(j)
enddo
enddo
call mat_add(a, b, c, mn)
print *, “M=",m”,N=",n
print *, “c(MN =*, c(mn)
end

subroutine mat _add(a, b, c, mn)

integer m n, i, j

doubl e precision a(mn),b(mn),c(mn)
I $onp do

doi =1, m
doj =1, n

c(i,j) =a(i,j) +b(i,j)

enddo

enddo

return
end

% pgf95 —o mat _allo nmat _all o0.f90 —i 8 —M arge_arrays -np -fast

131

132

Chapter 12. C/C++ Inline Assembly
and Intrinsics

Inline Assembly

Inline Assembly lets you specify machine instructions inside a "C" function. The format for an inline assembly
instruction is this:

{ asm| _asm __} ("string");

The asm statement begins with the asm or __asm__ keyword. The __asm___ keyword is typically used in
header files that may be included in ISO "C" programs.

"string" is one or more machine specific instructions separated with a semi-colon (;) or newline (\72)
character. These instructions are inserted directly into the compiler's assembly-language output for the
enclosing function.

Some simple asm statements are:

asm ("cli");
asm ("sti");

The asm statements above disable and enable system interrupts respectively.
In the following example, the eax register is set to zero.
asm("pushl %ax\n\t" "povl $0, %ax\n\t" "popl %ax");

Notice that eax is pushed on the stack so that it is it not clobbered. When the statement is done with eax, it is
restored with the popl instruction.

Typically a program uses macros that enclose asm statements. The interrupt constructs shown above are used
in the following two examples:

#define disablelnt __asm__ ("cli");
#define enablelnt __asm _ ("sti");

133

PGI® User's Guide

Extended Inline Assembly

134

“Inline Assembly,” on page 133 explains how to use inline assembly to specify machine specific instructions
inside a "C" function. This approach works well for simple machine operations such as disabling and enabling
system interrupts. However, inline assembly has three distinct limitations:

1. The programmer must choose the registers required by the inline assembly.

2. To prevent register clobbering, the inline assembly must include push and pop code for registers that get
modified by the inline assembly.

3. There is no easy way to access stack variables in an inline assembly statement.

Extended Inline Assembly was created to address these limitations. The format for extended inline assembly,
also known as extended asm, is as follows:

{ asm| _asm_} [volatile | __volatile__]
("string" [: [output operands]] [: [input operands]] [: [clobberlist]]);

Extended asm statements begin with the asm or __asm__ keyword. Typically the __asm__ keyword is
used in header files that may be included by ISO "C" programs.

An optional volatile or __volatile__ keyword may appear after the asm keyword. This keyword instructs
the compiler not to delete, move significantly, or combine with any other asm statement. Like __asm__, the
__volatile___ keyword is typically used with header files that may be included by ISO "C" programs.

"string" is one or more machine specific instructions separated with a semi-colon (;) or newline (\2)
character. The string can also contain operands specified in the [output operands], [input operands],
and [clobber list]. The instructions are inserted directly into the compiler's assembly-language output for
the enclosing function.

e The [output operands], [input operands], and [clobber list] items each describe the effect of the
instruction for the compiler. For example:

asm("movl %, %eax\n" "nmovl YWeax, W":"=r" (x) : "r" (y) : "%ax");

where "=r" (x) is an output operand
"r" (y) is an input operand.
"%eax" is the clobber list consisting of one register, "%eax".

The notation for the output and input operands is a constraint string surrounded by quotes, followed by
an expression, and surrounded by parentheses. The constraint string describes how the input and output
operands are used in the asm "string". For example, "r" tells the compiler that the operand is a register.
The "=" tells the compiler that the operand is write only, which means that a value is stored in an output
operand's expression at the end of the asm statement.

Each operand is referenced in the asm "string" by a percent "%" and its number. The first operand is
number 0, the second is number 1, the third is number 2, and so on. In the preceding example, "%0"
references the output operand, and "%1" references the input operand. The asm "string" also contains
"%%eax", which references machine register "%eax". Hard coded registers like "%eax" should be specified
in the clobber list to prevent conflicts with other instructions in the compiler's assembly-language output.

Chapter 12. C/C++ Inline Assembly and Intrinsics

[output operands], [input operands], and [clobber list] items are described in more detail in the following
sections.

Output Operands

The [output operands] are an optional list of output constraint and expression pairs that specify the result(s)
of the asm statement. An output constraint is a string that specifies how a result is delivered to the expression.

For example, "=r" (x) says the output operand is a write-only register that stores its value in the "C" variable x
at the end of the asm statement. An example follows:

int x;
voi d exanpl e()
{
asnm("nmovl $0, 9®" : "=r" (x));
}

The previous example assigns 0 to the "C" variable x. For the function in this example, the compiler produces
the following assembly. If you want to produce an assembly listing, compile the example with the pgcc -S
compiler option:

exanpl e:
.. Dcf bO:
pushq % bp
.. Dcfi O:
novq % sp, % bp
..Dcfil
.. ENL:
|ineno: 8
movl $0, Y%eax

mov| Y%eax, x(%ip)
|ineno: O

popq % bp

ret

In the generated assembly shown, notice that the compiler generated two statements for the asm statement

at line number 5. The compiler generated "movl $0, %eax" from the asm "string". Also notice that %eax
appears in place of "%0" because the compiler assigned the %eax register to variable x. Since item 0 is an
output operand, the result must be stored in its expression (x). The instruction movl %eax, x(%rip) assigns
the output operand to variable x.

In addition to write-only output operands, there are read/write output operands designated with a "+" instead
of a"=". For example, "+7" (x) tells the compiler to initialize the output operand with variable x at the
beginning of the asm statement.

To illustrate this point, the following example increments variable x by 1:

int x=1;
voi d exanpl e2()
{
asnm("addl $1, 9®" : "+r" (x));
}

To perform the increment, the output operand must be initialized with variable x. The read/write constraint
modifier ("+") instructs the compiler to initialize the output operand with its expression. The compiler
generates the following assembly code for the example2() function:

135

PGI® User's Guide

136

exanpl e2:
.. Dcf bO:
pushq % bp
.. Dcfi O:
novq % sp, % bp
..Dcfil
.. ENL:
|ineno: 5
nmov| X(%ip), Y%eax
addl $1, %ax
nov| Y%eax, X(%ip)
lineno: O
popq % bp
ret

From the example(2) code, two extraneous moves are generated in the assembly: one movl for initializing the
output register and a second movl to write it to variable x. To eliminate these moves, use a memory constraint
type instead of a register constraint type, as shown in the following example:

int x=1;
voi d exanpl e2()
{
asnm("addl $1, 9%®" : "+nm' (x));
}

The compiler generates a memory reference in place of a memory constraint. This eliminates the two
extraneous moves:

exanpl e2:
.. Dcf bO:
pushq % bp
.. Dcfi O:
novq % sp, % bp
.. Dcfil
.. EN1:

|ineno: 5
addl $1, x(%ip)
lineno: O

popq % bp
ret

Because the assembly uses a memory reference to variable x, it does not have to move x into a register prior to
the asm statement; nor does it need to store the result after the asm statement. Additional constraint types are
found in “Additional Constraints,” on page 139.

The examples thus far have used only one output operand. Because extended asm accepts a list of output
operands, asm statements can have more than one result. For example:

voi d exanpl e4()
{

int x=1;

int y=2;

asnm("addl $1, %\n" "addl 9%, 9®": "+r" (x), "+ni (y));
}

The example above increments variable y by 7 then adds it to variable x. Multiple output operands are
separated with a comma. The first output operand is item 0 ("%0") and the second is item 1 ("%1") in the
asm "string". The resulting values for x and y are 4 and 3 respectively.

Chapter 12. C/C++ Inline Assembly and Intrinsics

Input Operands

The [input operands| are an optional list of input constraint and expression pairs that specify what "C" values
are needed by the asm statement. The input constraints specify how the data is delivered to the asm statement.

For example, "r" (x) says that the input operand is a register that has a copy of the value stored in "C" variable
x. Another example is "m" (x) which says that the input item is the memory location associated with variable

x. Other constraint types are discussed in “Additional Constraints,” on page 139. An example follows:

voi d exanpl e5()
{

int x=1;

int y=2;

int z=3;

asm("addl %, %\n" "addl 9%, 9®" : "+r" (x), "+n¥ (y) @ "r" (z));
}

The previous example adds variable z, item 2, to variable x and variable y. The resulting values for x and y are
4 and 5 respectively.

Another type of input constraint worth mentioning here is the matching constraint. A matching constraint is
used to specify an operand that fills both an input as well as an output role. An example follows:
int x=1;

voi d exanpl e6()

{
asnm("addl $1, %"
L Er (%)
0" (X))
}

The previous example is equivalent to the example2() function shown in “Output Operands,” on page 135.
The constraint/expression pair, "0" (x), tells the compiler to initialize output item 0 with variable x at the
beginning of the asm statement. The resulting value for x is 2. Also note that "%7" in the asm "string" means
the same thing as "%0" in this case. That is because there is only one operand with both an input and an
output role.

Matching constraints are very similar to the read/write output operands mentioned in “Output Operands,”

on page 135. However, there is one key difference between read/write output operands and matching
constraints. The matching constraint can have an input expression that differs from its output expression.
The example below uses different values for the input and output roles:

int x;

int y=2;

voi d exanpl e7()

{

asnm("addl $1, %"
"= (%)
"0" (y))s

The compiler generates the following assembly for example7():
exampl e7:
.. Dcf bO:

pushg % bp
.. Dcfi0:

137

PGI® User's Guide

novq % sp, % bp

.. Decfi 1:
.. ENL:
|ineno: 8
nmov| y(%ip), Y%ax
addl $1, %ax
nmov| Y%eax, x(%ip)
|ineno: O
popq % bp
ret

Variable x gets initialized with the value stored in y, which is 2. After adding 7, the resulting value for variable x

is 3.

Because matching constraints perform an input role for an output operand, it does not make sense for the
output operand to have the read/write ("+") modifier. In fact, the compiler disallows matching constraints
with read/write output operands. The output operand must have a write only ("=") modifier.

Clobber List

138

The [clobber list] is an optional list of strings that hold machine registers used in the asm "string". Essentially,
these strings tell the compiler which registers may be clobbered by the asm statement. By placing registers

in this list, the programmer does not have to explicitly save and restore them as required in traditional inline
assembly (described in “Inline Assembly,” on page 133). The compiler takes care of any required saving

and restoring of the registers in this list.

Each machine register in the [clobber list] is a string separated by a comma. The leading '% ' is optional in the
register name. For example, "%eax" is equivalent to "eax". When specifying the register inside the asm "string",
you must include two leading '%' characters in front of the name (for example., "%%eax"). Otherwise, the
compiler will behave as if a bad input/output operand was specified and generate an error message. An
example follows:

voi d exanpl e8()

¢

int Xx;

int y=2;

asnm("novl %, %eax\n"
“movl %, %edx\n"
“addl 9%edx, %Weax\n"
“addl %eax, %O"

"=rt(x)

"0 (y)

: "eax", "edx");

}

The code shown above uses two hard-coded registers, eax and edx. It performs the equivalent of 3*y and

assigns it to x, producing a result of 6.

In addition to machine registers, the clobber list may contain the following special flags:

cc
The asm statement may alter the condition code register.

Hmemoryﬂ
The asm statement may modify memory in an unpredictable fashion.

Chapter 12. C/C++ Inline Assembly and Intrinsics

The "memory" flag causes the compiler not to keep memory values cached in registers across the asm
statement and not to optimize stores or loads to that memory. For example:
asnm("call MyFunc":::"nmenory");

This asm statement contains a "memory" flag because it contains a call. The callee may otherwise clobber
registers in use by the caller without the "memory" flag.

The following function uses extended asm and the "cc" flag to compute a power of 2 that is less than or equal
to the input parameter n.
#pragma noi nli ne
i nt asnDi vi deConquer (i nt n)
{ .
int ax
int bx
asm (
"LogLoop: \ n"
"cnp %%, %\n"
"jnl e Done\n"
"inc %9\ n"
"add %, %4\ n"
"jnp LogLoop\n"
"Done: \n"
"dec 9%®\n"
"+r" (ax), "+r" (bx) : "r" (n) : "cc");
return ax;

}

0;
1

The "cc" flag is used because the asm statement contains some control flow that may alter the

condition code register. The #pragma noinline statement prevents the compiler from inlining the
asmDivideConquer () function. If the compiler inlines asmDivideConquer (), then it may illegally duplicate the
labels LogLoop and Done in the generated assembly.

Additional Constraints
Operand constraints can be divided into four main categories:
e Simple Constraints
e Machine Constraints
e Multiple Alternative Constraints
e Constraint Modifiers
Simple Constraints

The simplest kind of constraint is a string of letters or characters, known as Simple Constraints, such as the
"r" and "m" constraints introduced in “Output Operands,” on page 135. Table 12.1, “Simple Constraints”
describes these constraints.

Table 12.1. Simple Constraints

Constraint |Description

whitespace |Whitespace characters are ignored.

139

PGI® User's Guide

140

Constraint |Description

E An immediate floating point operand.
F Same as "E".
g Any general purpose register, memory, or immediate integer operand is allowed.

—

An immediate integer operand.

m A memory operand. Any address supported by the machine is allowed.

n Same as "i".

0 Same as "m".

p An operand that is a valid memory address. The expression associated with the
constraint is expected to evaluate to an address (for example, "p" (&x)).

r A general purpose register operand.

X Same as "g".

0,1,2,.9 Matching Constraint. See “Input Operands,” on page 137 for a description.

The following example uses the general or "g" constraint, which allows the compiler to pick an appropriate
constraint type for the operand; the compiler chooses from a general purpose register, memory, or immediate
operand. This code lets the compiler choose the constraint type for "y".

voi d exanpl e9()

{

int x, y=2;

asnm("novl %, 9%®\n" : "=r"
§X) Dt (y))

This technique can result in more efficient code. For example, when compiling example9 () the compiler
replaces the load and store of y with a constant 2. The compiler can then generate an immediate 2 for the y
operand in the example. The assembly generated by pgcc for our example is as follows:

exanpl e9:
.. Dcf bO:
pushq % bp
.. DcfiO:
nmovq % sp, % bp
.. Dcfil
.. ENL:

|ineno: 3
nmovl $2, %ax
|ineno: 6
popq % bp
r et

[[.]}

y" operand.

In this example, notice the use of $2 for the

nan

Of course, if y is always 2, then the immediate value may be used instead of the variable with the "i
as shown here:

constraint,

voi d exanpl e1l0()

Chapter 12. C/C++ Inline Assembly and Intrinsics

{

int x;

asm "nmovl %, %\n"
o=t (%)
it (2));

}

Compiling example10() with pgcc produces assembly similar to that produced for example9 ().

Machine Constraints

Another category of constraints is Machine Constraints. The x86 and x86_064 architectures have several
classes of registers. To choose a particular class of register, you can use the x86/x86_64 machine constraints
described in Table 12.2, “x86/x86_64 Machine Constraints”.

Table 12.2. x86/x86_64 Machine Constraints

Constraint |Description

a a register (e.g., %al, %ax, %eax, %rax)

Specifies a or d registers. This is used primarily for holding 64-bit integer values
on 32 bit targets. The d register holds the most significant bits and the a register
holds the least significant bits.

b register (e.g, %bl, %bx, %ebx, %rbx)

c register (e.g., %cl, %cx, %ecx, %rcx)

=n

Not supported.
d register (e.g., %dl, %dx, %edx, %rdx)
di register (e.g., %dil, %di, %edi, %rdi)
Constant in range of Oxffffffff to Ox7ftfftf
Not supported.

olae|oloe

Floating point constant in range of 0.0 to 1.0.

Constant in range of 0 to 31 (e.g., for 32-bit shifts).
Constant in range of 0 to 63 (e.g., for 64-bit shifts)

Constant in range of 0 to 127.

Constant in range of 0 to 65535.

Constant in range of 0 to 3 constant (e.g., shifts for lea instruction).

Constant in range of 0 to 255 (e.g., for out instruction).

Same as "r" simple constraint.

Same as "r" simple constraint.

Same as "r" simple constraint.

» Dol |Zz|lzle=——ao o

si register (e.g., %sil, %si, %edi, %rsi)

-

Not supported.

=

Not supported.

141

PGI® User's Guide

Constraint |Description

X XMM SSE register

y Not supported.

Y/ Constant in range of 0 to Ox7ffffff.

The following example uses the "x" or XMM register constraint to subtract ¢ from b and store the result in a.

doubl e exanpl el11()
{
doubl e ga;
doubl e b = 400. 99
doubl e ¢ = 300. 98
asm ("subpd %, 9%©;"
"=x" (a)
: "0" (b), "x" (c)
DE

return a;

}

The generated assembly for this example is this:

exanpl ell:
.. Dcf bO:
pushq % bp
.. Dcfi O:
novq % sp, % bp
..Dcfil
.. ENL:
|ineno: 4
nmovsd . C00128(% i p), Y&mmi
nmovsd . C00130(% i p), Yxmm®

novapd %, 9%xmD
subpd %R, 9%xnmo;
|ineno: 10
|ineno: 11
popq % bp
ret

If a specified register is not available, the pgcc and pgcpp compilers issue an error message. For example,
pgcc and pgepp reserves the "%ebx" register for Position Independent Code (PIC) on 32-bit system targets. If
a program has an asm statement with a "b" register for one of the operands, the compiler will not be able to
obtain that register when compiling for 32-bit with the -fPIC switch (which generates PIC). To illustrate this
point, the following example is compiled for a 32-bit target using PIC:

voi d exanpl el2()
{

int x=1;

int y=1;

asnm("addl %, %\n"
"+a" (X)
b (y))

Compiling with the "-tp p7" switch chooses a 32-bit target.

142

Chapter 12. C/C++ Inline Assembly and Intrinsics

% pgcc exanplel2.c -fPIC -c -tp p7

PGC-S-0354-Can't find a register in class 'BREG for extended ASM
operand 1 (exanplel2.c: 3)

PGC/ x86 Li nux/x86 Rel Dev: conpil ation conpleted with severe errors

Multiple Alternative Constraints

Sometimes a single instruction can take a variety of operand types. For example, the x86 permits register-
to-memory and memory-to-register operations. To allow this flexibility in inline assembly, use multiple
alternative constraints. An alternative is a series of constraints for each operand.

To specify multiple alternatives, separate each alternative with a comma.

Table 12.3. Multiple Alternative Constraints

Constraint |Description

, Separates each alternative for a particular operand.

? Ignored

! Ignored

The following example uses multiple alternatives for an add operation.

voi d exanpl el3()

{

int x=1;

int y=1;

asm("addl %, %\n"
"+ab, cd" (x)
"db, cant’ (y));

}

example13() has two alternatives for each operand: "ab,cd" for the output operand and "db,cam" for the
input operand. Each operand must have the same number of alternatives; however, each alternative can have
any number of constraints (for example, the output operand in example13() has two constraints for its
second alternative and the input operand has three for its second alternative).

The compiler first tries to satisfy the left-most alternative of the first operand (for example, the output

operand in examplel3()). When satisfying the operand, the compiler starts with the left-most constraint.

If the compiler cannot satisfy an alternative with this constraint (for example, if the desired register is not
available), it tries to use any subsequent constraints. If the compiler runs out of constraints, it moves on to

the next alternative. If the compiler runs out of alternatives, it issues an error similar to the one mentioned in
examplel2(). 1f an alternative is found, the compiler uses the same alternative for subsequent operands. For
example, if the compiler chooses the "c" register for the output operand in example13(), then it will use either
the "a" or "m" constraint for the input operand.

Constraint Modifiers

Characters that affect the compiler's interpretation of a constraint are known as Constraint Modifiers. Two
constraint modifiers, the "="and the "+", were introduced in “Output Operands,” on page 135. Table 12.4
summarizes each constraint modifier.

143

PGI® User's Guide

144

Table 12.4. Constraint Modifier Characters

Constraint |Description
Modifier

= This operand is write-only. It is valid for output operands only. If specified, the
"="must appear as the first character of the constraint string.

+ This operand is both read and written by the instruction. It is valid for output
operands only. The output operand is initialized with its expression before the

first instruction in the asm statement. If specified, the "+" must appear as the first
character of the constraint string.

& A constraint or an alternative constraint, as defined in “Multiple Alternative
Constraints,” on page 143, containing an "&" indicates that the output operand
is an early clobber operand. This type operand is an output operand that may be
modified before the asm statement finishes using all of the input operands. The
compiler will not place this operand in a register that may be used as an input
operand or part of any memory address.

% Ignored.

Characters following a "#" up to the first comma (if present) are to be ignored in
the constraint.

* The character that follows the "*" is to be ignored in the constraint.

The "="and "+" modifiers apply to the operand, regardless of the number of alternatives in the constraint
string. For example, the "+" in the output operand of example13() appears once and applies to both
alternatives in the constraint string. The "&", "#", and "*" modifiers apply only to the alternative in which they
appear.

Normally, the compiler assumes that input operands are used before assigning results to the output operands.
This assumption lets the compiler reuse registers as needed inside the asm statement. However, if the asm
statement does not follow this convention, the compiler may indiscriminately clobber a result register with an
input operand. To prevent this behavior, apply the early clobber "&" modifier. An example follows:

voi d exanpl el5()
{

int w=1;

int z;

asm "nmovl $1, %\n"

"addl %2, %\n"

"movl 92, %"

e G L R

The previous code example presents an interesting ambiguity because "w" appears both as an output and as
an input operand. So, the value of "z" can be either 1 or 2, depending on whether the compiler uses the same
register for operand 0 and operand 2. The use of constraint "r" for operand 2 allows the compiler to pick
any general purpose register, so it may (or may not) pick register "a" for operand 2. This ambiguity can be
eliminated by changing the constraint for operand 2 from "r" to "a" so the value of "z" will be 2, or by adding
an early clobber "&" modifier so that "z" will be 1. The following example shows the same function with an
early clobber "&" modifier:

Chapter 12. C/C++ Inline Assembly and Intrinsics

voi d exanpl el6()
{

int w=1;
int z;
asm("nmovl $1, %\n"

"addl 9%, 9%®O\n"

"movl 9@, "
5 "=&at (W), "=r" (z) @ "rt (W) o);
Adding the early clobber "&" forces the compiler not to use the "a" register for anything other than operand 0.
Operand 2 will therefore get its own register with its own copy of "w". The result for "z" in example16() is 1.

Operand Aliases

Extended asm specifies operands in assembly strings with a percent '%' followed by the operand number. For
example, "%0" references operand 0 or the output item "=&a" (w) in function example16() shown above.
Extended asm also supports operand aliasing, which allows use of a symbolic name instead of a number for
specifying operands. An example follows:

voi d exanpl el7()
{

int w=1, z=0;

asm("nmovl $1, 9% out put1]\n"

"addl 9% input], % outputl]\n"

"movl % input], % output2]"”

: [outputl] "=&a" (w), [output2] "=r"
(2)

}: [input] "r" (w);

In examplel7(), "% [outputl]" is an alias for "%0", "% [output2]" is an alias for "%1", and "% [input]" is an
alias for "%2". Aliases and numeric references can be mixed, as shown in the following example:

voi d exanpl el8()

{

int w=1, z=0;

asn("nmovl $1, % out putl]\n"

"addl %input], %0\n"

"movl % input], % output2]”

: [outputl] "=&a" (w), [output2] "=r" (z)
}: [input] "r" (w));

In examplel18(), "%0" and "% [outputl]" both represent the output operand.
Assembly String Modifiers

Special character sequences in the assembly string affect the way the assembly is generated by the compiler.
For example, the "%" is an escape sequence for specifying an operand, "%%" produces a percent for hard
coded registers, and "\n" specifies a new line. Table 12.5, “Assembly String Modifier Characters”summarizes
these modifiers, known as Assembly String Modifiers.

Table 12.5. Assembly String Modifier Characters

Modifier Description

\ Same as \ in printf format strings.

145

PGI® User's Guide

146

Modifier Description

%* Adds a "*' in the assembly string.

%% Adds a'%" in the assembly string.

%A Adds a '*" in front of an operand in the assembly string. (For example, %A0 adds
a "*' in front of operand 0 in the assembly output.)

%B Produces the byte op code suffix for this operand. (For example, %b0 produces
'b' on x86 and x86_64.)

%L Produces the word op code suffix for this operand. (For example, %L0 produces
1" on x86 and x86_64.)

%P If producing Position Independent Code (PIC), the compiler adds the PIC suffix
for this operand. (For example, %P0 produces @PLT on x86 and x86_064.)

%Q Produces a quad word op code suffix for this operand if is supported by the
target. Otherwise, it produces a word op code suffix. (For example, %Q0
produces 'q' on x86_64 and '1' on x86.)

%S Produces 's' suffix for this operand. (For example, %S0 produces 's' on x86 and
x86_64.)

%T Produces 't' suffix for this operand. (For example, %S0 produces 't' on x86 and
x86_64.)

%W Produces the half word op code suffix for this operand. (For example, %W0
produces 'w' on x86 and x86_04.)

%a Adds open and close parentheses () around the operand.

%b Produces the byte register name for an operand. (For example, if operand 0 is in
register 'a’, then %b0 will produce '%al'.)

%C Cuts the '$' character from an immediate operand.

%k Produces the word register name for an operand. (For example, if operand 0 is
in register 'a', then %k0 will produce '%eax'.)

%q Produces the quad word register name for an operand if the target supports
quad word. Otherwise, it produces a word register name. (For example, if
operand 0 is in register 'a', then %q0 produces %rax on x86_64 or %eax on
x86.)

%W Produces the half word register name for an operand. (For example, if operand
0 is in register 'a', then %w0 will produce '%ax'.)

% Produces an op code suffix based on the size of an operand. (For example, 'b'

for byte, 'w' for half word, 'l' for word, and 'q' for quad word.)

%+ %C %D
%F %0 %X
%f %h %1 %n

%8 %y

Not Supported.

These modifiers begin with either a backslash "\" or a percent "%".

Chapter 12. C/C++ Inline Assembly and Intrinsics

The modifiers that begin with a backslash "\" (e.g., "\n") have the same effect as they do in a printf format
string. The modifiers that are preceded with a "%" are used to modify a particular operand.

These modifiers begin with either a backslash "\" or a percent "%" For example, "%b0" means, "produce the
byte or 8 bit version of operand 0". If operand 0 is a register, it will produce a byte register such as %al, %bl,
%cl, and so on.

Consider this example:

voi d exanpl e19()
{

int a=1;
int *p = &a;
asm ("add%0 %gl, %0"
"=gp" (p) : "r* (&), "0" (p));

On an x86 target, the compiler produces the following instruction for the asm string shown in the preceding
example:

addl %ecx, (%eax)

The "%z0" modifier produced an 'lI' (lower-case 'L") suffix because the size of pointer p is 32 bits on x86.
The "%q1" modifier produced the word register name for variable a. The "%a0" instructs the compiler to add
parentheses around operand 0, hence " (%eax)".

On an x86_64 target, the compiler produces the following instruction for the above asm string shown in the
preceding example:

addg % cx, (% ax)

The "%z0" modifier produced a 'q' suffix because the size of pointer p is 64-bit on x86_064. Because x86_64
supports quad word registers, the "%q1" modifier produced the quad word register name (%rax) for variable
a.

Extended Asm Macros

As with traditional inline assembly, described in“Inline Assembly,” on page 133, extended asm can be used
in a macro. For example, you can use the following macro to access the runtime stack pointer.

#define GET_SP(x) \
asm("nmov %Wep, 9O": "= (##x):: "%p"),

voi d exanpl e20()
{

void * stack_pointer;
GET_SP(st ack_poi nter);
}

The GET_SP macro assigns the value of the stack pointer to whatever is inserted in its argument (for example,
stack_pointer). Another "C" extension known as statement expressions is used to write the GET_SP macro
another way:

#define GET_SP2 ({ \

void *my_stack_ptr; \
asm("nov Wsp, W": "=m" (ny_stack_ptr) :: "%p"); \

147

PGI® User's Guide

my_stack_ptr; \

b
voi d exanpl e21()

{
void * stack_pointer = GET_SP2;

}

The statement expression allows a body of code to evaluate to a single value. This value is specified as the last
instruction in the statement expression. In this case, the value is the result of the asm statement, my_stack_ptr.
By writing an asm macro with a statement expression, the asm result may be assigned directly to another
variable (for example, void * stack_pointer = GET_SP2) or included in a larger expression, such as: void *
stack_pointer = GET_SP2 - sizeof(long).

Which style of macro to use depends on the application. If the asm statement needs to be a part of an
expression, then a macro with a statement expression is a good approach. Otherwise, a traditional macro, like
GET_SP(x), will probably suffice.

Intrinsics

Inline intrinsic functions map to actual x86 or x64 machine instructions. Intrinsics are inserted inline to avoid
the overhead of a function call. The compiler has special knowledge of intrinsics, so with use of intrinsics,
better code may be generated as compared to extended inline assembly code.

The PGI Workstation version 7.0 or higher compiler intrinsics library implements MMX, SSE, SS2, SSE3, SSSE3,
SSE4a, and ABM instructions. The intrinsic functions are available to C and C++ programs on Linux and
Windows.

Unlike most functions which are in libraries, intrinsics are implemented internally by the compiler. A program
can call the intrinsic functions from C/C++ source code after including the corresponding header file.

The intrinsics are divided into header files as follows:

Table 12.6. Intrinsic Header File Organization

Instructions Header File
MMX mmintrin.h
SSE xmmintrin.h
SSE2 emmintrin.h
SSE3 pmmintrin.h
SSSE3 tmmintrin.h
SSE4a ammintrin.h
ABM intrin.h

The following is a simple example program that calls XMM intrinsics.

#i ncl ude <xmmi ntrin. h>

int main()({

_ m28 A _ B,

result;

148

Chapter 12. C/C++ Inline Assembly and Intrinsics

__A = mmset_ps(23.3,
43.7, 234.234, 98.746);
__B = _nmmset_ps(15. 4,
34.3, 4.1, 8.6);
result = _mmadd_ps(__A _ B);
return O;

}

149

150

Chapter 13. Fortran, C and C++
Data Types

This chapter describes the scalar and aggregate data types recognized by the PGI Fortran, C, and C++
compilers, the format and alignment of each type in memory, and the range of values each type can have

on x806 or x64 processor-based systems running a 32-bit operating system. For more information on x86-
specific data representation, refer to the System V Application Binary Interface, Processor Supplement, listed in
“Related Publications,” on page xxvii. This chapter specifically does not address x64 processor-based systems
running a 64-bit operating system, because the application binary interface (ABI) for those systems is still
evolving. For the latest version of the ABI, refer to http://www.x86-64.org/abi.pdf.

Fortran Data Types

Fortran Scalars

A scalar data type holds a single value, such as the integer value 42 or the real value 112.6. The next table lists
scalar data types, their size, format and range. Table 13.2, “Real Data Type Ranges,” on page 152 shows the
range and approximate precision for Fortran real data types. Table 13.3, “Scalar Type Alignment,” on page
152 shows the alignment for different scalar data types. The alignments apply to all scalars, whether they are
independent or contained in an array, a structure or a union.

Table 13.1. Representation of Fortran Data Types

Fortran Data Type Format Range
INTEGER 2's complement integer 2302311
INTEGER*2 2's complement integer -32768 to 32767
INTEGER*4 2's complement integer

INTEGER*8 2's complement integer 2916201
LOGICAL 32-bit value true or false
LOGICAL*1 8-bit value true or false

151

PGI® User's Guide

152

Fortran Data Type Format Range
LOGICAL*2 16-bit value true or false
LOGICAL*4 32-bit value true or false
LOGICAL*8 04-bit value true or false
BYTE 2's complement -128 to 127
REAL Single-precision floating point 107 to 1038 V)
REAL*4 Single-precision floating point 1037 t0 1038 ¥
REAL*8 Double-precision floating point 10397 10 1038 V
DOUBLE PRECISION Double-precision floating point 10397 0 1038
COMPLEX Single-precision floating point 1037 t0 1038 ¥
DOUBLE COMPLEX Double-precision floating point 10397 10 1038 V
COMPLEX*16 Double-precision floating point 1077 t0 1038 V
CHARACTER*n Sequence of n bytes

W Approximate value

The logical constants . TRUE. and . FALSE. are all ones and all zeroes, respectively. Internally, the value of
a logical variable is true if the least significant bit is one and false otherwise. When the option —Munixlogical is

set, a logical variable with a non-zero value is true and with a zero value is false.

Table 13.2. Real Data Type Ranges

Data Type |Binary Range Decimal Range |Digits of Precision
REAL 21049218 10701038 V|78

REAL*8 71022 /1024 103" 10 1038 M |15-16

Table 13.3. Scalar Type Alignment

This Type... ...Is aligned on this size boundary

LOGICAL*1 1-byte

LOGICAL*2 2-byte

LOGICAL*4 4-byte

LOGICAL*8 8-byte

BYTE 1-byte

Chapter 13. Fortran, C and C++ Data Types

This Type... ...Is aligned on this size boundary
INTEGER*2 2-byte
INTEGER*4 4-byte
INTEGER*$ 8-byte
REAL*4 4-byte
REAL*8 8-byte
COMPLEX*8 4-byte
COMPLEX*16 8-byte

FORTRAN 77 Aggregate Data Type Extensions

The PGF77 compiler supports de facto standard extensions to FORTRAN 77 that allow for aggregate data
types. An aggregate data type consists of one or more scalar data type objects. You can declare the following
aggregate data types:

array
consists of one or more elements of a single data type placed in contiguous locations from first to last.

structure
is a structure that can contain different data types. The members are allocated in the order they appear in
the definition but may not occupy contiguous locations.

union
is a single location that can contain any of a specified set of scalar or aggregate data types. A union can
have only one value at a time. The data type of the union member to which data is assigned determines the
data type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object occupies
and how efficiently the processor can address members. Arrays use the alignment of their members.

Array types
align according to the alignment of the array elements. For example, an array of INTEGER*2 data aligns on
a 2-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure or union. In the next
example, the union aligns on a 4-byte boundary since the alignment of c, the most restrictive element, is
four.

STRUCTURE / astr/

UNI ON
VAP
INTEGER*2 a ! 2 bytes
END MVAP

153

PGI® User's Guide

VAP

BYTE b ! 1 byte

END VAP

VAP

INTEGER*4 c ! 4 bytes
END NVAP
END UNI ON
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the structure is
called internal padding. Padding between the last member and the end of the space is called fail padding.

The offset of a structure member from the beginning of the structure is a multiple of the member’s alignment.
For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an INTEGER*2 member from the
beginning of a structure is 2 multiple of two bytes.

Fortran 90 Aggregate Data Types (Derived Types)

The Fortran 90 standard added formal support for aggregate data types. The TYPE statement begins a derived
type data specification or declares variables of a specified user-defined type. For example, the following would
define a derived type ATTENDEE:

TYPE ATTENDEE
CHARACTER(LEN=30) NAME
CHARACTER(LEN=30) ORGANI ZATI ON
CHARACTER (LEN=30) EMAI L

END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a variable, code such as the
following would be used:
TYPE (ATTENDEE) ATTLI ST(100)

ATTLI ST(1) YNAME = * JOHN DOE'

C and C++ Data Types

C and C++ Scalars

154

Table 13.4, “C/C++ Scalar Data Types”lists C and C++ scalar data types, providing their size and format.

The alignment of a scalar data type is equal to its size. Table 13.5, “Scalar Alignment,” on page 155 shows
scalar alignments that apply to individual scalars and to scalars that are elements of an array or members of a
structure or union. Wide characters are supported (character constants prefixed with an L). The size of each
wide character is 4 bytes.

Table 13.4. C/C++ Scalar Data Types

Data Type Size Format Range
(bytes)
unsigned char 1 ordinal 0 to 255

[signed] char 2's complement integer |-128 to 127

1
unsigned short 2 ordinal 0 to 65535
2

[signed] short 2's complement integer |-32768 to 32767

Chapter 13. Fortran, C and C++ Data Types

Data Type Size Format Range
(bytes)
unsigned int 4 ordinal 0102321
[signed] int 4 2's complement integer | 93! ;2311
[signed] long [int] (32-bit |4 2's complement integer | 93! ¢, 2311
operating systems and win64)
[signed] long [int] (linux86- |8 2's complement integer | 203 ;903 1
64 and sua64)
unsigned long [int] (32-bit |4 ordinal 010 2321
operating systems and win64)
unsigned long [int] (linux86- |8 ordinal 0 1o 2%41
64 and sua64)
[signed] long long [int] 8 2's complement integer |_903 1, 903 1
unsigned long long [int] 8 ordinal 010 2%-1
float 4 IEEE single-precision | 1037 1 108 (1)
floating-point
double 8 IEEE double-precision |1(307 ¢4 1938 (1)
floating-point
long double 8 IEEE double-precision | 10397 ¢ 103% (1)
floating-point
bit field (unsigned value) l‘to 32 |ordinal 0 to 2571, where size is the
bits number of bits in the bit field
bit field® (signed value) 1to32 |2's complement integer |_psize-1 Zsize-l_l, where size
bits is the number of bits in the bit
field
pointer 4 address 0to 2321
enum 4 2's complement integer | 93! ;2311
(1) .
Approximate value

@ Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a multiple of 8

bits (1 byte)
Table 13.5. Scalar Alignment

Data Type Alignment on this size boundary
char 1-byte boundary, signed or unsigned.
short 2-byte boundary, signed or unsigned.
int 4-byte boundary, signed or unsigned.

155

PGI® User's Guide

Data Type Alignment on this size boundary
enum 4-byte boundary.
pointer 4-byte boundary.
float 4-byte boundary.
double 8-byte boundary.
long double 8-byte boundary.
long [int] 32-bit on Win64 4-byte boundary, signed or unsigned.
long [int] linux86-64, sua64 8-byte boundary, signed or unsigned.
long long [int] 8-byte boundary, signed or unsigned.

C and C++ Aggregate Data Types

An aggregate data type consists of one or more scalar data type objects. You can declare the following
aggregate data types:

array
consists of one or more elements of a single data type placed in contiguous locations from first to last.

class
(C++ only) is a class that defines an object and its member functions. The object can contain fundamental
data types or other aggregates including other classes. The class members are allocated in the order they
appear in the definition but may not occupy contiguous locations.

struct
is a structure that can contain different data types. The members are allocated in the order they appear in
the definition but may not occupy contiguous locations. When a struct is defined with member functions,
its alignment rules are the same as those for a class.

union
is a single location that can contain any of a specified set of scalar or aggregate data types. A union can
have only one value at a time. The data type of the union member to which data is assigned determines the
data type of the union after that assignment.

Class and Object Data Layout

156

Class and structure objects with no virtual entities and with no base classes, that is just direct data field
members, are laid out in the same manner as C structures. The following section describes the alignment and
size of these C-like structures. C++ classes (and structures as a special case of a class) are more difficult to
describe. Their alignment and size is determined by compiler generated fields in addition to user-specified
fields. The following paragraphs describe how storage is laid out for more general classes. The user is warned
that the alignment and size of a class (or structure) is dependent on the existence and placement of direct
and virtual base classes and of virtual function information. The information that follows is for informational
purposes only, reflects the current implementation, and is subject to change. Do not make assumptions about
the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence indicated):

Chapter 13. Fortran, C and C++ Data Types

e First, storage for all of the direct base classes (which implicitly includes storage for non-virtual indirect
base classes as well):

e When the direct base class is also virtual, only enough space is set aside for a pointer to the actual
storage, which appears later.

* In the case of a non-virtual direct base class, enough storage is set aside for its own non-virtual base
classes, its virtual base class pointers, its own fields, and its virtual function information, but no space is
allocated for its virtual base classes.

e Next, storage for the class’s own fields.
e Next, storage for virtual function information (typically, a pointer to a virtual function table).

* Finally, storage for its virtual base classes, with space enough in each case for its own non-virtual base
classes, virtual base class pointers, fields, and virtual function information.

Aggregate Alignment

The alignment of an array, a structure or union (an aggregate) affects how much space the object occupies
and how efficiently the processor can address members.

Arrays
align according to the alignment of the array elements. For example, an array of short data type aligns on a
2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing members. For example the union unl
below aligns on a 4-byte boundary since the alignment of c, the most restrictive element, is four:

uni on unl {

short a; /* 2 bytes */
char b; /* 1 byte */
int ¢c; /* 4 bytes */

i ;

Structure alignment can result in unused space, called padding. Padding between members of a structure is
called internal padding. Padding between the last member and the end of the space occupied by the structure
is called tail padding. Figure 13.1, “Internal Padding in a Structure,” on page 157, illustrates structure
alignment. Consider the following structure:

struct strcl {
char a; /* occupies byte 0 */
short b; /* occupies bytes 2 and 3 */
char c; /* occupies byte 4 */

int d; /* occupies bytes 8 through 11 */

b
Figure 13.1. Internal Padding in a Structure
kb HIEHH a byte 0
HEHH - brrte 4
d oyte

157

PGI® User's Guide

Figure 13.2, “Tail Padding in a Structure,” on page 158, shows how tail padding is applied to a structure
aligned on a doubleword (8 byte) boundary.

struct strc2{

int mi[4]; /* occupies bytes

0 through 15 */

doubl e n2; /* occupies bytes 16 through 23 */
short mB; /* occupies bytes 24 and 25 */

} st

Bit-field Alignment

Bit-fields have the same size and alignment rules as other aggregates, with several additions to these rules:

* Bit-fields are allocated from right to left.

* A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross unit
boundaries.

* Bit-fields may share a storage unit with other structure/union members, including members that are not bit-
fields.

 Unnamed bit-field's types do not affect the alignment of a structure or union.

e Items of [signed/unsigned] long long type may not appear in field declarations on 32-bit systems.

Figure 13.2. Tail Padding in a Structure

st.ml[0] byte O
st.ml[1] byte 4
st.ml[Z] byte &
st.ml[3] byte 12

me byte 16

me byte 20

HHHH m3 byte 24
HHHH byt 28

Other Type Keywords in C and C++

158

The void data type is neither a scalar nor an aggregate. You can use void or void* as the return type of
a function to indicate the function does not return a value, or as a pointer to an unspecified data type,
respectively.

The const and volatile type qualifiers do not in themselves define data types, but associate attributes with other
types. Use const to specify that an identifier is a constant and is not to be changed. Use volatile to prevent
optimization problems with data that can be changed from outside the program, such as memory#mapped I/0
buffers.

Chapter 14. C++ Name Mangling

Name mangling transforms the names of entities so that the names include information on aspects of the
entity’s type and fully qualified name. This ability is necessary since the intermediate language into which
a program is translated contains fewer and simpler name spaces than there are in the C++ language;
specifically:

e Overloaded function names are not allowed in the intermediate language.

e (lasses have their own scopes in C++, but not in the generated intermediate language. For example, an
entity x from inside a class must not conflict with an entity x from the file scope.

 External names in the object code form a completely flat name space. The names of entities with external
linkage must be projected onto that name space so that they do not conflict with one another. A function f
from a class A, for example, must not have the same external name as a function f from class B.

 Some names are not names in the conventional sense of the word, they're not strings of alphanumeric
characters, for example: operator=.

There are two main problems here:

1. Generating external names that will not clash.

2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and alphanumeric
names for entities with strange names in C++. It also solves the problem of generating hidden names for some
behind-the-scenes language support in such a way that they match up across separate compilations.

You see mangled names if you view files that are translated by PGC++, and you do not use tools that demangle
the C++ names. Intermediate files that use mangled names include the assembly and object files created by the
pgcpp command. To view demangled names, use the tool pgdecode, which takes input from stdin.

pronpt > pgdecode

g__ 1ASFf
A :g(float)

The name mangling algorithm for the PGC++ compiler is the same as that for cfront, and, except for a few
minor details, also matches the description in Section 7.2, Function Name Encoding, of The Annotated C++
Reference Manual (ARM). Refer to the ARM for a complete description of name mangling.

159

PGI® User's Guide

Types of Mangling

The following entity names are mangled:

e Function names including non-member function names are mangled, to deal with overloading. Names of
functions with extern "C" linkage are not mangled.

e Mangled function names have the function name followed by ___followed by F followed by the mangled
description of the types of the parameters of the function. If the function is a member function, the mangled
form of the class name precedes the F. If the member function is static, an S also precedes the F.

int f(float); // f__Ff

class A

int f(float); // f__1AFf

static int g(float); // g__1ASFf

e Special and operator function names, like constructors and operator=(). The encoding is similar to that for
normal functions, but a coded name is used instead of the routine name:

class A
int operator+(float); // __pl__1Aff
A(float); // __ct__1Aff

int operator+(A, float); // __pl__F1Af

e Static data member names. The mangled form is the member name followed by ___ followed by the mangled
form of the class name:

class A
static int i; // i__1A

» Names of variables generated for virtual function tables. These have names like vt bl mangl ed- cl ass-
name or vt bl mangl ed- base- cl ass- nanemangl ed- cl ass- nane.

» Names of variables generated to contain runtime type information. These have names like Tt ype-
encodi ng and Tl Dt ype- encodi ng.

Mangling Summary

This section lists some of the C++ entities that are mangled and provides some details on the mangling
algorithm. For more details, refer to The Annotated C++ Reference Manual.

Type Name Mangling

160

Using PGC++, each type has a corresponding mangled encoding. For example, a class type is represented as
the class name preceded by the number of characters in the class name, as in 5abcde for abcde. Simple
types are encoded as lower-case letters, as in i for int or f for float. Type modifiers and declarators are
encoded as upper-case letters preceding the types they modify, as in U for unsigned or P for pointer.

Chapter 14. C++ Name Mangling

Nested Class Name Mangling

Nested class types are encoded as a Q followed by a digit indicating the depth of nesting, followed by a _,
followed by the mangled-form names of the class types in the fully-qualified name of the class, from outermost
to innermost:

class A
class B // Q_1A1B

Local Class Name Mangling

The name of the nested class itself is mangled to the form described above with a prefix __, which serves to
make the class name distinct from all user names. Local class names are encoded as L followed by a number
(which has no special meaning; it’s just an identifying number assigned to the class) followed by ___ followed
by the mangled name of the class (this is not in the ARM, and cfront encodes local class names slightly
differently):

void f()
class A// L1__ 1A}

This form is used when encoding the local class name as a type. It's not necessary to mangle the name of the
local class itself unless it's also a nested class.

Template Class Name Mangling

Template classes have mangled names that encode the arguments of the template:

tenpl at e<cl ass T1, class T2> class abc ;
abc<int, int> x;
abc__pt_ 3 ii

This describes two template arguments of type int with the total length of template argument list string,
including the underscore, and a fixed string, indicates parameterized type as well, the name of the class
template.

161

162

Chapter 15. Command-Line Options
Reference

A command-line option allows you to specify specific behavior when a program is compiled and linked.
Compiler options perform a variety of functions, such as setting compiler characteristics, describing the
object code to be produced, controlling the diagnostic messages emitted, and performing some preprocessor
functions. Most options that are not explicitly set take the default settings. This reference chapter describes the
syntax and operation of each compiler option. For easy reference, the options are arranged in alphabetical
order.

For an overview and tips on which options are best for which tasks, refer to Chapter 2, “Using Command Line
Options,” on page 15, which also provides summary tables of the different options.

This chapter uses the following notation:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical bar (I) separates
the choices.

Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

PGI Compiler Option Summary

The following tables include all the PGI compiler options that are not language-specific. The options are
separated by category for easier reference.

For a complete description of each option, see the detailed information later in this chapter.
Build-Related PGI Options

The options included in the following table are the ones you use when you are initially building your program
or application.

163

PGI® User's Guide

164

Table 15.1. PGI Build-Related Compiler Options

Option Description

—# Display invocation information.

—Hit# Show but do not execute the driver commands (same as —dryrun).

—C Stops after the assembly phase and saves the object code in
filename.o.

—D<args> Defines a preprocessor macro.

—d<arg> Prints additional information from the preprocessor.

—dryrun Show but do not execute driver commands.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

—F Stops after the preprocessing phase and saves the preprocessed
file in filename.f (this option is only valid for the PGI Fortran
compilers).

--flagcheck Simply return zero status if flags are correct.

—flags Display valid driver options.

—fpic (Linux only) Generate position-independent code.

—{PIC (Linux only) Equivalent to —fpic.

-G (Linux only) Passed to the linker. Instructs the linker to produce a
shared object file.

—g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

—help Display driver help message.

—I <dirname> Adds a directory to the search path for #include files.

—i2, —i4 and —i8 —i2: Treat INTEGER variables as 2 bytes.

—i4: Treat INTEGER variables as 4 bytes.
—i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-
bits for INTEGER*8 operations.

—K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker

command, preserves the temporary file instead of deleting it.

—L <dirname>

Specifies a library directory.

—I<library> Loads a library.
—m Displays a link map on the standard output.
—M<pgflag> Selects variations for code generation and optimization.

—mcmodel=medium

Chapter 15. Command-Line Options Reference

Option

Description

(—tp k8-64 and —tp p7-64 targets only) Generate code which
supports the medium memory model in the linux86-64
environment.

—module <moduledir>

(F90/F95/HPF only) Save/search for module files in directory
<moduledir>.

—mp [=align,[no]numa]

Interpret and process user-inserted shared-memory parallel
programming directives (see Chapters 5 and 6).

—noswitcherror Ignore unknown command line switches after printing an warning
message.

-0 Names the object file.

—pc <val> (—tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

—pg Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (—qp is also supported,
and is equivalent).

—pgf77libs Append PGF77 runtime libraries to the link line.

—pgf90libs Append PGF90/PGF95 runtime libraries to the link line.

—Q Selects variations for compiler steps.

—R<directory> (Linux only) Passed to the Linker. Hard code <directory> into the
search path for shared object files.

- Creates a relocatable object file.

—r4 and —r8 —r4: Interpret DOUBLE PRECISION variables as REAL.

—r8: Interpret REAL variables as DOUBLE PRECISION.

—rc file Specifies the name of the driver's startup file.

—s Strips the symbol-table information from the object file.

=S Stops after the compiling phase and saves the assembly—language
code in filename.s.

—shared (Linux only) Passed to the linker. Instructs the linker to generate a
shared object file. Implies —fpic.

—show Display driver's configuration parameters after startup.

—silent Do not print warning messages.

—soname Pass the soname option and its argument to the linker.

—time Print execution times for the various compilation steps.

—tp <target> [target...]

Specify the type(s) of the target processor(s).

165

PGI® User's Guide

Option Description

—u <symbol> Initializes the symbol table with <symbol>, which is undefined for
the linker. An undefined symbol triggers loading of the first member
of an archive library.

—U <symbol> Undefine a preprocessor macro.

—V[release_number]

Displays the version messages and other information, or allows
invocation of a version of the compiler other than the default.

-V Displays the compiler, assembler, and linker phase invocations.
-W Passes arguments to a specific phase.
—W Do not print warning messages.

PGI Debug-Related Compiler Options

166

The options included in the following table are the ones you typically use when you are debugging your
program or application.

Table 15.2. PGI Debug-Related Compiler Options

Option Description

—C Exposes Ansi warnings only.

—C Instrument the generated executable to perform array bounds
checking at runtime.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

--flagcheck Simply return zero status if flags are correct.

—flags Display valid driver options.

-g Includes debugging information in the object module.

—gopt Includes debugging information in the object module, but forces
assembly code generation identical to that obtained when is not
present on the command line.

—K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

—M<pgflag> Selects variations for code generation and optimization.

—pc <val> (—tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

—Mprof=time

Chapter 15. Command-Line Options Reference

Option Description

Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (—qp is also supported,
and is equivalent).

PGI Optimization-Related Compiler Options

The options included in the following table are the ones you typically use when you are optimizing your
program or application code.

Table 15.3. Optimization-Related PGI Compiler Options

Option Description

—fast Generally optimal set of flags for targets that support SSE capability.

—fastsse Generally optimal set of flags for targets that include SSE/SSE2
capability.

—M<pgflag> Selects variations for code generation and optimization.

—mp[=align,[no]numa] |Interpret and process user-inserted shared-memory parallel
programming directives (see Chapters 5 and 6).

—nfast Generally optimal set of flags for the target. Doesn’t use SSE.
—O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.
—pc <val> (—tp px/p5/p6/piii targets only) Set precision globally for x87

floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

—Mprof=time Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (-qp is also supported,
and is equivalent).

PGI Linking and Runtime-Related Compiler Options

The options included in the following table are the ones you typically use to define parameters related to
linking and running your program or application code.

Table 15.4. Linking and Runtime-Related PGI Compiler Options

Option Description

—byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice
versa on input/output of unformatted data

—fpic (Linux only) Generate position-independent code.

—{PIC (Linux only) Equivalent to —fpic.

-G (Linux only) Passed to the linker. Instructs the linker to produce a
shared object file.

167

PGI® User's Guide

Option Description

—g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

—i2, —i4 and —i8 —i2: Treat INTEGER variables as 2 bytes.

—i4: Treat INTEGER variables as 4 bytes.

—i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-
bits for INTEGER*8 operations.

—K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

—M<pgflag> Selects variations for code generation and optimization.

—mcmodel=medium (—tp k8-64 and —tp p7-64 targets only) Generate code which
supports the medium memory model in the linux86-64
environment.

—shared (Linux only) Passed to the linker. Instructs the linker to generate a

shared object file. Implies —fpic.

—soname Pass the soname option and its argument to the linker.

—tp <target> [target...] |Specify the type(s) of the target processor(s).

C and C++ Compiler Options

There are a large number of compiler options specific to the PGCC and PGC++ compilers, especially PGC++.
The next table lists several of these options, but is not exhaustive. For a complete list of available options,
including an exhaustive list of PGC++ options, use the —help command-line option. For further detail on a
given option, use —help and specify the option explicitly. The majority of these options are related to building
your program or application.

Table 15.5. C and C++ -specific Compiler Options

Option Description

—A (pgcpp only) Accept proposed ANSI C++, issuing errors
for non-conforming code.

- (pgepp only) Accept proposed ANSI C++, issuing
warnings for non-conforming code.

--[no_]alternative_tokens (pgepp only) Enable/disable recognition of alternative
tokens. These are tokens that make it possible to write
C++ without the use of the , , [, |, #, &, and * and
characters. The alternative tokens include the operator
keywords (e.g., and, bitand, etc.) and digraphs. The
default is -—no_alternative_tokens.

-B Allow C++ comments (using //) in C source.

—b (pgcpp only) Compile with cfront 2.1 compatibility. This
accepts constructs and a version of C++ that is not part

168

Chapter 15. Command-Line Options Reference

Option Description
of the language definition but is accepted by cfront. EDG
option.

—b3 (pgepp only) Compile with cfront 3.0 compatibility. See
—b above.

--[no_]bool (pgepp only) Enable or disable recognition of bool. The

default value is —bool.

— —[no_]builtin

Do/don’t compile with math subroutine builtin support,
which causes selected math library routines to be
inlined. The default is —builtin.

--cfront_2.1 (pgepp only) Enable compilation of C++ with
compatibility with cfront version 2.1.
--cfront_3.0 (pgepp only) Enable compilation of C++ with

compatibility with cfront version 3.0.

--Compress_names

(pgepp only) Create a precompiled header file with the
name filename.

--dependencies (see —M)

(pgcpp only) Print makefile dependencies to stdout.

--dependencies_to_file filename

(pgcpp only) Print makefile dependencies to file
filename.

--display_error_number

(pgepp only) Display the error message number in any
diagnostic messages that are generated.

--diag_error tag (pgepp only) Override the normal error severity of the
specified diagnostic messages.

--diag_remark tag (pgcpp only) Override the normal error severity of the
specified diagnostic messages.

--diag_suppress tag (pgepp only) Override the normal error severity of the
specified diagnostic messages.

--diag_warning tag (pgepp only) Override the normal error severity of the
specified diagnostic messages.

-e<number> (pgepp only) Set the C++ front-end error limit to the

specified <number>.

--[no_]exceptions

(pgcpp only) Disable/enable exception handling
support. The default is —exceptions

—gnu_extensions

(pgcpp only) Allow GNU extensions like “include next”
which are required to compile Linux system header files.

--[no]llalign (pgepp only) Do/don’t align longlong integers on
integer boundaries. The default is —llalign.

-M Generate make dependence lists.

-MD Generate make dependence lists.

169

PGI® User's Guide

Generic PGl Compiler Options

170

Option

Description

—MD filename

(pgepp only) Generate make dependence lists and print
them to file filename.

--optk_allow_dollar_in_id_chars

(pgepp only) Accept dollar signs in identifiers.

—P Stops after the preprocessing phase and saves the
preprocessed file in filename.i.

-+p (pgcpp only) Disallow all anachronistic constructs.
cfront option

--pch (pgcpp only) Automatically use and/or create a

precompiled header file.

--pch_dir directoryname

(pgepp only) The directory dirname in which to search
for and/or create a precompiled header file.

--[no_]pch_messages

(pgepp only) Enable/ disable the display of a message
indicating that a precompiled header file was created or
used.

--preinclude=<filename>

(pgcpp only) Specify file to be included at the beginning
of compilation so you can set system-dependent macros,
types, and so on.

-suffix (see—P)

(pgepp only) Use with —E, —F, or —P to save
intermediate file in a file with the specified suffix.

—t

Control instantiation of template functions. EDG option

--use_pch filename

(pgepp only) Use a precompiled header file of the
specified name as part of the current compilation.

--[no_]using_std

(pgcpp only) Enable/disable implicit use of the std
namespace when standard header files are included.

—X

(pgcpp only) Allow $ in names.

The following descriptions are for the PGI options. For easy reference, the options are arranged in alphabetical
order. For a list of options by tasks, refer to Chapter 2, “Using Command Line Options,” on page 15.

Displays the invocations of the compiler, assembler and linker.

Default: The compiler does not display individual phase invocations.

Usage:The following command-line requests verbose invocation information.

$ pgf 95 -# prog.f

Description: The —# option displays the invocations of the compiler, assembler and linker. These invocations

are command-lines created by the driver from your command-line input and the default value.

Chapter 15. Command-Line Options Reference

Related options:—Minfo, -V, —v.

—Hit

Displays the invocations of the compiler, assembler and linker, but does not execute them.
Default: The compiler does not display individual phase invocations.

Usage:The following command-line requests verbose invocation information.
$ pof 95 - ### nyprog. f

Description: Use the —### option to display the invocations of the compiler, assembler and linker but not to
execute them. These invocations are command lines created by the compiler driver from the PGIRC files and
the command-line options.

Related options: —#, —dryrun, —Minfo, —V

—Bdynamic
Compiles for and links to the DLL version of the PGI runtime libraries.
Default: The compiler uses static libraries.

Usage:You can create the DLL obj 1. dI | and its import library obj 1. I i b using the following series of
commands:

% pgf 95 - Bdynami c -c objectl.f
% pgf 95 - Mrakedl | objectl1.obj -o obj1.dll

Then compile the main program using this command:
$ pof 95 -# prog.f

For a complete example, refer to Example 7.1, “Build a DLL: Fortran,” on page 82.

Description: Use this option to compile for and link to the DLL version of the PGI runtime libraries. This flag
is required when linking with any DLL built by the PGI compilers. This flag corresponds to the / MD flag used
by Microsoft’s cl compilers.

Note

On Windows, -Bdynamic must be used for both compiling and linking.

When you use the PGI compiler flag —Bdynani c to create an executable that links to the DLL form of the
runtime, the executable built is smaller than one built without —-Bdynami c. The PGI runtime DLLs, however,
must be available on the system where the executable is run. The —Bdynani c flag must be used when an
executable is linked against a DLL built by the PGI compilers.

Related options:—Bstatic, —Mdll

—Bstatic

Compiles for and links to the static version of the PGI runtime libraries.

171

PGI® User's Guide

Default: The compiler uses static libraries.

Usage:The following command line explicitly compiles for and links to the static version of the PGI runtime
libraries:
% pgf 95 -Bstatic -c objectl.f

Description: You can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

Note

On Windows, -Bstatic must be used for both compiling and linking.

For more information on using static libraries on Windows, refer to “Creating and Using Static Libraries on
Windows,” on page 79.

Related options:—Bdynamic, —Mdll

—byteswapio

172

Swaps the byte-order of data in unformatted Fortran data files on input/output.
Default: The compiler does not byte-swap data on input/output.

Usage: The following command-line requests that byte-swapping be performed on input/output.
$ pgf 95 - byt eswapi o myprog. f

Description: Use the —byteswapio option to swap the byte-order of data in unformatted Fortran data files
on input/output. When this option is used, the order of bytes is swapped in both the data and record control
words; the latter occurs in unformatted sequential files.

You can use option to convert big-endian format data files produced by most RISC workstations and high-end
servers to the little-endian format used on x86 or x64 systems on the fly during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct access files are the
same on the systems. It further assumes that the IEEE representation is used for floating-point numbers. In
particular, the format of unformatted data files produced by PGI Fortran compilers is identical to the format
used on Sun and SGI workstations; this format allows you to read and write unformatted Fortran data files
produced on those platforms from a program compiled for an x86 or x64 platform using the —byteswapio
option.

Related options:

Enables array bounds checking.
Default: The compiler does not enable array bounds checking.

Usage: In this example, the compiler instruments the executable produced from myprog.f to perform array
bounds checking at runtime:

Chapter 15. Command-Line Options Reference

$ pgf 95 -C nyprog. f

Description: Use this option to enable array bounds checking. If an array is an assumed size array, the
bounds checking only applies to the lower bound. If an array bounds violation occurs during execution, an
error message describing the error is printed and the program terminates. The text of the error message
includes the name of the array, the location where the error occurred (the source file and the line number in
the source), and information about the out of bounds subscript (its value, its lower and upper bounds, and its
dimension).

Related options: —Mbounds.

Halts the compilation process after the assembling phase and writes the object code to a file.
Default: The compiler produces an executable file (does not use the —c option).

Usage: In this example, the compiler produces the object file myprog.o in the current directory.
$ pgf 95 -c¢ nyprog. f

Description: Use the —c option to halt the compilation process after the assembling phase and write the
object code to a file. If the input file is f i | enane. f , the output file is f i | ename. o.

Related options: —E, —-Mkeepasm, —o, and —S.

—d<arg>

Prints additional information from the preprocessor.
Default:

Syntax:

-d[DI|MN

-dD
Print macros and values from source files.

-dI
Print include file names.

-AM
Print macros and values, including predefined and command-line macros.

-dN
Print macro names from source files.

Usage: In the following example, the compiler prints macro names from the source file.
$ pgf95 -dN nyprog. f

Description: Use the -d<arg> option to print additional information from the preprocessor.

173

PGI® User's Guide

Related options: —E, —D, —U.

-D
Creates a preprocessor macro with a given value.
Note
You can use the —D option more than once on a compiler command line. The number of active macro
definitions is limited only by available memory.
Syntax:
- Dnane[=val ue]
Where name is the symbolic name and value is either an integer value or a character string.
Default: If you define a macro name without specifying a value, the preprocessor assigns the string 1 to the
macro name.
Usage: In the following example, the macro PATHLENGTH has the value 256 until a subsequent compilation. If
the —D option is not used, PATHLENGTH is set to 128.
$ pgf 95 - DPATHLENGTH=256 nypr og. F
The source text in nypr og. F is this:
#i f ndef PATHLENGTH
#define PATHLENGTH 128
#endi f
SUBROUTI NE SUB
CHARACTER* PATHLENGTH pat h
END
Use the —D option to create a preprocessor macro with a given value. The value must be either an integer or a
character string.
You can use macros with conditional compilation to select source text during preprocessing. A macro defined
in the compiler invocation remains in effect for each module on the command line, unless you remove the
macro with an #undef preprocessor directive or with the —U option. The compiler processes all of the —U
options in a command line after processing the —D options.
Related options: —U
—dryrun

Displays the invocations of the compiler, assembler, and linker but does not execute them.
Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -dryrun nyprog. f

174

—fast

Chapter 15. Command-Line Options Reference

Description: Use the —dryrun option to display the invocations of the compiler, assembler, and linker but not
have them executed. These invocations are command lines created by the compiler driver from the PGIRC file
and the command-line supplied with —dryrun.

Related options: —Minfo, —V, —###

Halts the compilation process after the preprocessing phase and displays the preprocessed output on the
standard output.

Default: The compiler produces an executable file.
Usage: In the following example the compiler displays the preprocessed myprog.f on the standard output.
$ pgf 95 - E nyprog. f

Description: Use the —E option to halt the compilation process after the preprocessing phase and display the
preprocessed output on the standard output.

Related options: —C, —c, —Mkeepasm, —o, —F, —S.

Stops compilation after the preprocessing phase.
Default: The compiler produces an executable file.

Usage: In the following example the compiler produces the preprocessed file mypr og. f in the current
directory.

$ pgf95 -F nyprog. F

Description: Use the —F option to halt the compilation process after preprocessing and write the
preprocessed output to a file. If the input file is f i | enane. F, then the output fileis f i | enane. f.

Related options: —c,—E, -Mkeepasm, —o, —S

Enables vectorization with SEE instructions, cache alignment, and flushz for 64-bit targets.

Default: The compiler enables vectorization with SEE instructions, cache alignment, and flushz.

Usage: In the following example the compiler produces vector SEE code when targeting a 64-bit machine.
$ pgf 95 -fast vadd.f95

Description: When you use this option, a generally optimal set of options is chosen for targets that support
SSE capability. In addition, the appropriate —tp option is automatically included to enable generation of code
optimized for the type of system on which compilation is performed. This option enables vectorization with SEE
instructions, cache alignment, and flushz.

175

PGI® User's Guide

Note

Auto-selection of the appropriate —tp option means that programs built using the —fastsse option on a
given system are not necessarily backward-compatible with older systems.

Note

C/C++ compilers enable —Mautoinline with —fast.

Related options: —nfast, —0, —Munroll, —~Mnoframe, —Mscalarsse, —Mvect, —-Mcache_align, —tp

—fastsse

Synonymous with —fast.

--flagcheck
Causes the compiler to check that flags are correct then exit.
Default: The compiler begins a compile without the additional step to first validate that flags are correct.
Usage: In the following example the compiler checks that flags are correct, and then exits.

$ pgf95 --flagcheck nyprog.f

Description: Use this option to make the compiler check that flags are correct and then exit. If flags are all
correct then the compiler returns a zero status.

Related options:

—flags
Displays driver options on the standard output.
Default: The compiler does not display the driver options.
Usage: In the following example the user requests information about the known switches.
$ pgf 95 -fl ags

Description: Use this option to display driver options on the standard output. When you use this option with
—v, in addition to the valid options, the compiler lists options that are recognized and ignored.

Related options: —#, —###, —v

—fpic

(Linux only) Generates position-independent code suitable for inclusion in shared object (dynamically linked
library) files.

Default: The compiler does not generate position-independent code.

176

Chapter 15. Command-Line Options Reference

Usage: In the following example the resulting object file, mypr og. o, can be used to generate a shared object.
$ pgf95 -fpic nyprog.f

(Linux only) Use the -fpic option to generate position-independent code suitable for inclusion in shared
object (dynamically linked library) files.

Related options: —shared, —{PIC, -G, —R

—fPIC

(Linux only) Equivalent to —fpic. Provided for compatibility with other compilers.

(Linux only) Instructs the linker to produce a shared object file.
Default: The compiler does not instruct the linker to produce a shared object file.
Usage: In the following example the linker produces a shared object file.
$ pgf95 -G nyprog. f

Description: (Linux only) Use this option to pass information to the linker that instructs the linker to
produce a shared object file.

Related options: —fpic, —shared, —R

Instructs the compiler to include symbolic debugging information in the object module.
Default: The compiler does not put debugging information into the object module.
Usage: In the following example, the object file a. out contains symbolic debugging information.

$ pgf 95 -g nyprog. f

Description: Use the —g option to instruct the compiler to include symbolic debugging information in the
object module. Debuggers, such as PGDBG, require symbolic debugging information in the object module to
display and manipulate program variables and source code.

If you specify the —g option on the command-line, the compiler sets the optimization level to —00 (zero),
unless you specify the —O option. For more information on the interaction between the —g and —O options,
see the —O entry. Symbolic debugging may give confusing results if an optimization level other than zero is
selected.

Note

Including symbolic debugging information increases the size of the object module.

Related options:—0

177

PGI® User's Guide

—gopt

Instructs the compiler to include symbolic debugging information in the object file, and to generate optimized
code identical to that generated when —g is not specified.

Default: The compiler does not put debugging information into the object module.
Usage: In the following example, the object file a. out contains symbolic debugging information.

$ pgf 95 -gopt myprog. f

Description: Using —g alters how optimized code is generated in ways that are intended to enable or
improve debugging of optimized code. The —gopt option instructs the compiler to include symbolic debugging
information in the object file, and to generate optimized code identical to that generated when —g is not
specified.

Related options:

—g77libs

(Linux only) Used on the link line, this option instructs the pgf95 driver to search the necessary g77 support
libraries to resolve references specific to g77 compiled program units.

Note

The g77 compiler must be installed on the system on which linking occurs in order for this option to
function correctly.

Default: The compiler does not search g77 support libraries to resolve references at link time.
Usage: The following command-line requests that g77 support libraries be searched at link time:
$ pgf95 -g77libs nyprog.f g77_object.o

Description: (Linux only) Use the —g77libs option on the link line if you are linking g77-compiled program
units into a pgf95-compiled main program using the pgf95 driver. When this option is present, the pgf95 driver
searches the necessary g77 support libraries to resolve references specific to g77 compiled program units.

Related options:

—help

178

Used with no other options, —help displays options recognized by the driver on the standard output. When
used in combination with one or more additional options, usage information for those options is displayed to
standard output.

Default: The compiler does not display usage information.
Usage: In the following example, usage information for —Minline is printed to standard output.

$ pgcc -help -Mnline
-M nline[=lib:<inlib>|<func>| except: <func>|

Chapter 15. Command-Line Options Reference

nane: <f unc>| si ze: <n>| | evel s: <n>]

Enabl e function inlining

lib:<extlib> Use extracted functions fromextlib
<func> Inline function func

except: <func> Do not inline function func

nanme: <func> I nline function func

size:<n> Inline only functions smaller than n
levels:<n> Inline n | evels of functions

-Mnline Inline all functions that were extracted

In the following example, usage information for —help shows how groups of options can be listed or examined
according to function

$ pgcc -help -help

- hel p[=gr oups| asni debug| | anguage| | i nker | opt | ot her
overal | | phase| prepro| suffix|sw tch|target]|vari abl e]
Show conpi | er switches

Description: Use the —help option to obtain information about available options and their syntax. You can use
—help in one of three ways:

e Use —hel p with no parameters to obtain a list of all the available options with a brief one-line description
of each.

* Add a parameter to —help to restrict the output to information about a specific option. The syntax for this
usage is this:

-hel p <comand |ine option>

 Add a parameter to —help to restrict the output to a specific set of options or to a building process. The
syntax for this usage is this:

- hel p=<subgr oup>

The following table lists and describes the subgroups available with —help. —help=groups Gives available
groups for help.

Table 15.6. Subgroups for —help Option

Use this -help To get this information...

option

—help=asm Alist of options specific to the assembly phase.

—help=debug A list of options related to debug information generation.

—help=groups A list of available groups to use with the help option.

—help=language | A list of language-specific options.

—help=linker A list of options specific to link phase.

—help=opt A list of options specific to optimization phase.

—help=other A list of other options, such as ansi conformance pointer aliasing for
C

—help=overall A list of option generic to any compiler.

179

PGI® User's Guide

180

Use this -help To get this information...

option

—help=phase A list of build process phases and to which compiler they apply.

—help=prepro A list of options specific to preprocessing phase.

—help=suffix A list of known file suffixes and to which phases they apply.

—help=switch Alist of all known options, this is equivalent to usage of —help
without any parameter.

—help=target A list of options specific to target processor.

—help=variable A list of all variables and their current value. They can be redefined
on the command line using syntax VAR=VALUE.

For more examples of —help, refer to “Help with Command-line Options,” on page 16.

Related options: —#, —###, —show, —V, —flags

Adds a directory to the search path for files that are included using either the INCLUDE statement or the
preprocessor directive #include.

Default: The compiler searches only certain directories for included files.

e For gec-lib includes: / usr/1i b64/ gcc-1i b

e For system includes: / usr/ 1 i ncl ude

Syntax:
-ldirectory

Where directory is the name of the directory added to the standard search path for include files.

Usage: In the following example, the compiler first searches the directory mydi r and then searches the
default directories for include files.

$ pgf95 -Inydir

Description: Adds a directory to the search path for files that are included using the INCLUDE statement or
the preprocessor directive #include. Use the —I option to add a directory to the list of where to search for the
included files. The compiler searches the directory specified by the —I option before the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file. The compiler uses two
rules to locate the file:

1. If the file name specified in the INCLUDE statement includes a path name, the compiler begins reading from
the file it specifies.

2. If no path name is provided in the INCLUDE statement, the compiler searches (in order):

Chapter 15. Command-Line Options Reference

e Any directories specified using the —I option (in the order specified.)
e The directory containing the source file

e The current directory

For example, the compiler applies rule (1) to the following statements:

I NCLUDE '/ bob/i ncl ude/fil el
(absol ute path nane)
INCLUDE '../../filel" (relative path nane)

and rule (2) to this statement:

I NCLUDE ' fil el

Related options: —Mnostdinc

—i2, -i4 and -i8
Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
Default: The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage: In the following example using the i8 switch causes the integer variables to be treated as 64 bits.
$ pgf95 -18 int.f
i nt. f is a function similar to this:

int.f
print *, “Integer size:”, bit_size(i)
end

Description: Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
INTEGER*8 values not only occupy 8 bytes of storage, but operations use 64 bits, instead of 32 bits.

Related options:

—K<flag>
Requests that the compiler provide special compilation semantics.
Default: The compiler does not provide special compilation semantics.
Syntax:
—K<flag>
Where flag is one of the following:
ieee Perform floating-point operations in strict conformance with the IEEE 754

standard. Some optimizations are disabled, and on some systems a more
accurate math library is linked if —Kieee is used during the link step.

181

PGI® User's Guide

182

noieee Default flag. Use the fastest available means to perform floating-point
operations, link in faster non-IEEE libraries if available, and disable
underflow traps.

PIC (Linux only) Generate position-independent code. Equivalent to —fpic.

Provided for compatibility with other compilers.

pic (Linux only) Generate position-independent code. Equivalent to —fpic.
Provided for compatibility with other compilers.

trap=option Controls the behavior of the processor when floating-point exceptions occur.
Possible options include:

 fp
e align (ignored)

[,option]...

e inv
e denorm
e divz
o ovf
o unf

® inexact

Usage: In the following example, the compiler performs floating-point operations in strict conformance with
the IEEE 754 standard

$ pgf 95 - Ki eee nyprog. f

Description: Use -K to instruct the compile to provide special compilation semantics. The default is
—Knoi eee.

—Kt r ap is only processed by the compilers when compiling main functions or programs. The options inv,
denorm, divz, ovf, unf, and inexact correspond to the processor’s exception mask bits: invalid operation,
denormalized operand, divide-by-zero, overflow, underflow, and precision, respectively. Normally, the
processor’s exception mask bits are oz, meaning that floating-point exceptions are masked—the processor
recovers from the exceptions and continues. If a floating-point exception occurs and its corresponding mask
bit is off; or “unmasked”, execution terminates with an arithmetic exception (C's SIGFPE signal).

—Kt r ap=f p is equivalent to —Kt r ap=i nv, di vz, ovf.

Note

The PGI compilers do not support exception-free execution for—Kt r ap=i nexact . The purpose of
this hardware support is for those who have specific uses for its execution, along with the appropriate
signal handlers for handling exceptions it produces. It is not designed for normal floating point
operation code support.

Related options:

Chapter 15. Command-Line Options Reference

--keeplnk

(Windows only.) Preserves the temporary file when the compiler generates a temporary indirect file for a long
linker command.

Usage: In the following example the compiler preserves each temporary file rather than deleting it.
$ pgf 95 --keepl nk nmyprog. f

Description: If the compiler generates a temporary indirect file for a long linker command, use this option to
instruct the compiler to preserve the temporary file instead of deleting it.

Related options:
-L
Specifies a directory to search for libraries.
Note
Multiple —L options are valid. However, the position of multiple —L options is important relative to —1
options supplied.
Syntax:
-Ldirectory
Where di r ect or y is the name of the library directory.
Default: The compiler searches the standard library directory.
Usage: In the following example, the library directoryis /1i b and the linker links in the standard libraries
required by PGF95 from this directory.
$ pgf95 -L/lib nyprog.f
In the following example, the library directory / | i b is searched for the library file I i bx. a and both the
directories /1 i band /1 i bz are searched for | i by. a.
$ pgf95 -L/lib -Ix -L/libz -1y nyprog.f
Use the —L option to specify a directory to search for libraries. Using —L allows you to add directories to the
search path for library files.
Related options:-1
—I<library>

Instructs the linker to load the specified library. The linker searches <library> in addition to the standard
libraries.

Note

The linker searches the libraries specified with -1 in order of appearance before searching the
standard libraries.

183

PGI® User's Guide

Syntax:
-llibrary
Where library is the name of the library to search.

Usage: In the following example, if the standard library directory is /lib the linker loads the library /lib/
libmylib.a, in addition to the standard libraries.

$ pgf95 nyprog.f -Inylib

Description: Use this option to instruct the linker to load the specified library. The compiler prepends the
characters lib to the library name and adds the .a extension following the library name. The linker searches
each library specifies before searching the standard libraries.

Related options:—L

Displays a link map on the standard output.
Default: The compiler does display the link map and does not use the —m option.

Usage:When the following example is executed on Windows, pgf95 creates a link map in the file
nypr og. map.

$ pgf 95 -m nyprog. f

Description: Use this option to display a link map.

* On Linux, the map is written to st dout .

¢ On Windows, the map is written to a . map file whose name depends on the executable. If the executable is
mypr og. f , the map file is in nypr og. map.

Related options: —c, —o, -s, —u

-M<pgflag>

Selects options for code generation. The options are divided into the following categories:

Code generation Fortran Language Controls Optimization
Environment (/C++ Language Controls Miscellaneous
Inlining

The following table lists and briefly describes the options alphabetically and includes a field showing the
category. For more details about the options as they relate to these categories, refer to “~M Options by
Category,” on page 219.

184

Chapter 15. Command-Line Options Reference

Table 15.7. —-M Options Summary

pgflag Description Category

allocatable=95103 Controls whether to use Fortran 95 or Fortran 2003 |Fortran Language
semantics in allocatable array assignments.

anno Annotate the assembly code with source code. Miscellaneous

[no]autoinline C/C++ when a function is declared with the inline |Inlining
keyword, inline it at —02 and above.

[no]asmkeyword Specifies whether the compiler allows the asm C/C++ Language
keyword in C/C++ source files (pgcc and pgepp
only).

[no]backslash Determines how the backslash character is treated |Fortran Language
in quoted strings (pgf77, pgf95, and pghpf only).

[no]bounds Specifies whether array bounds checking is enabled |Miscellaneous
or disabled.

— —[no_]builtin Do/don’t compile with math subroutine builtin Optimization
support, which causes selected math library routines
to be inlined (pgcc and pgepp only).

byteswapio Swap byte-order (big-endian to little-endian or vice |Miscellaneous
versa) during I/0 of Fortran unformatted data.

cache_align Where possible, align data objects of size greater Optimization
than or equal to 16 bytes on cache-line boundaries.

chkfpstk Check for internal consistency of the x87 FP stack |Miscellaneous
in the prologue of a function and after returning
from a function or subroutine call (—tp px/p5/p6/
piii targets only).

chkptr Check for NULL pointers (pgf95 and pghpf only). |Miscellaneous

chkstk Check the stack for available space upon entryto |Miscellaneous
and before the start of a parallel region. Useful when
many private variables are declared.

concur Enable auto-concurrentization of loops. Multiple Optimization
processors or cores will be used to execute
parallelizable loops.

cpp Run the PGI cpp-like preprocessor without Miscellaneous
performing subsequent compilation steps.

cray Force Cray Fortran (CF77) compatibility (pgf77, Optimization
pgf95, and pghpf only).

[no]daz Do/don’t treat denormalized numbers as zero. Code Generation

[no]dclchk Determines whether all program variables must be |Fortran Language

declared (pgf77, pgf95, and pghpf only).

185

PGI® User's Guide

186

pgflag Description Category

[no]defaultunit Determines how the asterisk character (‘“*”) is Fortran Language
treated in relation to standard input and standard
output (regardless of the status of I/0 units 5 and 6,
pef77, pef95, and pghpf only).

[no]depchk Checks for potential data dependencies. Optimization

[no]dse Enables [disables] dead store elimination phase for |Optimization
programs making extensive use of function inlining.

[no]dlines Determines whether the compiler treats lines Fortran Language
containing the letter "D" in column one as
executable statements (pgf77, pgf95, and pghpf
only).

dil Link with the DLL version of the runtime libraries ~ |Miscellaneous
(Windows only).

dollar,char Specifies the character to which the compiler maps |Fortran Language
the dollar sign code (pgf77, pgf95, and pghpf only).

dwarf1 When used with —g, generate DWARF1 format debug | Code Generation
information.

dwarf2 When used with —g, generate DWARF2 format debug |Code Generation
information.

dwarf3 When used with —g, generate DWARF3 format debug | Code Generation
information.

extend Instructs the compiler to accept 132-column source |Fortran Language
code; otherwise it accepts 72-column code (pgf77,
pgf95, and pghpf only).

extract invokes the function extractor. Inlining

fcon Instructs the compiler to treat floating-point C/C++ Language
constants as float data types (pgcc and pgcpp only).

fixed Instructs the compiler to assume F77-style fixed Fortran Language
format source code (pgf95 and pghpf only).

[no]flushz Do/don’t set SSE flush-to-zero mode Code Generation

[no]fprelaxed[=option] |Perform certain floating point intrinsic functions Optimization
using relaxed precision.

free Instructs the compiler to assume F90-style free Fortran Language
format source code (pgf95 and pghpf only).

func32 The compiler aligns all functions to 32-byte Code Generation
boundaries.

gcebug|s] Matches behavior of certain gcc bugs Miscellaneous

Chapter 15. Command-Line Options Reference

pgflag Description Category
noi4 Determines how the compiler treats INTEGER Optimization
variables (pgf77, pgf95, and pghpf only).
info Prints informational messages regarding Miscellaneous
optimization and code generation to standard output
as compilation proceeds.
inform Specifies the minimum level of error severity that the | Miscellaneous
compiler displays.
inline Invokes the function inliner. Inlining
[no]ipa Invokes inter-procedural analysis and optimization. |Optimization
[no]iomutex Determines whether critical sections are generated |Fortran Language
around Fortran 1/0 calls (pgf77, pgf95, and pghpf
only).
keepasm Instructs the compiler to keep the assembly file. Miscellaneous

[no]large_arrays

Enables support for 64-bit indexing and single static
data objects of size larger than 2GB.

Code Generation

Ifs Links in libraries that allow file I/0 to files of size ~ |Environment
larger than 2GB on 32-bit systems (32-bit Linux
only).

[no]lre Disable/enable loop-carried redundancy Optimization
elimination.

list Specifies whether the compiler creates a listing file. |Miscellaneous

makedll Generate a dynamic link library (DLL) (Windows |Miscellaneous
only).

makeimplib Passes the -def switch to the librarian without a Miscellaneous
deffile, when used without —def-deffile.

mpi=option Link to MPI libraries: MPICH1, MPICH2, or Code Generation
Microsoft MPI libraries

[no]loop32 Aligns/does not align innermost loops on 32 byte | Code Generation
boundaries with —tp barcelona

[no]movnt Force/disable generation of non-temporal moves Code Generation
and prefetching.

neginfo Instructs the compiler to produce information on | Miscellaneous
why certain optimizations are not performed.

noframe Eliminates operations that set up a true stack frame |Optimization
pointer for functions.

nomain When the link step is called, don’t include the object | Code Generation

file that calls the Fortran main program (pgf77,
pgf95, and pghpf only).

187

PGI® User's Guide

188

pgflag Description Category

noopenmp When used in combination with the —mp Miscellaneous
option, causes the compiler to ignore OpenMP
parallelization directives or pragmas, but still
process SGI-style parallelization directives or
pragmas.

nopgdllmain Do not link the module containing the default Miscellaneous
DIIMain() into the DLL (Windows only).

norpath On Linux, do not add —rpath paths to the link line. |Miscellaneous

nosgimp When used in combination with the —mp Miscellaneous
option, causes the compiler to ignore SGI-style
parallelization directives or pragmas, but still
process OpenMP directives or pragmas.

[no]stddef Instructs the compiler to not recognize the standard |Environment
preprocessor macros.

nostdinc Instructs the compiler to not search the standard ~ |Environment
location for include files.

nostdlib Instructs the linker to not link in the standard Environment
libraries.

[no]onetrip Determines whether each DO loop executes at least |Language
once (pgf77, pgf95, and pghpf only).

novintr Disable idiom recognition and generation of calls to |Optimization
optimized vector functions.

pfi Instrument the generated code and link in Optimization
libraries for dynamic collection of profile and data
information at runtime.

pfo Read a pgfi.out trace file and use the information to | Optimization
enable or guide optimizations.

[no]prefetch Enable/disable generation of prefetch instructions. | Optimization

preprocess Perform cpp-like preprocessing on assembly Miscellaneous
language and Fortran input source files.

prof Set profile options; function-level and line-level Code Generation
profiling are supported.

[no]r8 Determines whether the compiler promotes REAL | Optimization
variables and constants to DOUBLE PRECISION
(pgf77, pef95, and pghpf only).

[no]r8intrinsics Determines how the compiler treats the intrinsics | Optimization
CMPLX and REAL (pgf77, pgf95, and pghpf only).

[no]recursive Allocate (do not allocate) local variables on the Code Generation

stack, this allows recursion. SAVEd, data-initialized,

Chapter 15. Command-Line Options Reference

pgflag Description Category
or namelist members are always allocated statically,
regardless of the setting of this switch (pgf77, pgf95,
and pghpf only).
[no]reentrant Specifies whether the compiler avoids optimizations |Code Generation

that can prevent code from being reentrant.

[no]ref_externals

Do/don’t force references to names appearing in
EXTERNAL statements (pgf77, pgf95, and pghpf
only).

Code Generation

safeptr

Instructs the compiler to override data dependencies
between pointers and arrays (pgcc and pgcpp only).

Optimization

safe_lastval

In the case where a scalar is used after a loop, but
is not defined on every iteration of the loop, the
compiler does not by default parallelize the loop.
However, this option tells the compiler it safe to
parallelize the loop. For a given loop, the last value
computed for all scalars make it safe to parallelize
the loop.

Code Generation

[no]save

Determines whether the compiler assumes that all
local variables are subject to the SAVE statement

(pgf77, pgfos, and pghpf only).

Fortran Language

[no]scalarsse

Do/don’t use SSE/SSE2 instructions to perform
scalar floating-point arithmetic.

Optimization

schar

Specifies signed char for characters (pgcc and
pgcpp only - also see uchar).

C/C++ Language

[no]second_underscore

Do/don’t add the second underscore to the name
of a Fortran global if its name already contains an
underscore (pgf77, pgf95, and pghpf only).

Code Generation

[no]signextend Do/don’t extend the sign bit, if it is set. Code Generation
[no]single Do/don’t convert float parameters to double C/C++ Language
parameter characters (pgcc and pgepp only).
[no]smart Do/don’t enable optional post-pass assembly Optimization
optimizer.
[no]smartalloc[=hugel |Add a call to the routine mallopt in the main routine. | Environment
huge:<n>lhugebss] Supports large TLBs on Linux and Windows. 7sp.
To be effective, this switch must be specified when
compiling the file containing the Fortran, G, or C++
main program.
standard Causes the compiler to flag source code that does | Fortran Language

not conform to the ANSI standard (pgf77, pgf95, and
pghpf only).

189

PGI® User's Guide

pgflag Description Category

[no]stride0 Do/do not generate alternate code for a loop that Code Generation
contains an induction variable whose increment may
be zero (pgf77, pgf95, and pghpf only).

uchar Specifies unsigned char for characters (pgcc and ~ |G/C++ Language
pgepp only - also see schar).

unix Uses UNIX calling and naming conventions for Code Generation
Fortran subprograms (pgf77, pgf95, and pghpf for
Win32 only).

[no]nounixlogical Determines whether logical .TRUE. and .FALSE. are |Fortran Language

determined by non-zero (TRUE) and zero (FALSE)
values for unixlogical. With nounixlogical, the
default, -1 values are TRUE and 0 values are FALSE

(pgf77, pgf95, and pghpf only).

[no]unroll Controls loop unrolling. Optimization

[no]upcase Determines whether the compiler allows uppercase |Fortran Language
letters in identifiers (pgf77, pgf95, and pghpf only).

varargs Forces Fortran program units to assume calls are to |Code Generation
C functions with a varargs type interface (pgf77 and
pgf95 only).

[no]vect Do/don’t invoke the code vectorizer. Optimization

—mcmodel=medium

190

(For use only on 64-bit Linux targets) Generates code for the medium memory model in the linux86-64
execution environment. Implies —Mlarge_arrays.

Default: The compiler generates code for the small memory model.

Usage: The following command line requests position independent code be generated, and the
—mcmodel=medium option be passed to the assembler and linker:

$ pgf 95 - ncnodel =medi um mypr og. f

Description: The default small memory model of the linux86-64 environment limits the combined area for
a user’s object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of address for
system routines, shared libraries, stacks, and so on. Programs are started at a fixed address, and the program
can use a single instruction to make most memory references.

The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units compiled
using either —-mcmodel=medium or —fpic require additional instructions to reference memory. The effect on
performance is a function of the data-use of the application. The —mcmodel=medium switch must be used at
both compile time and link time to create 64-bit executables. Program units compiled for the default small
memory model can be linked into medium memory model executables as long as they are compiled with
—fpic, or position-independent.

Chapter 15. Command-Line Options Reference

The linux86-64 environment provides static libxxx.a archive libraries that are built with and without —fpic,
and dynamic libxxx.so shared object libraries that are compiled —fpic. The —mcmodel=medium link switch
implies the —fpic switch and will utilize the shared libraries by default. Similarly, the $PGI/linux86-64/<rel>/
lib directory contains the libraries for building small memory model codes, and the $PGI/linux86-64/<rel>/
libso directory contains shared libraries for building —mcmodel=medium and —fpic executables.

Note

—menodel =nedi um - f pi c is not allowed to create shared libraries. However, you can create
static archive libraries (.a) that are —fpic.

Related options:—Mlarge_arrays

—module <moduledir>
Allows you to specify a particular directory in which generated intermediate .mod files should be placed.

Default: The compiler places .mod files in the current working directory, and searches only in the current
working directory for pre-compiled intermediate .mod files.

Usage: The following command line requests that any intermediate module file produced during compilation
of mypr og. f be placed in the directory mynods; specifically, the file . / mynmods/ nypr og. nod is used.

$ pgf 95 -nodul e nynods nyprog. f

Description: Use the —module option to specify a particular directory in which generated intermediate .mod
files should be placed. If the —module <moduledir> option is present, and USE statements are present in a
compiled program unit, then <moduledir> is searched for . nod intermediate files prior to a search in the
default local directory.

Related options:

—mp[=align,[nojnuma]

Instructs the compiler to interpret user-inserted OpenMP shared-memory parallel programming directives and
pragmas, and to generate an executable file which will utilize multiple processors in a shared-memory parallel
system.

Default: The compiler ignores user-inserted shared-memory parallel programming directives and pragmas.

Usage: The following command line requests processing of any shared-memory directives present in
nyprog. f:

$ pgf 95 -np nyprog. f

Description: Use the —mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory
parallel programming directives and to generate an executable file which utilizes multiple processors in a
shared-memory parallel system.

The align sub-option forces loop iterations to be allocated to OpenMP processes using an algorithm that
maximizes alignment of vector sub-sections in loops that are both parallelized and vectorized for SSE. This

191

PGI® User's Guide

allocation can improve performance in program units that include many such loops. It can also result in load-
balancing problems that significantly decrease performance in program units with relatively short loops that
contain a large amount of work in each iteration. The numa suboption uses libnuma on systems where it is
available.

For a detailed description of this programming model and the associated directives and pragmas, refer to
Chapter 5, “Using OpenMP”.

Related options: —Mconcur and —Mvect

—nfast

A generally optimal set of options is chosen depending on the target system. In addition, the appropriate
—tp option is automatically included to enable generation of code optimized for the type of system on which
compilation is performed.

Note

Auto-selection of the appropriate —tp option means that programs built using the —fast option on a
given system are not necessarily backward-compatible with older systems.

Usage: In the following example, the compiler selects a generally optimal set of options for the target system.
$ pgf 95 -nfast nyprog. f

Description: Use this option to instruct the compiler to select a generally optimal set of options for the
target system. In addition, the appropriate —tp option is automatically included to enable generation of code
optimized for the type of system on which compilation is performed.

Related options: —O, —Munroll, -Mnoframe, —Mvect, —tp, —Mscalarsse

—noswitcherror

192

Issues warnings instead of errors for unknown switches. Ignores unknown command line switches after
printing an warning message.

Default: The compiler prints an error message and then halts.

Usage: In the following example, the compiler ignores unknown command line switches after printing an
warning message.

$ pgf 95 -nosw tcherror nyprog. f

Description: Use this option to instruct the compiler to ignore unknown command line switches after printing
an warning message.

Tip

You can configure this behavior in the si t er c file by adding: set NOSW TCHERROR=1.

Related options:None.

Chapter 15. Command-Line Options Reference

—O<level>
Invokes code optimization at the specified level.
Default: The compiler optimizes at level 2 (correct?)
Syntax:
—0 [level]
Where level is an integer from 0 to 4.
Usage: In the following example, since no —O option is specified, the compiler sets the optimization to level 1.

$ pgf 95 nyprog. f

In the following example, since no optimization level is specified and a —O option is specified, the compiler
sets the optimization to level 2.

$ pgf95 - O nyprog. f

Description: Use this option to invoke code optimization at the specified level - one of the following:

0
creates a basic block for each statement. Neither scheduling nor global optimization is done. To specify
this level, supply a 0 (zero) argument to the —O option.
1
schedules within basic blocks and performs some register allocations, but does no global optimization.
2
performs all level-1 optimizations, and also performs global scalar optimizations such as induction
variable elimination and loop invariant movement.
3
level-three specifies aggressive global optimization. This level performs all level-one and level-two
op-timizations and enables more aggressive hoisting and scalar replacement optimizations that may or
may not be profitable.
4

level-four performs all level-one, level-two, and level-three op-timizations and enables hoisting of guarded
invariant floating point expressions.

Table 15.8 shows the interaction between the —O option, —g option, —Mvect, and —Mconcur options.

Table 15.8. Optimization and -0, —g, -Mvect, and -Mconcur Options

Optimize Option |Debug Option |-M Option | Optimization Level

none none none 1

none none —Mvect 2

193

PGI® User's Guide

194

Optimize Option |Debug Option |-M Option |Optimization Level
none none —Mconcur |2

none -g none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel < 2 none or —g —Mvect 2

—Olevel < 2 none or —g —Mconcur |2

Unoptimized code compiled using the option —00 can be significantly slower than code generated at

other optimization levels. Like the —~Mvect option, the —Munr ol | option sets the optimization level to
level-2 if no —0 or —g options are supplied. The —gopt option is recommended for generation of debug
information with optimized code. For more information on optimization, see Chapter 3, “Using Optimization
& Parallelization”.

Related options: —g, —~M<pgflag>, —gopt

Names the executable file. Use the —o option to specify the filename of the compiler object file. The final output
is the result of linking.

Syntax:
—o filename
Where filename is the name of the file for the compilation output. The filename must not have a .f extension.

Default: The compiler creates executable filenames as needed. If you do not specify the —o option, the default
filename is the linker output file a.out.

Usage: In the following example, the executable file is myprog instead of the default a.out.
$ pgf95 nyprog.f -o nyprog

Related options: —c, —E, —F, -S

Note

This option is available only for —tp px/p5/p6/piii targets.

Allows you to control the precision of operations performed using the x87 floating point unit, and their
representation on the x87 floating point stack.

Syntax:

—pc{32164180}

Chapter 15. Command-Line Options Reference

Usage:
$ pgf 95 -pc 64 nmyprog.c

Description: The x87 architecture implements a floating-point stack using 8 80-bit registers. Each register
uses bits 0-63 as the significant, bits 64-78 for the exponent, and bit 79 is the sign bit. This 80-bit real format
is the default format, called the extended format. When values are loaded into the floating point stack they are
automatically converted into extended real format. The precision of the floating point stack can be controlled,
however, by setting the precision control bits (bits 8 and 9) of the floating control word appropriately. In

this way, you can explicitly set the precision to standard IEEE double-precision using 64 bits, or to single

precision using 32 bits." The default precision is system dependent. To alter the precision in a given program
unit, the main program must be compiled with the same -pc option. The command line option —pc val lets the
programmer set the compiler’s precision preference. Valid values for val are:

* 32 single precision
e 64 double precision

¢ 80 extended precision

Extended Precision Option — Operations performed exclusively on the floating-point stack using extended
precision, without storing into or loading from memory, can cause problems with accumulated values within
the extra 16 bits of extended precision values. This can lead to answers, when rounded, that do not match
expected results.

For example, if the argument to sin is the result of previous calculations performed on the floating-point stack,
then an 80-bit value used instead of a 64-bit value can result in slight discrepancies. Results can even change
sign due to the sin curve being too close to an x-intercept value when evaluated. To maintain consistency in
this case, you can assure that the compiler generates code that calls a function. According to the x86 ABL, a
function call must push its arguments on the stack (in this way memory is guaranteed to be accessed, even if
the argument is an actual constant.) Thus, even if the called function simply performs the inline expansion,
using the function call as a wrapper to sin has the effect of trimming the argument precision down to the
expected size. Using the —Mnhobui | t i n option on the command line for C accomplishes this task by resolving
all math routines in the library | i bm performing a function call of necessity. The other method of generating
a function call for math routines, but one that may still produce the inline instructions, is by using the —Ki eee
switch.

A second example illustrates the precision control problem using a section of code to determine machine
precision:
program fi nd_preci sion

w=10

100 w=wtw

y=wt1

zZ=y-w

if (z .gt. 0) goto 100

Cnow wis just big enough that | ((w1l)-w)-1] >= 1

print*, w

'According to Intel documentation, this only affects the x87 operations of add, subtract, multiply, divide, and square root. In particular, it does not
appear to affect the x87 transcendental instructions.

195

PGI® User's Guide

end

In this case, where the variables are implicitly real*4, operations are performed on the floating-point
stack where optimization removed unnecessary loads and stores from memory. The general case of copy
propagation being performed follows this pattern:

a = X

y =2.0 +a

Instead of storing x into a, then loading a to perform the addition, the value of x can be left on the floating-
point stack and added to 2.0. Thus, memory accesses in some cases can be avoided, leaving answers in
the extended real format. If copy propagation is disabled, stores of all left-hand sides will be performed
automatically and reloaded when needed. This will have the effect of rounding any results to their declared
sizes.

For the above program, w has a value of 1.8446744E+19 when executed using default (extended) precision.
If, however, —Ki eee is set, the value becomes 1.6777216E+07 (single precision.) This difference is due

to the fact that —Ki eee disables copy propagation, so all intermediate results are stored into memory, then
reloaded when needed. Copy propagation is only disabled for floating-point operations, not integer. With this
particular example, setting the —pc switch will also adjust the result.

The switch —Ki eee also has the effect of making function calls to perform all transcendental operations.
Although the function still produces the x86 machine instruction for computation (unless in C the
—NMhobui | ti n switch is set), arguments are passed on the stack, which results in 2 memory store and load.

Finally, —Ki eee also disables reciprocal division for constant divisors. That is, for a/b with unknown a and
constant b, the expression is usually converted at compile time to a*(1/b), thus turning an expensive divide
into a relatively fast scalar multiplication. However, numerical discrepancies can occur when this optimization
is used.

Understanding and correctly using the —pc, —Mhobui | ti n, and Ki eee switches should enable you to
produce the desired and expected precision for calculations which utilize floating-point operations.

Related options:

(Linux only) Instructs the compiler to instrument the generated executable for gprof-style sample-based
profiling.

Usage: In the following example the program is compiled for profiling using pgdbg or gprof.
$ pgf 95 -pg nyprog.c

Default: The compiler does not instrument the generated executable for gprof-style profiling.

Description: Use this option to instruct the compiler to instrument the generated executable for gprof-style
sample-based profiling. You must use this option at both the compile and link steps. A gnmon. out style trace
is generated when the resulting program is executed, and can be analyzed using gprof or pgprof.

—pgf77libs

196

Instructs the compiler to append PGF77 runtime libraries to the link line.

Chapter 15. Command-Line Options Reference

Default: The compiler does not append the PGF77 runtime libraries to the link line.

Usage: In the following example a .c main program is linked with an object file compiled with pgf77.

$ pgcc main.c nyf77.0 -pgf77libs

Description: Use this option to instruct the compiler to append PGF77 runtime libraries to the link line.

Related options:—pgf90libs

—pgf90libs

Instructs the compiler to append PGF90/PGF95 runtime libraries to the link line.
Default: The compiler does not append the PGF90/PGF95 runtime libraries to the link line.
Usage: In the following example a .c main program is linked with an object file compiled with pgf95.

$ pgf 95 main.c nyf95. 0 -pgf90libs

Description: Use this option to instruct the compiler to append PGF90/PGF95 runtime libraries to the link
line.

Related options:-pgf77libs

Selects variations for compilation. There are four uses for the —Q option.
Usage: The following examples show the different —Q options.

$ pgf95 -Qdir /hone/conp/ new hel l o. f
$ pgf 95 -Qoption Id,-s hello.f

$ pgf 95 -Qath /hone/test hello.f

$ pgf 95 - Qroduce .s hello.f

Description: Use this option to select variations for compilation. As illustrated in the Usage section, there are
four varieties for the —Q option.

The first variety, using the dir keyword, lets you supply a directory parameter that indicates the directory where
the compiler driver is located.

-Qdirdirectory

The second variety, using the option keyword, lets you supply the option opt to the program prog. The prog
parameter can be one of pgftn, as, or Id.

- Qopt i onpr og, opt

The third —Q variety, using the path keyword, lets you supply an additional pathname to the search path for the
compiler’s required .o files.

- Qpat hpat hnane

197

PGI® User's Guide

The fourth —Q variety, using the produce keyword, lets you choose a stop-after location for the compilation
based on the supplied sourcetype parameter. Valid sourcetypes are: .i, .c, .s and .o, which respectively indicate
the stop-after locations: preprocessing, compiling, assembling, or linking.

- Qor oducesour cet ype

Related options: —p

—R<directory>

(Linux only) Instructs the linker to hard-code the pathname <directory> into the search path for generated
shared object (dynamically linked library) files.

Note

There cannot be a space between R and <directory>.

Usage: In the following example, at runtime the a.out executable searches the specified directory, in this case
/ hone. / Joe/ nyso, for shared objects.

$ pgf 95 - Rml hone/ Joe/ nyso nypr og. f

Description: Use this option to instruct the compiler to pass information to the linker to hard-code the
pathname <directory> into the search path for shared object (dynamically linked library) files.

Related options: —fpic, —shared, —G

Linux only. Creates a relocatable object file.

Default: The compiler does not create a relocatable object file and does not use the —r option.
Usage: In this example, pgf95 creates a relocatable object file.

$ pgf95 -r nyprog. f

Use this option to create a relocatable object file.

Related options: —, —0, —s, —u

—r4 and —r8

198

Interprets DOUBLE PRECISION variables as REAL (—r4) or REAL variables as DOUBLE PRECISION (—r8).
Usage: In this example, the double precision variables are interpreted as REAL.
$ pgf95 -r4 nyprog. f

Description: Interpret DOUBLE PRECISION variables as REAL (—r4) or REAL variables as DOUBLE
PRECISION (—r8).

Related options: —i2, —i4, —i8, —nor8

Chapter 15. Command-Line Options Reference

—IC
Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a full
pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path of the currently
executing driver). If a full pathname is supplied, that file is used for the driver configuration file.
Syntax:
-rc [path] filenane
Where path is either a relative pathname, relative to the value of $DRIVER, or a full pathname beginning with "/
". Filename is the driver configuration file.
Default: The driver uses the configuration file . pgi rc.
Usage: In the following example, the file . pgf 95r ct est , relative to /ust/pgi / | i nux86/ bi n, the value of
$DRIVER, is the driver configuration file.
$ pgf95 -rc . pgf95rctest nyprog.f
Description: Use this option to specify the name of the driver startup configuration file. If the file or
pathname supplied is not a full pathname, the path for the configuration file loaded is relative to the $DRIVER
path - the path of the currently executing driver. If a full pathname is supplied, that file is used for the driver
configuration file.
Related options: —show

—rpath
Linux only.
Syntax:
-rpath path
Speicifes the name of the dirver startip configuration file, where path is either a relative pathname, or a full
pathname beginning with "/".
Default: The driver uses the configuration file . pgi r c.
Usage: In the following example, the file . pgf 95r ct est , relative to / usr/ pgi / | i nux86/ bi n, the value
of $DRIVER, is the driver configuration file.
$ pgf 95 -rc . pgf95rctest nyprog.f
Description: Use this option to specify the name of the driver startup configuration file. If the file or
pathname supplied is not a full pathname, the path for the configuration file loaded is relative to the $DRIVER
path - the path of the currently executing driver. If a full pathname is supplied, that file is used for the driver
configuration file.
Related options: —show

-S

(Linux only) Strips the symbol-table information from the executable file.

199

PGI® User's Guide

Default: The compiler includes all symbol-table information and does not use the —s option.

Usage: In this example, pgf95 strips symbol-table information from the a. out . executable file.
$ pgf95 -s nyprog.f

Description: Use this option to strip the symbol-table information from the executable.

Related options: —c, —o0, —u

Stops compilation after the compiling phase and writes the assembly-language output to a file.
Default: The compiler does not produce a . s file.

Usage: In this example, pgf95 produces the file myprog.s in the current directory.
$ pgf 95 -S nyprog. f

Description: Use this option to stop compilation after the compiling phase and then write the assembly-
language output to a file. If the input file is f i | ename. f | then the output file is f i | enane. s.

Related options: —c, —E, —F, -Mkeepasm, —o

—shared

(Linux only) Instructs the compiler to pass information to the linker to produce a shared object (dynamically
linked library) file.

Default: The compiler does not pass information to the linker to produce a shared object file.

Usage: In the following example the compiler passes information to the linker to produce the shared object
file: nyso. so.

$ pgf 95 -shared nyprog.f -0 nyso.so

Description: Use this option to instruct the compiler to pass information to the linker to produce a shared
object (dynamically linked library) file.

Related options: —fpic, -G, —R

—show

200

Produces driver help information describing the current driver configuration.
Default: The compiler does not show driver help information.

Usage: In the following example, the driver displays configuration information to the standard output after
processing the driver configuration file.

$ pgf 95 -show myprog. f

Description: Use this option to produce driver help information describing the current driver configuration.

Chapter 15. Command-Line Options Reference

Related options: -V, —v, —###, —help, —rc

—silent
Do not print warning messages.
Default: The compiler prints warning messages.

Usage: In the following example, the driver does not display warning messages.
$ pgf95 -silent nyprog.f

Description: Use this option to suppress warning messages.

Related options: —v, -V, —w

—Soname
(Linux only.) The compiler recognizes the —soname option and passes it through to the linker.
Default: The compiler does not recognize the —soname option.
Usage: In the following example, the driver passes the soname option and its argument through to the linker.
$ pgf 95 -sonane library.so nyprog.f

Description: Use this option to instruct the compiler to recognize the —soname option and pass it through to
the linker.

Related options:

—stack
(Windows only.) Allows you to explicitly set stack properties for your program.

Default: If —st ack is not specified, then the defaults are as followed:

Win32
Setting is - st ack: 2097152, 2097152, which is approximately 2MB for reserved and committed bytes.
Win64
No default setting
Syntax:
-stack={ (reserved bytes)[,(comitted bytes)] }{, [no]check }

Usage: The following example demonstrates how to reserve 524,288 stack bytes (512KB), commit 262,144
stack bytes for each routine (256KB), and disable the stack initialization code with the nocheck argument.

$ pgf 95 -stack=524288, 262144, nocheck nyprog. f

Description: Use this option to explicitly set stack properties for your program. The —stack option takes one
or more arguments: (reserved bytes), (committed bytes), [no]check.

201

PGI® User's Guide

reserved bytes
Specifies the total stack bytes required in your program.

committed bytes
Specifies the number of stack bytes that the Operating System will allocate for each routine in your
program. This value must be less than or equal to the stack reserved bytes value.

Default for this argument is 4096 bytes

[no]check
Instructs the compiler to generate or not to generate stack initialization code upon entry of each routine.
Check is the default, so stack initialization code is generated.

Stack initialization code is required when a routine's stack exceeds the committed bytes size. When your
committed bytes is equal to the reserved bytes or equal to the stack bytes required for each routine, then
you can turn off the stack initialization code using the - st ack=nocheck compiler option. If you do this, the
compiler assumes that you are specifying enough committed stack space; and therefore, your program does
not have to manage its own stack size.

For more information on determining the amount of stack required by your program, refer to —Mchkst k
compiler option, described in “~M<pgflag> Miscellaneous Controls”.

Note

-stack=(reserved bytes), (conm tted bytes) are linker options.
- st ack=[no] check is a compiler option.

If you specify - st ack=(reserved bytes), (comitted bytes) onyour compile line, it is
only used during the link step of your build. Similarly, —stack=[no]check can be specified on your
link line, but its only used during the compile step of your build.

Related options:—Mchkstk

~time

Print execution times for various compilation steps.

Default: The compiler does not print execution times for compilation steps.

Usage: In the following example, pgf95 prints the execution times for the various compilation steps.
$ pgf95 -tine myprog.f

Description: Use this option to print execution times for various compilation steps.

Related options: —#

—tp <target> [,target...]

Sets the target architecture.

Chapter 15. Command-Line Options Reference

Default: The PGI compilers produce code specifically targeted to the type of processor on which the
compilation is performed. In particular, the default is to use all supported instructions wherever possible when
compiling on a given system.

The default style of code generation is auto-selected depending on the type of processor on which compilation
is performed. Further, the —tp x64 style of unified binary code generation is only enabled by an explicit —tp
x64 option.

Note

Executables created on a given system may not be usable on previous generation systems. (For
example, executables created on a Pentium 4 may fail to execute on a Pentium III or Pentium II.)

Usage: In the following example, pgf95 sets the target architecture to EM64T:
$ pgf95 -tp p7-64 nyprog.f

Description: Use this option to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system. As a result, executables created on a given
system may not be usable on previous generation systems. For example, executables created on a Pentium 4
may fail to execute on a Pentium III or Pentium II.

Processor-specific optimizations can be specified or limited explicitly by using the —tp option. Thus, it is
possible to create executables that are usable on previous generation systems. With the exception of k8-64, k8-
64e, p7-64, and x64, any of these sub-options are valid on any x86 or x64 processor-based system. The k8-64,
k8-64e, p7-64 and x64 options are valid only on x64 processor-based systems.

The —tp x64 option generates unified binary object and executable files, as described in the section called
“Using —tp to Generate a Unified Binary”.

The following list is the possible sub-options for —tp and the processors that each sub-option is intended to
target:

k8-32
generate 32-bit code for AMD Athlon64, AMD Opteron and compatible processors.

k8-64
generate 64-bit code for AMD Athlon64, AMD Opteron and compatible processors.

k8-64e
generate 64-bit code for AMD Opteron Revision E, AMD Turion, and compatible processors.

po
generate 32-bit code for Pentium Pro/II/III and AthlonXP compatible processors.

p7
generate 32-bit code for Pentium 4 and compatible processors.

p7-64
generate 64-bit code for Intel P4/Xeon EM64T and compatible processors.

core2
generate 32-bit code for Intel Core 2 Duo and compatible processors.

203

PGI® User's Guide

core2-64
generate 64-bit code for Intel Core 2 Duo EM64T and compatible processors.

piii
generate 32-bit code for Pentium III and compatible processors, including support for single-precision
vector code using SSE instructions.

px
generate 32-bit code that is usable on any x86 processor-based system.

x64
generate 64-bit unified binary code including full optimizations and support for both AMD and Intel x64
processors.

Refer to Table 2, “Processor Options,” on page xxvi for a concise list of the features of these processors that
distinguish them as separate targets when using the PGI compilers and tools.

Syntax for 64-bit targets:
-tp {k8-64 | k8-64e | p7-64 | core2-64 | x64}

Syntax for 32-bit targets:
-tp {k8-32 | p6 | p7 | core2 | piii | px}

Using —tp to Generate a Unified Binary

204

Different processors have differences, some subtle, in hardware features such as instruction sets and

cache size. The compilers make architecture-specific decisions about such things as instruction selection,
instruction scheduling, and vectorization. Any of these decisions can have significant effects on performance
and compatibility. PGI unified binaries provide a low-overhead means for a single program to run well on a
number of hardware platforms.

You can use the —tp option to produce PGI Unified Binary programs. The compilers generate, and combine
into one executable, multiple binary code streams, each optimized for a specific platform. At runtime, this one
executable senses the environment and dynamically selects the appropriate code stream.

The target processor switch, —tp, accepts a comma-separated list of 64-bit targets and will generate code
optimized for each listed target. For example, the following switch generates optimized code for three targets:
k8-64, p7-64, and core2-64.

Syntax for optimizing for multiple targets:

-tp k8-64, p7-64, core2-64

The —tp k8-64 and —tp k8-64e options result in generation of code supported on and optimized for AMD x64
processors, while the —tp p7-64 option results in generation of code that is supported on and optimized for
Intel x64 processors. Performance of k8-64 or k8-64e code executed on Intel x64 processors, or of p7-64
code executed on AMD x64 processors, can often be significantly less than that obtained with a native binary.

The special —tp x64 option is equivalent to —tp k8-64,p7-64. This switch produces PGI Unified Binary
programs containing code streams fully optimized and supported for both AMDG64 and Intel EM64T
processors.

Chapter 15. Command-Line Options Reference

For more information on unified binaries, refer to “Processor-Specific Optimization and the Unified Binary,”
on page 30.

Related options:

Initializes the symbol-table with <symbol>, which is undefined for the linker.
Default: The compiler does not use the —u option.

Syntax:

- usynbol

Where symbol is a symbolic name.

Usage: In this example, pgf95 initializes symbol-table with <test>,

$ pgf 95 -utest nyprog.f

Description: Use this option to initialize the symbol-table with <symbol>, which is undefined for the linker.
An undefined symbol triggers loading of the first member of an archive library.

Related options: —, —0, —s

Undefines a preprocessor macro.
Syntax:

- Usynbol

Where symbol is a symbolic name.

Usage: The following examples undefine the macro test.

$ pgf95 -Utest nyprog.F
$ pgf95 -Dtest -Utest myprog. F

Description: Use this option to undefine a preprocessor macro. You can also use the #undef pre-processor
directive to undefine macros.

Related options: —D,—Mnostddef.

-V[release_number]

Displays additional information, including version messages. Further, if a release_number is appended, the
compiler driver attempts to compile using the specified release instead of the default release.

Note

There can be no space between —V and release_number.

205

PGI® User's Guide

206

Default: The compiler does not display version information and uses the release specified by your path to
compile.

Usage: The following command-line shows the output using the —V option.

% pgf 95 -V nyprog. f

The following command-line causes PGF95 to compile using the 5.2 release instead of the default release.
% pgcc -V5.2 nyprog.c

Description: Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using the specified release
instead of the default release.

The specified release must be co-installed with the default release, and must have a release number greater
than or equal to 4.1, which was the first release that supported this functionality.

Related options: —Minfo, —v

Displays the invocations of the compiler, assembler, and linker.
Default: The compiler does not display individual phase invocations.

Usage: In the following example you use —v to see the commands sent to compiler tools, assembler, and
linker.

$ pgf 95 -v myprog. f90

Description: Use the —v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the —W options you specify on
the compiler command-line.

Related options: —Minfo, —, V, -W

Passes arguments to a specific phase.
Syntax:

-WO | a| | },option[,option...]

Note

You cannot have a space between the —W and the single-letter pass identifier, between the identifier
and the comma, or between the comma and the option.

(the number zero) specifies the compiler.

Chapter 15. Command-Line Options Reference

a

specifies the assembler.
|

(lowercase letter 1) specifies the linker.
option

is a string that is passed to and interpreted by the compiler, assembler or linker. Options separated by
commas are passed as separate command line arguments.

Usage: In the following example the linker loads the text segment at address 0xffc00000 and the data segment
at address 0xffe00000.

$ pgf95 -W, -k, -t, Oxffc00000, - d, Oxffe00000 mnyprog. f

Description: Use this option to pass arguments to a specific phase. You can use the —W option to specify
options for the assembler, compiler, or linker.

Note

A given PGI compiler command invokes the compiler driver, which parses the command-line, and
generates the appropriate commands for the compiler, assembler, and linker.

Related options:

Do not print warning messages.
Default: The compiler prints warning messages.

Usage: In the following example no warning messages are printed.

$ pgf95 -w nyprog. f

Description: Use the —w option to not print warning messages. Sometimes the compiler issues many warning
in which you may have no interest. You can use this option to not issue those warnings.

Related options:—silent

Use legacy standard mode for C and C++.
Default:None.

Usage: In the following example the compiler uses legacy standard mode.

$ pgcc - XS nyprog.c

Description: Use this option to use legacy standard mode for C and C++. This option implies -
alias=traditional.

Related options:-alias, —Xt

207

PGI® User's Guide

-Xt

Use legacy traditional mode for C and C++.

Default:None.

Usage: In the following example the compiler uses legacy traditional mode.
$ pgcc - XSt nyprog. c

Description: Use this option to use legacy standard mode for C and C++. This option implies -
alias=traditional.

Related options:-alias, —Xs

C and C++ -specific Compiler Options

208

There are a large number of compiler options specific to the PGCC and PGC++ compilers, especially PGC++.
This section provides the details of several of these options, but is not exhaustive. For a complete list of
available options, including an exhaustive list of PGC++ options, use the —help command-line option. For
further detail on a given option, use —help and specify the option explicitly, as described in —help .

(pgepp only) Instructs the PGC++ compiler to accept code conforming to the proposed ANSI C++ standard,
issuing errors for non-conforming code.

Default: By default, the compiler accepts code conforming to the standard C++ Annotated Reference Manual.
Usage: The following command-line requests ANSI conforming C++.
$ pgcpp -A hello.cc

Description: Use this option to instruct the PGC++ compiler to accept code conforming to the proposed ANSI
C++ standard and to issues errors for non-conforming code.

Related options:—a, —b and +p.

(pgepp only) Instructs the PGC++ compiler to accept code conforming to the proposed ANSI C++ standard,
issuing warnings for non-conforming code.

Default: By default, the compiler accepts code conforming to the standard C++ Annotated Reference Manual.

Usage: The following command-line requests ANSI conforming C++, issuing warnings for non-conforming
code.

$ pgcpp -a hello.cc

Description: Use this option to instruct the PGC++ compiler to accept code conforming to the proposed ANSI
C++ standard and to issues warnings for non-conforming code.

Chapter 15. Command-Line Options Reference

Related options:—A, —b and +p.

-alias

select optimizations based on type-based pointer alias rules in C and C++.
Syntax:
-alias=[ansi|traditional]
Default:None
Usage: The following command-line enables optimizations.
$ pgcpp -alias=ansi hello.cc

Description: Use this option to select optimizations based on type-based pointer alias rules in C and C++.

ansi
Enable optimizations using ANSI C type-based pointer disambiguation

traditional
Disable type-based pointer disambiguation

Related options:

--[no_]alternative_tokens

(pgepp only) Enables or disables recognition of alternative tokens. These are tokens that make it possible to
write C++ without the use of the comma (,) , [, |, #, &, *, and characters. The alternative tokens include the
operator keywords (e.g., and, bitand, etc.) and digraphs. The default behavior is --no_alternative_tokens.

Default:. The default behavior is that the recognition of alternative tokens is disabled: --
no_alternative_tokens.

Usage: The following command-line enables alternative token recognition.

$ pgcpp --alternative_tokens hello.cc

(pgepp only) Use this option to enable or disable recognition of alternative tokens. These tokens make it
possible to write C++ without the use of the comma (,), [,], #, & *, and characters. The alternative tokens
include digraphs and the operator keywords, such as and, bitand, and so on. The default behavior is --
no_alternative_tokens.

Related options:

(pgcc and pgepp only) Enables use of C++ style comments starting with // in C program units.
Default: The PGCC ANSI and K&R C compiler does not allow C++ style comments.
Usage: In the following example the compiler accepts C++ style comments.

209

PGI® User's Guide

$ pgcc -B nyprog. cc
Description: Use this option to enable use of C++ style comments starting with // in C program units.

Related options:

(pgcpp only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example the compiler accepts cfront constructs.
$ pgcpp -b nyprog. cc

Description: Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options: —cfront2.1, —b3 , —cfront3.0, +p, —A

(pgepp only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example, the compiler accepts cfront constructs.

$ pgcpp -b3 nyprog. cc

Description: Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options: —cfront2.1, —b, —cfront3.0, +p, —A

--[no_]bool

210

(pgcpp only) Enables or disables recognition of bool.
Default: The compile recognizes bool: --bool.
Usage: In the following example, the compiler does not recognize bool.

$ pgcpp --no_bool nyprog. cc

Chapter 15. Command-Line Options Reference

Description: Use this option to enable or disable recognition of bool.

Related options:

— —[no_]builtin
Compile with or without math subroutine builtin support.
Default: The default is to compile with math subroutine support: —built.

Usage: In the following example, the compiler does not build with math subroutine support.
$ pgcpp --no_builtin myprog.cc

Description: Use this option to enable or disable compiling with math subroutine builtin support. When you
compile with math subroutine builtin support, the selected math library routines are inlined.

Related options:

--cfront_2.1
(pgcpp only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example, the compiler accepts cfront constructs.

$ pgcpp --cfront_2.1 nyprog. cc

Description: Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options: —b, —b3, —cfront3.0, +p, —A

--cfront_3.0
(pgepp only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example, the compiler accepts cfront constructs.
$ pgcpp --cfront_3.0 myprog.cc

Description: Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

211

PGI® User's Guide

Related options: —cfront2.1, b, —b3, +p, —A

--compress_names
Compresses long function names in the file.
Default: The compiler does not compress names: --no_compress_names.

Usage: In the following example, the compiler compresses long function names.

$ pgcpp --cconpress_names yprog. cc

Description: Use this option to specify to compress long function names. Highly nested template parameters
can cause very long function names. These long names can cause problems for older assemblers. Users
encountering these problems should compileall C++ code, including library code with the switch - -

conpr ess_name. Libraries supplied by PGI work with --compress_names.

Related options:

--create_pch filename

(pgepp only) If other conditions are satisfied, create a precompiled header file with the specified name.

Note

If --pch (automatic PCH mode) appears on the command line following this option, its effect is
erased.

Default: The compiler does not create a precompiled header file.

Usage: In the following example, the compiler creates a precompiled header file, hdr 1.

$ pgcpp --create_pch hdrl nyprog.cc

Description: If other conditions are satisfied, use this option to create a precompiled header file with the
specified name.

Related options:

--diag_error tag
(pgepp only) Overrides the normal error severity of the specified diagnostic messages.
Default: The compiler does not override normal error severity.

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number. ?

Related options:--diag_remark tag, --diag_suppress tag, --diag_warning tag, --display_error_number
--diag_remark tag
(pgepp only) Overrides the normal error severity of the specified diagnostic messages.

212

Chapter 15. Command-Line Options Reference

Default: The compiler does not override normal error severity.

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options: --diag_error tag, --diag_suppress tag, --diag_warning tag, --display_error_number

--diag_suppress tag
(pgepp only) Overrides the normal error severity of the specified diagnostic messages.
Default: The compiler does not override normal error severity.

Usage: In the following example, the compiler overrides the normal error severity ofthe specified diagnostic
messages..
$ pgcpp --di ag_suppress error_tag prog.cc

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options:--diag_error tag, --diag_remark tag, --diag_warning tag, --diag_error_number

--diag_warning tag
(pgcpp only) Overrides the normal error severity of the specified diagnostic messages.
Default: The compiler does not override normal error severity.

Usage: In the following example, the compiler overrides the normal error severity of the specified diagnostic
messages.
$ pgcpp --diag_suppress an_error_tag myprog.cc

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options: --diag_error tag, --diag_remark tag, --diag_suppress tag, --diag_error_number

--display_error_number

(pgcpp only) Displays the error message number in any diagnostic messages that are generated. The option
may be used to determine the error number to be used when overriding the severity of a diagnostic message.

Default: The compiler does not display error message numbers for generated diagnostic messages.

Usage: In the following example, the compiler displays the error message number for any generated
diagnostic messages.PLEASE PROVIDE ONE

$ pgcpp --display_error_nunber nyprog.cc

Description: Use this option to display the error message number in any diagnostic messages that are
generated. You can use this option to determine the error number to be used when overriding the severity of a
diagnostic message.

213

PGI® User's Guide

Related options: --diag_error tag, --diag_remark tag, --diag_suppress tag, --diag_warning tag

-e<number>

(pgcpp only) Set the C++ front-end error limit to the specified <number>.

--[no_]exceptions
(pgcpp only) Enables or disables exception handling support.
Default: The compiler provides exception handling support: --exceptions.

Usage: In the following example, the compiler does not provide exception handling support. PLEASE PROVIDE
ONE

$ pgcpp --no_exceptions nyprog. cc

Description: Use this option to enable or disable exception handling support.

Related options:

—qgnu_extensions
(pgcpp only) Allows GNU extensions.
Default: The compiler does not allow GNU extensions.

Usage: In the following example, the compiler allows GNU extensions.
$ pgcpp --gnu_ext ensi ons nyprog. cc

Description: Use this option to allow GNU extensions, such as “include next”, which are required to compile
Linux system header files.

Related options:

--[no]llalign
(pgcpp only) Enables or disables alignment of long long integers on long long boundaries.
Default: The compiler aligns long long integers on long long boundaries: --llalign.

Usage: In the following example, the compiler does not align long long integers on long long boundaries.
$ pgcpp --nollalign nyprog. cc

Description: Use this option to allow enable or disable alignment of long long integers on long long
boundaries.

Related options:

Generates a list of make dependencies and prints them to stdout.

214

Chapter 15. Command-Line Options Reference

Note

The compilation stops after the preprocessing phase.
Default: The compiler does not generate a list of make dependencies.
Usage: In the following example, the compiler generates a list of make dependencies.
$ pgcpp - M nyprog. cc
Description: Use this option to generate a list of make dependencies and prints them to stdout.

Related options:—MD, —P, —suffix

Generates a list of make dependencies and prints them to a file.
Default: The compiler does not generate a list of make dependencies.

Usage: In the following example, the compiler generates a list of make dependencies and prints them to the
file myprog.d.

$ pgcpp - MD nyprog. cc

Description: Use this option to generate a list of make dependencies and prints them to a file. The name of
the file is determined by the name of the file under compilation.dependencies_file<file>.

Related options:—M, —P, —suffix

--optk_allow_dollar_in_id_chars
(pgepp only) Accepts dollar signs ($) in identifiers.
Default: The compiler does not accept dollar signs (§$) in identifiers.
Usage: In the following example, the compiler allows dollar signs ($) in identifiers.
$ pgcpp -optk_allow dollar_in_id _chars myprog.cc

Description: Use this option to instruct the compiler to accept dollar signs ($) in identifiers.

Halts the compilation process after preprocessing and writes the preprocessed output to a file.
Default: The compiler produces an executable file.

Usage: In the following example, the compiler produces the preprocessed file myprog.i in the current
directory.

$ pgcpp -P nyprog. cc

215

PGI® User's Guide

Description: Use this option to halt the compilation process after preprocessing and write the preprocessed
output to a file. If the input file is f i | ename. c or fi | ename. cc. , then the output fileis f i | ename. i .

Note

Use the —suf f i x option with this option to save the intermediate file in a file with the specified suffix.

Related options: —C,—c,—E, -Mkeepasm, —o, —§

(pgepp only) Disallow all anachronistic constructs.
Default: The compiler disallows all anachronistic constructs.
Usage: In the following example, the compiler disallows all anachronistic constructs.

$ pgcpp -+p nyprog. cc

Description: Use this option to disallow all anachronistic constructs.

Related options:

--pch

(pgepp only) Automatically use and/or create a precompiled header file.

Note

If --use_pch or --create_pch (manual PCH mode) appears on the command line following this
option, this option has no effect.

Default: The compiler does not automatically use or create a precompiled header file.

Usage: In the following example, the compiler automatically uses a precompiled header file.
$ pgcpp --pch nyprog. cc

Description: Use this option to automatically use and/or create a precompiled header file.

Related options:

--pch_dir directoryname
(pgepp only) Specifies the directory in which to search for and/or create a precompiled header file.
The compiler searches your PATH for precompiled header files / use or create a precompiled header file.

Usage: In the following example, the compiler searches in the directory myhdr di r for a precompiled header
file.

$ pgcpp --pch_dir myhdrdir myprog.cc

216

Chapter 15. Command-Line Options Reference

Description: Use this option to specify the directory in which to search for and/or create a precompiled
header file. You may use this option with automatic PCH mode (--pch) or manual PCH mode (--create_pch or
--use_pch).

Related options:--create_pch, --pch, --use_pch

--[no_]pch_messages

(pgepp only) Enables or disables the display of a message indicating that the current compilation used or
created a precompiled header file.

The compiler displays a message when it uses or creates a precompiled header file.

In the following example, no message is displayed when the precompiled header file located in myhdr di r is
used in the compilation.

$ pgcpp --pch_dir nyhdrdir --no_pch_nessages nyprog.cc

Description: Use this option to enable or disable the display of a message indicating that the current
compilation used or created a precompiled header file.

Related options:--pch_dir,

--preinclude=<filename>
(pgepp only) Specifies the name of a file to be included at the beginning of the compilation.

In the following example, the compiler includes the filei ncl _fi | e. ¢ at the beginning of the compilation.
me

$ pgcpp --preinclude=incl_file.c myprog.cc

Description: Use this option to specify the name of a file to be included at the beginning of the compilation.
For example, you can use this option to set system-dependent macros and types.

Related options:

--use_pch filename

(pgcpp only) Uses a precompiled header file of the specified name as part of the current compilation.

Note

If --pch (automatic PCH mode) appears on the command line following this option, its effect is
erased.

Default: The compiler does not use a precompiled header file.

In the following example, the compiler uses the precompiled header file, hdr 1 as part of the current
compilation.

$ pgcpp --use_pch hdrl myprog.cc

217

PGI® User's Guide

Use a precompiled header file of the specified name as part of the current compilation. If --pch (automatic
PCH mode) appears on the command line following this option, its effect is erased.

Related options:--create_pch, --pch_dir, --pch_messages

--[no_]using_std

218

(pgcpp only) Enables or disables implicit use of the std namespace when standard header files are included.
Default:The compiler uses std namespace when standard header files are included: --using_std.
Usage: The following command-line disables implicit use of the std namespace:

$ pgcpp --no_using_std hello.cc

Description: Use this option to enable or disable implicit use of the std namespace when standard header
files are included in the compilation.

Related options:

(pgepp only) Control instantiation of template functions.
—t [arg]
Default:No templates are instantiated.

Usage: In the following example, all templates are instantiated.
$ pgcpp -tall myprog.cc

Description: Use this option to control instantiation of template functions. The argument is one of the
following:
all

Instantiates all functions whether or not they are used.

local
Instantiates only the functions that are used in this compilation, and forces those functions to be local to
this compilation.

Note: This may cause multiple copies of local static variables. If this occurs, the program may not execute
correctly.

none
Instantiates no functions. (this is the default)

used
Instantiates only the functions that are used in this compilation.

Usage: In the following example, all templates are instantiated.

$ pgcpp

Chapter 15. Command-Line Options Reference

-tall myprog.cc

(pgepp only) Generates cross-reference information and places output in the specified file.
Syntax:

—Xfoo

where foo is the specifies file for the cross reference information.

Default: The compiler does not generate cross-reference information.

Usage: In the following example, the compiler generates cross-reference information, placing it in the file:
xreffile.

$ pgcpp -Xxreffile myprog. cc

Description: Use this option to generate cross-reference information and place output in the specified file.
This is an EDG option.

Related options:

--zC_eh
(Linux only) Generates zero-overhead exceptionregions.

Default:The compiler does not to use --zc_eh but instead uses --sjlj_eh, which implements exception
handling with setjmp and longjmp.

Usage: The following command-line enables zero-overhead exception regions:

$ pgcpp --zc_eh ello.cc

Description: Use this option to generate zero-overhead exception regions. The --zc_eh option defers the
cost of exception handling until an exception is thrown. For a program with many exception regions and few
throws, this option may lead to improved run-time performance.

This option is compatible with C++ code that was compiled with previous version if PGI C++.

Note

The --zc_eh option is available only on newer Linux systems that supply the system unwind libraries in
libgec_eh and on Windows.

Related options:

—M Options by Category
This section describes each of the options available with —M by the categories:
Code generation Fortran Language Controls Optimization

219

PGI® User's Guide

C/C++ Language Controls Inlining Miscellaneous

Environment

For a complete alphabetical list of all the options, refer to “ —M Options Summary,” on page 185.

The following sections provide detailed descriptions of several, but not all, of the -M<pgflag> options. For a
complete alphabetical list of all the options, refer to “ —M Options Summary,” on page 185. These options

are grouped according to categories and are listed with exact syntax, defaults, and notes concerning similar or
related options. For the latest information and description of a given option, or to see all available options, use
the —help command-line option, described in“—help ,” on page 178.

—M<pgflag> Code Generation Controls

220

This section describes the —~M<pgflag> options that control code generation.

Default: For arguments that you do not specify, the default code generation controls are these:

nodaz noreentrant nostride0
noflushz noref_externals signextend
norecursive nosecond_underscore

Related options: -D, -, L, -1, U

Syntax:
Description and Related Options

—Mdaz
Set IEEE denormalized input values to zero; there is a performance benefit but misleading results can
occur, such as when dividing a small normalized number by a denormalized number. To take effect, this

option must be set for the main program.

—Mnodaz
Do not treat denormalized numbers as zero.To take effect, this option must be set for the main program.

—Mdwar f 1
Generate DWARF1 format debug information; must be used in combination with —g.

—Mdwar f 2
Generate DWARF2 format debug information; must be used in combination with —g.

—Mdwar f 3
Generate DWARF3 format debug information; must be used in combination with —g.

—Mf | ushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the value is set to zero.To take effect, this

option must be set for the main program.

—Mnof | ushz
Do not set SSE flush-to-zero mode; generate underflows.To take effect, this option must be set for the main

program.

Chapter 15. Command-Line Options Reference

—Mf unc32
Align functions on 32-byte boundaries.

—MI arge_arrays
Enable support for 64-bit indexing and single static data objects larger than 2GB in size. This option
is default in the presence of —-mcmodel=medium. Can be used separately together with the default
small memory model for certain 64-bit applications that manage their own memory space. For more
information, refer to Chapter 11, “Programming Considerations for 64-Bit Environments”.

—Mnpi =opti on
-Mmpi adds the include and library options to the compile and link commands necessary to build an MPI
application using MPI librariews installed with the PGI Cluister Development Kit (CDK).

On Linux, this option inserts - 1 $MPI DI R/ i ncl ude into the compile line and - LEMPI DI R/ i b
into the link line. The specifies option determines whether to select MPICH-1 or MPICH-2 headers and
libraries. The base directories for MPICH-1 and MPICH-2 are setin | ocal r c.

On Windows, this option inserts - | $MCCP_HOVE/ | ncl udelncludeinto the compile line and -
L$CCP_HOVE/ | i b into the link line.

The -Mmpi options are as specified:
e —Mmpi=mpich1 - Selects preconfigured MPICH-1 communication libraries.
e —Mmpi=mpich2 - Selects preconfigured MPICH-2 communication libraries.

e —Mmpi=msmpi - Select Microsoft MSMPI libraries.

Note

The user can set the environment variables MPIDIR and MPILIBNAME to override the default
values for the MPI directory and library name.

MPICH1 and MPICH2 apply only for PGI CDK Cluster Development Kit; MSMPI applies only on Microsoft
Compute Cluster systems.

For -Mmpi=msmpi to work, the CCP_HOME environment variable must be set. When the Microsoft
Compute Cluster SDK is installed, this variable is typically set to point to the MSMPI library directory.

—Mnol arge_arrays
Disable support for 64-bit indexing and single static data objects larger than 2GB in size. When placed
after —-mcmodel=medium on the command line, disables use of 64-bit indexing for applications that have
no single data object larger than 2GB.

—Mnonmai n
Instructs the compiler not to include the object file that calls the Fortran main program as part of the link
step. This option is useful for linking programs in which the main program is written in C/C++ and one or
more subroutines are written in Fortran (pgf77, pgf95, and pghpf only).

—M[no] novnt
Instructs the compiler to generate nontemporal move and prefetch instructions even in cases where the
compiler cannot determine statically at compile-time that these instructions will be beneficial.

221

PGI® User's Guide

—Mpr of [=option[,option,...]]
Set performance profiling options. Use of these options causes the resulting executable to create a
performance profile that can vbe viewed and analyzed with the PGPROF performance profiler. In the
descriptions that follow, PGI-style profiling implies compiler-generated source instrumentation. MPICH-
style profiling implies the use of instrumented wrappers for MPI library routines.

The option argument can be any of the following:

dwar f
Generate limited DWARF symbol information sufficient for most performance profilers.

func
Perform PGI-style function-level profiling.

hwet s
Generate a profile using event-based sampling of hardware counters via the PAPI interface. (linux86-
64 platforms only; PAPI must be installed).

l'i nes
Perform PGI-style line-level profiling.

nmpi chl
Perform MPICH-style profiling for MPICH-1. Implied -Mmpi=mpich1. (Linux only).

npi ch2
Perform MPICH-style profiling for MPICH-2. Implies —-Mmpi=mpich2. (Linux with MPI support
licence privileges only.)

s pi
Perform MPICH-style profiling for Microsoft MSMPI. Implies —-Mmpi=msmpi. (Microsoft Compute
Cluster Server only).

For -Mprof=msmpi to work, the CCP_HOME environment variable must be set. This variable is
typically set when the Microsoft Compute Cluster SDK is installed.

time
Generate a profile using time-based instruction-level statistical sampling. This is equivalent to -pg,
except that the profile is saved to a file names pgpr of . out rather than gnon. out .

—Mr ecursive
instructs the compiler to allow Fortran subprograms to be called recursively.

—Mnor ecursi ve
Fortran subprograms may not be called recursively.

—Mr ef _external s
force references to names appearing in EXTERNAL statements (pgf77, pgf95, and pghpf only).

—Mnor ef _external s
do not force references to names appearing in EXTERNAL statements (pgf77, pgf95, and pghpf only).

—Mr eent r ant
instructs the compiler to avoid optimizations that can prevent code from being reentrant.

222

Chapter 15. Command-Line Options Reference

—Mnor eent r ant
instructs the compiler not to avoid optimizations that can prevent code from being reentrant.

—Msecond_under score
instructs the compiler to add a second underscore to the name of a Fortran global symbol if its name
already contains an underscore. This option is useful for maintaining compatibility with object code
compiled using g77, which uses this convention by default (pgf77, pgf95, and pghpf only).

—Mnosecond_under scor e

instructs the compiler not to add a second underscore to the name of a Fortran global symbol if its name
already contains an underscore (pgf77, pgf95, and pghpf only).

—Msi gnext end

instructs the compiler to extend the sign bit that is set as a result of converting an object of one data type
to an object of a larger signed data type.

—Mnosi gnext end

instructs the compiler not to extend the sign bit that is set as the result of converting an object of one data
type to an object of a larger data type.

—Msaf e | ast val

In the case where a scalar is used after a loop, but is not defined on every iteration of the loop, the
compiler does not by default parallelize the loop. However, this option tells the compiler it’s safe to
parallelize the loop. For a given loop the last value computed for all scalars make it safe to parallelize the

loop.
—Mstri deO
instructs the compiler to inhibit certain optimizations and to allow for stride 0 array references. This
option may degrade performance and should only be used if zero-stride induction variables are possible.
—Mnostri de0
instructs the compiler to perform certain optimizations and to disallow for stride 0 array references.

—Muni x

use UNIX symbol and parameter passing conventions for Fortran subprograms (pgf77, pgf95, and pghpf
for Win32 only).

—Mvar ar gs

force Fortran program units to assume procedure calls are to C functions with a varargs-type interface
(pgf77 and pgf95 only).

—M<pgflag> C/C++ Language Controls

This section describes the -M<pgflag> options that affect C/C++ language interpretations by the PGI C and
C++ compilers. These options are only valid to the pgcc and pgepp compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword nosingle
dollar,_ schar
Usage:

223

PGI® User's Guide

224

In this example, the compiler allows the asm keyword in the source file.

$ pgcc - Masnkeyword myprog.c

In the following example, the compiler maps the dollar sign to the dot character.

$ pgcc - Mol lar,. nyprog.c

In the following example, the compiler treats floating-point constants as float values.

$ pgcc -Mcon nyprog. c

In the following example, the compiler does not convert float parameters to double parameters.

$ pgcc - Msingle nyprog.c

Without —Muchar or with —Mschar, the variable ch is a signed character:

char ch;
si gned char sch;

If —Muchar is specified on the command line:

$ pgcc - Muchar myprog. c

char ch above is equivalent to:

unsi gned char ch;

Syntax:
Description and Related Options

—Masnkeywor d
instructs the compiler to allow the asm keyword in C source files. The syntax of the asm statement is as
follows:

asn("statement");

Where statement is a legal assembly-language statement. The quote marks are required.

Note. The current default is to support gcc's extended asm, where the syntax of extended asm includes
asm strings. The —M[no]asmkeyword switch is useful only if the target device is a Pentium 3 or older cpu
type (—tp piiilp6lk7lathlonlathlonxplpx).

—Mnoasnkeywor d
instructs the compiler not to allow the asm keyword in C source files. If you use this option and your
program includes the asm keyword, unresolved references will be generated

—Mdol | ar, char
char specifies the character to which the compiler maps the dollar sign (§). The PGCC compiler allows the
dollar sign in names; ANSI C does not allow the dollar sign in names.

—Mf con
instructs the compiler to treat floating-point constants as float data types, instead of double data types. This
option can improve the performance of single-precision code.

—Mschar
specifies signed char characters. The compiler treats "plain" char declarations as signed char.

Chapter 15. Command-Line Options Reference

—Msi ngl e
do not to convert float parameters to double parameters in non-prototyped functions. This option can
result in faster code if your program uses only float parameters. However, since ANSI C specifies that
routines must convert float parameters to double parameters in non-prototyped functions, this option
results in non#ANSI conformant code.

—Mnosi ngl e
instructs the compiler to convert float parameters to double parameters in non-prototyped functions.

—Muchar

instructs the compiler to treat "plain" char declarations as unsigned char.

—M<pgflag> Environment Controls
This section describes the —-M<pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

Syntax:
Description and Related Options

—Mifs
(32-bit Linux only) link in libraries that enable file I/0 to files larger than 2GB (Large File Support).

—Mnost ar t up
instructs the linker not to link in the standard startup routine that contains the entry point (_start) for the
program.

Note

If you use the —Mnostartup option and do not supply an entry point, the linker issues the
following error message: Warning: cannot find entry symbol _start

—M[no] smart al | oc[=huge| h[uge: <n>| hugebss]
adds a call to the routine mallopt in the main routine. This option supports large TLBs on Linux and
Windows. This option must be used to compile the main routine to enable optimized malloc routines.

The option arguments can be any of the following:

huge
Link in the huge page runtime library

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of TLB entries
required to execute a program. This option is most effective on Barcelona and Core 2 systems; older
architectures do not have enough TLB entries for this option to be benefitical. By itself, the huge
suboption tries to allocate as many huge pages as required.

huge:<n>
Link the huge page runtime library and allocate n huge pages. Use this suboption to limit the number
of huge pages allocated to n.

225

PGI® User's Guide

You can also limit the pages allocated by using the environment variable PGI_HUGE_PAGES.

hugebss
Puts the BSS section in huge pages; attempts to put a program's unititlaized data section into huge
pages.

Tip. To be effective, this switch must be specified when compiling the file containing the Fortran, C, or
C++ main program.

—M] no] st ddef
instructs the compiler not to predefine any macros to the preprocessor when compiling a C program.

—Mnost di nc
instructs the compiler to not search the standard location for include files.

—Mnostdlib
instructs the linker not to link in the standard libraries libpgftnrtl.a, libm.a, libc.a and libpgc.a in the
library directory lib within the standard directory. You can link in your own library with the —I option or
specify a library directory with the —L option.

—M<pgflag> Fortran Language Controls

226

This section describes the —~M<pgflag> options that affect Fortran language interpretations by the PGI Fortran
compilers. These options are valid only for the pghpf, pgf77 and pgf95 compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

nobackslash noiomutex
nodclchk noonetrip
nodefaultunit nosave
nodlines nounixlogical
dollar,_ noupcase
Syntax:

Description and Related Options

—Mal | ocat abl e=95] 03
controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array assignments. The
default behavior is to use Fortran 95 semantics; the 03 option instructs the compiler to use Fortran 2003
semantics.

—Mbacksl ash
the compiler treats the backslash as a normal character, and not as an escape character in quoted strings.

—Mnobacksl ash
the compiler recognizes a backslash as an escape character in quoted strings (in accordance with
standard C usage).

—Mdcl chk
the compiler requires that all program variables be declared.

Chapter 15. Command-Line Options Reference

—Mnodcl chk
the compiler does not require that all program variables be declared.

—Mdef aul tuni t
the compiler treats "*" as a synonym for standard input for reading and standard output for writing.

—Mnodef aul t uni t
the compiler treats "*" as a synonym for unit 5 on input and unit 6 on output.

—Mdl i nes
the compiler treats lines containing "D" in column 1 as executable statements (ignoring the "D").

—Mnodl i nes
the compiler does not treat lines containing "D" in column 1 as executable statements (does not ignore
the "D").

—Mdol | ar, char
char specifies the character to which the compiler maps the dollar sign. The compiler allows the dollar
sign in names.

—Mext end
with —Mextend, the compiler accepts 132-column source code; otherwise it accepts 72-column code.

—Mf i xed
with —Mfixed, the compiler assumes input source files are in FORTRAN 77-style fixed form format.

—Mfree
with —Mfree, the compiler assumes the input source files are in Fortran 90/95 freeform format.

—Mi onut ex
the compiler generates critical section calls around Fortran 1/0 statements.

—Mnoi onut ex
the compiler does not generate critical section calls around Fortran 1/0 statements.

—Monetrip
the compiler forces each DO loop to execute at least once.

—Mnoonetrip
the compiler does not force each DO loop to execute at least once. This option is useful for programs
written for earlier versions of Fortran.

—Msave
the compiler assumes that all local variables are subject to the SAVE statement. Note that this may allow
older Fortran programs to run, but it can greatly reduce performance.

—Mnosave
the compiler does not assume that all local variables are subject to the SAVE statement.

—Mst andar d
the compiler flags non-ANSI—-conforming source code.

—Muni x| ogi cal
directs the compiler to treat logical values as true if the value is non-zero and false if the value is zero
(UNIX F77 convention.) When —Munixlogical is enabled, a logical value or test that is non-zero is

227

PGI® User's Guide

. TRUE. , and a value or test that is zero is . FALSE. . In addition, the value of a logical expression is
guaranteed to be one (1) when the result is . TRUE. .

—Mnouni x! ogi cal
Directs the compiler to use the VMS convention for logical values for true and false. Even values are true
and odd values are false.

—Mupcase
the compiler allows uppercase letters in identifiers. With —~Mupcase, the identifiers "X" and "x" are
different, and keywords must be in lower case. This selection affects the linking process: if you compile
and link the same source code using —Mupcase on one occasion and —Mnoupcase on another, you may
get two different executables (depending on whether the source contains uppercase letters). The standard
libraries are compiled using the default —Mnoupcase.

—Mnoupcase
the compiler converts all identifiers to lower case. This selection affects the linking process: If you compile
and link the same source code using —Mupcase on one occasion and —Mnoupcase on another, you may
get two different executables (depending on whether the source contains uppercase letters). The standard
libraries are compiled using —Mnoupcase.

—M<pgflag> Inlining Controls

228

This section describes the -M<pgflag> options that control function inlining. Before looking at all the options,
let’s look at a couple examples.

Usage: In the following example, the compiler extracts functions that have 500 or fewer statements from the
source file myprog.f and saves them in the file extract.il.
$ pgf 95 - Mextract =500 -oextract.il nyprog.f

In the following example, the compiler inlines functions with fewer than approximately 100 statements in the
source file myprog.f and writes the executable code in the default output file a.out.
$ pgf 95 -M nline=size: 100 nyprog.f

Related options: —o, —Mextract
Syntax:
Description and Related Options

—M[no] aut oi nl i ne
instructs the compiler to inline a C/C++ function at —02 and above when it is declared with the inline
keyword.

—Mext r act [=option[,option,...]]

Extracts functions from the file indicated on the command line and creates or appends to the specified
extract directory where option can be any of:

name:func
instructs the extractor to extract function func from the file.

size:number
instructs the extractor to extract functions with number or fewer, statements from the file.

Chapter 15. Command-Line Options Reference

lib:filename.ext

Use directory filename.ext as the extract directory (required in order to save and re-use inline
libraries).

If you specify both name and size, the compiler extracts functions that match func, or that have number or
fewer statements. For examples of extracting functions, see Chapter 4, “Using Function Inlining”.
—Mi nl i ne[=option[,option,...]]

This passes options to the function inliner, where the option can be any of these:

except:func
instructs the inliner to inline all eligible functions except func, a function in the source text. Multiple
functions can be listed, comma-separated.

[name:]func

instructs the inliner to inline the function func. The func name should be a non-numeric string that
does not contain a period. You can also use a name: prefix followed by the function name. If name: is

specified, what follows is always the name of a function.
[lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext. The compiler assumes
that a filename.ext option containing a period is a library file. Create the library file using the
—Mextract option. You can also use a lib: prefix followed by the library name. If lib: is specified, no
period is necessary in the library name. Functions from the specified library are inlined. If no library
is specified, functions are extracted from a temporary library created during an extract prepass.
levels:number
instructs the inliner to perform number levels of inlining. The default number is 1.

[no]reshape

instructs the inliner to allow (disallow)inlining in Fortran even when array shapes do not match. The
default is -Minline=noreshape, except with -Mconcur or -mp, where the default is -Minline=reshape.

[size: |number

instructs the inliner to inline functions with number or fewer statements. You can also use a size:
prefix followed by a number. If size: is specified, what follows is always taken as a number.

If you specify both func and number, the compiler inlines functions that match the function name or have
number or fewer statements. For examples of inlining functions, refer to Chapter 4, “Using Function
Inlining”.

—M<pgflag> Optimization Controls

This section describes the —-M<pgflag> options that control optimization. Before looking at all the options,
let’s look at the defaults.

Default: For arguments that you do not specify, the default optimization control options are as follows:

depchk noipa nounroll nor8
i4 nolre novect nor8intrinsics
nofprelaxed noprefetch

229

PGI® User's Guide

230

Note

If you do not supply an option to —Mvect, the compiler uses defaults that are dependent upon the
target system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE instructions enabled.
$ pgf 95 - Wect =sse - Mcache_al i gn myprog. f

Related options: —g, -0

Syntax:

Description and Related Options

—Mcache_al i gn

Align unconstrained objects of length greater than or equal to 16 bytes on cache-line boundaries. An
unconstrained object is a data object that is not 2 member of an aggregate structure or common block.
This option does not affect the alignment of allocatable or automatic arrays.

Note: To effect cache-line alignment of stack-based local variables, the main program or function must be
compiled with —Mcache_align.

—Mconcur [=option [,option,...]]

Instructs the compiler to enable auto-concurrentization of loops. If ~Mconcur is specified, multiple
processors will be used to execute loops that the compiler determines to be parallelizable. Where option
is one of the following:

[no]altcode:n
Instructs the parallelizer to generate alternate serial code for parallelized loops. If altcode is specified
without arguments, the parallelizer determines an appropriate cutoff length and generates serial code
to be executed whenever the loop count is less than or equal to that length. If altcode:n is specified,
the serial altcode is executed whenever the loop count is less than or equal to n. If noaltcode is
specified, the parallelized version of the loop is always executed regardless of the loop count.

cncall
Calls in parallel loops are safe to parallelize. Loops containing calls are candidates for parallelization.
Also, no minimum loop count threshold must be satisfied before parallelization will occur, and last
values of scalars are assumed to be safe.

dist:block
Parallelize with block distribution (this is the default). Contiguous blocks of iterations of a
parallelizable loop are assigned to the available processors.

dist:cyclic
Parallelize with cyclic distribution. The outermost parallelizable loop in any loop nest is parallelized.
If a parallelized loop is innermost, its iterations are allocated to processors cyclically. For example,
if there are 3 processors executing a loop, processor 0 performs iterations 0, 3, 6, etc.; processor 1
performs iterations 1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

[no]innermost
Enable parallelization of innermost loops. The default is to not parallelize innermost loops, since it is
usually not profitable on dual-core processors.

Chapter 15. Command-Line Options Reference

102ss0C
Disables parallelization of loops with reductions.

When linking, the —~Mconcur switch must be specified or unresolved references will result. The NCPUS
environment variable controls how many processors or cores are used to execute parallelized loops.

Note

This option applies only on shared-memory multi-processor (SMP) or multi-core processor-
based systems.

—Mcr ay [=option[,option,...]]
(pgf77 and pgf95 only) Force Cray Fortran (CF77) compatibility with respect to the listed options.
Possible values of option include:

pointer
for purposes of optimization, it is assumed that pointer-based variables do not overlay the storage of
any other variable.

—Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.

—Mnodepchk
instructs the compiler to assume potential data dependencies do not conflict. However, if data
dependencies exist, this option can produce incorrect code.

—Mdse
Enables a dead store elimination phase that is useful for programs that rely on extensive use of inline
function calls for performance. This is disabled by default.

—Mnodse
(default) Disables the dead store elimination phase.

—M[no] f pappr ox[=opt i on]
Perform certain fp operations using low-precision approximation. By default -Mfpapprox is not used.

If -Mfpapprox is used without suboptions, it defaults to use approximate div, sqrt, and rsqrt. The available
suboptions are these:

div
Approximate floating point division

sqrt
Approximate floating point square root

rsqrt
Approximate floating point reciprocal square root

—M[no] f pmi sal i gn
Instructs the compiler to allow (not allow) vector arithmetic instructions with memory operands that are
not aligned on 16-byte boundaries. The default is -Mnofpmisalign on all processors.

231

PGI® User's Guide

Note

Applicable only with one of these options: —tp barcelona or —tp barcelona-64

—Mf pr el axed[=opt i on]
instructs the compiler to use relaxed precision in the calculation of some intrinsic functions. Can result in
improved performance at the expense of numerical accuracy.

The possible values for option are:
div
Perform divide using relaxed precision.

noorder
Perform reciprocal square root (1/sqrt) using relaxed precision.

order
Perform reciprocal square root (1/sqrt) using relaxed precision.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

sqrt
Perform square root with relaxed precision.

With no options, —M pr el axed generates relaxed precision code for those operations that generate a
significant performance improvement, depending on the target processor.

—Mnof pr el axed
(default) instructs the compiler not to use relaxed precision in the calculation of intrinsic functions.

—Mi 4
(pgf77 and pgf95 only) the compiler treats INTEGER variables as INTEGER*4.

—Mi pa=<option>[,<option>[,...]]
Pass options to the interprocedural analyzer. Note: —Mipa implies —02, and the minimum optimization
level that can be specified in combination with —Mipa is —02. For example, if you specify —Mipa —O1 on
the command line, the optimization level will automatically be elevated to —02 by the compiler driver. It
is typical and recommended to use —Mipa=fast. Many of the following sub-options can be prefaced with
no, which reverses or disables the effect of the sub-option if it’s included in an aggregate sub-option like
—Mipa=fast. The choices of option are:

[no]align
recognize when targets of a pointer dummy are aligned; default is noalign.

[no]arg
remove arguments replaced by const, ptr; default is noarg.

[no]cg
generate call graph information for viewing using the pgicg command-line utility; default is nocg.

[no]const
perform interprocedural constant propagation; default is const.

232

Chapter 15. Command-Line Options Reference

except:<func>
used with inline to specify functions which should not be inlined; default is to inline all eligible
functions according to internally defined heuristics.

[[no]f90ptr
F90/F95 pointer disambiguation across calls; default is nofo0ptr

fast

choose IPA options generally optimal for the target. Use —help to see the settings for —Mipa=fast on a
given target.

force
force all objects to re-compile regardless of whether IPA information has changed.

[no]globals
optimize references to global variables; default is noglobals.

inline[:n]
perform automatic function inlining. If the optional :n is provided, limit inlining to at most n levels.
IPA-based function inlining is performed from leaf routines upward.

ipofile
save IPA information in a .ipo file rather than incorporating it into the object file.
[no]keepobj
keep the optimized object files, using file name mangling, to reduce re-compile time in subsequent
builds default is keepobj.
[no]libc
optimize calls to certain standard C library routines.; default is nolibc.
[no]libinline
allow inlining of routines from libraries; implies —Mipa=inline; default is nolibinline.
[no]libopt
allow recompiling and optimization of routines from libraries using IPA information; default is
nolibopt.

[no]localarg
equivalent to arg plus externalization of local pointer targets; default is nolocalarg.

main:<func>
specify a function to appear as a global entry point; may appear multiple times; disables linking.

[no]ptr
enable pointer disambiguation across procedure calls; default is noptr.

[no]pure
pure function detection; default is nopure.

required
return an error condition if IPA is inhibited for any reason, rather than the default behavior of linking
without IPA optimization.

233

PGI® User's Guide

[no]reshape
enables or disables Fortran inline with mismatched array shapes.

safe: [<function>|<library>|
declares that the named function, or all functions in the named library, are safe; a safe procedure
does not call back into the known procedures and does not change any known global variables.
Without —Mipa=safe, any unknown procedures will cause IPA to fail.
[no]safeall
declares that all unknown procedures are safe; see —Mipa=safe; default is nosafeall.
[no]shape
perform Fortran 90 array shape propagation; default is noshape.
summary
only collect IPA summary information when compiling; this prevents IPA optimization of this file, but
allows optimization for other files linked with this file.
[no]vestigial
remove uncalled (vestigial) functions; default is novestigial.
—M[no] | oop32
Aligns or does not align innermost loops on 32 byte boundaries with —tp barcelona.

Small loops on barcelona may run fast if aligned on 32-byte boundaries; however, in practice, most
assemblers do not yet implement efficient padding causing some programs to run more slowly with this
default. Use -Mloop32 on systems with an assembler tuned for barcleona. The default is -Mnoloop32.
—MI r e [=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can reduce the number of arithmetic
operations and memory references in loops.
array
treat individual array element references as candidates for possible loop-carried redundancy
elimination. The default is to eliminate only redundant expressions involving two or more operands.
assoc
allow expression re-association; specifying this sub-option can increase opportunities for loop-carried
redundancy elimination but may alter numerical results.

1n02assoc
disallow expression re-association.

—Mnol re
Disables loop-carried redundancy elimination.
—Mnof rame

Eliminates operations that set up a true stack frame pointer for every function. With this option enabled,
you cannot perform a traceback on the generated code and you cannot access local variables.

—Mnoi 4
(pgf77 and pgf95 only) the compiler treats INTEGER variables as INTEGER*2.

234

Chapter 15. Command-Line Options Reference

—Mpf i
generate profile-feedback instrumentation; this includes extra code to collect run-time statistics and dump
them to a trace file for use in a subsequent compilation. —Mpfi must also appear when the program is
linked. When the resulting program is executed, a profile feedback trace file pgfi.out is generated in the
current working directory; see —Mpfo.

Note

compiling and linking with —Mpfi adds significant runtime overhead to almost any executable; you
should use executables compiled with —Mpfi only for execution of training runs.

—Mpf o
enable profile-feedback optimizations; requires the presence of a pgfi.out profile-feedback trace file in the
current working directory. See —Mpfi.

—Mpr ef et ch[=option [,option...]]
enables generation of prefetch instructions on processors where they are supported. Possible values for
option include:
d:m
set the fetch-ahead distance for prefetch instructions to m cache lines.

n:p
set the maximum number of prefetch instructions to generate for a given loop to p.

nta
use the prefetchnta instruction.

plain
use the prefetch instruction (default).

t0
use the prefetcht instruction.

use the AMD-specific prefetchw instruction.

—Mnopr ef et ch
Disables generation of prefetch instructions.

—M] no] pr opcond
Enables or disables constant propagation from assertions derived from equality conditionals.

The default is enabled.

—Mr 8
(pgf77, pgf95 and pghpf only) the compiler promotes REAL variables and constants to DOUBLE
PRECISION variables and constants, respectively. DOUBLE PRECISION elements are 8 bytes in length.

—Mnor 8
(pgf77, pgf95 and pghpf only) the compiler does not promote REAL variables and constants to DOUBLE
PRECISION. REAL variables will be single precision (4 bytes in length).

235

PGI® User's Guide

—Mr8intrinsics
(pgf77, and pgf95 only) the compiler treats the intrinsics CMPLX and REAL as DCMPLX and DBLE,
respectively.

—Mnor 8i ntrinsics
(pgf77, and pgf95 only) the compiler does not promote the intrinsics CMPLX and REAL to DCMPLX and
DBLE, respectively.

—Msaf ept r [=option[,option,...]]
(pgcc and pgcepp only) instructs the C/C++ compiler to override data dependencies between pointers of a
given storage class. Possible values of option include:

all
assume all pointers and arrays are independent and safe for aggressive optimizations, and in
particular that no pointers or arrays overlap or conflict with each other.

arg
instructs the compiler that arrays and pointers are treated with the same copyin and copyout
semantics as Fortran dummy arguments.

global
instructs the compiler that global or external pointers and arrays do not overlap or conflict with each
other and are independent.

local/auto
instructs the compiler that local pointers and arrays do not overlap or conflict with each other and are
independent.

static
instructs the compiler that static pointers and arrays do not overlap or conflict with each other and
are independent.

—Mscal ar sse
Use SSE/SSE2 instructions to perform scalar floating-point arithmetic (this option is valid only on —tp {p7 |
k8-32 | k8-64} targets).

—Mnoscal ar sse
Do not use SSE/SSE2 instructions to perform scalar floating-point arithmetic; use x87 instructions instead
(this option is not valid in combination with the —tp k8-64 option).

—Msmar t
instructs the compiler driver to invoke a post-pass assembly optimization utility.

—Mnosmar t
instructs the compiler not to invoke an AMD64-specific post-pass assembly optimization utility.

—M[no] t r aceback
Adds debug information for runtime traceback for use with the environment variable $PG _ TERM By
default, traceback is enabled for f77 and f90 and disabled for C and C++.

Setting set TRACEBACK=COFF; in si t er ¢ or .mypg*r c also disables default traceback.

Using ON instead of OFF enables default traceback.

236

Chapter 15. Command-Line Options Reference

—Munr ol | [=option [,option...]]
invokes the loop unroller to executing multiple instances of the loop during each iteration. This also sets
the optimization level to 2 if the level is set to less than 2, or if no —O or —g options are supplied. The
option is one of the following:

cm
instructs the compiler to completely unroll loops with a constant loop count less than or equal to m, a
supplied constant. If this value is not supplied, the m count is set to 4.

m:<n>
instructs the compiler to unroll multi- block loops n times. This option is useful for loops that have
conditional statements. If n is not supplied, the default value is 4. The default setting is not to enable -
Munroll=m.

n:<n>
instructs the compiler to unroll single-block loops n times, a loop that is not completely unrolled,
or has a non-constant loop count. If n is not supplied, the unroller computes the number of times a
candidate loop is unrolled.

—Mnounr ol |
instructs the compiler not to unroll loops.

-M[no] vect [=option [,option,...]]
(disable) enable the code vectorizer, where option is one of the following:

altcode
Instructs the vectorizer to generate alternate code (altcode) for vectorized loops when appropriate.
For each vectorized loop the compiler decides whether to generate altcode and what type or types
to generate, which may be any or all of: altcode without iteration peeling, altcode with non-temporal
stores and other data cache optimizations, and altcode based on array alignments calculated
dynamically at runtime. The compiler also determines suitable loop count and array alignment
conditions for executing the altcode. This option is enabled by default.

noaltcode
This disables alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change the results of a
computation due to roundoff error. A typical optimization is to change an arithmetic operation to
an arithmetic operation that is mathematically correct, but can be computationally different, due to
round-off error

1n02ss0C
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a cache size of n. The
default is set using per-processor type, either using the —tp switch or auto-detected from the host
computer.

[no]gather
Vectorize loops containing indirect array references, such as this one:

237

PGI® User's Guide

sum = 0.dO

do k=d(j),d(j+1)-1
sum = sum + a(k)*b(c(k))
enddo

The default is -Mvect=gather.

[no]sizelimit
Generate vector code for all loops where possible regardless of the number of statements in the
loop. This overrides a heuristic in the vectorizer that ordinarily prevents vectorization of loops with a
number of statements that exceeds a certain threshold. The default is nosizelimit.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length is less than or equal to n. The
vectorizer uses this information to eliminate generation of the stripmine loop for vectorized loops
wherever possible. If the size n is omitted, the default is 100.

Note: No space is allowed on either side of the colon (:).

sse
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use of SSE,

SSE2, and prefetch instructions.

—Mnovect
instructs the compiler not to perform vectorization; can be used to override a previous instance of —Mvect
on the command-line, in particular for cases where —Mvect is included in an aggregate option such as

—fastsse.

—Mnovi ntr
instructs the compiler not to perform idiom recognition or introduce calls to hand-optimized vector

functions.

—M<pgflag> Miscellaneous Controls

Default: For arguments that you do not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Usage: In the following example, the compiler includes Fortran source code with the assembly code.
$ pgf 95 -Manno -S nyprog. f

In the following example, the compiler displays information about inlined functions with fewer than
approximately 20 source lines in the source file myprog.f.

$ pgf 95 -M nfo=inline -Mnline=20 nyprog. f
In the following example, the assembler does not delete the assembly file mypr og. s after the assembly pass.
$ pgf 95 - Mkeepasm nypr og. f

In the following example, the compiler creates the listing file mypr og. | st .

238

Chapter 15. Command-Line Options Reference

$ pgf 95 -Mist myprog.f

In the following example, array bounds checking is enabled.

$ pgf 95 - Moounds nyprog. f

Related options: —m, —S, -V, —v

Syntax:
Description and Related Options

—Manno
annotate the generated assembly code with source code when either the —S or —Mkeepasm options are
used.

—Mbounds
enables array bounds checking. If an array is an assumed size array, the bounds checking only applies
to the lower bound. If an array bounds violation occurs during execution, an error message describing
the error is printed and the program terminates. The text of the error message includes the name of the
array, the location where the error occurred (the source file and the line number in the source), and
information about the out of bounds subscript (its value, its lower and upper bounds, and its dimension).
For example: PGFTN-F-Subscript out of range for array a (a.f: 2) subscript=3, lower bound=1, upper
bound=2, dimension=2

—Mnobounds
disables array bounds checking.

—Mbyt eswapi o
swap byte-order from big-endian to little-endian or vice versa upon input/output of Fortran unformatted
data files.

—Mchkf pst k (32-bit only)
instructs the compiler to check for internal consistency of the x87 floating-point stack in the prologue
of a function and after returning from a function or subroutine call. Floating-point stack corruption may
occur in many ways, one of which is Fortran code calling floating-point functions as subroutines (i.e.,
with the CALL statement). If the PGI_CONTINUE environment variable is set upon execution of a program
compiled with —Mchkfpstk, the stack will be automatically cleaned up and execution will continue. There
is a performance penalty associated with the stack cleanup. If PGI_CONTINUE is set to verbose, the stack
will be automatically cleaned up and execution will continue after printing of a warning message.

Note

This switch is only valid for 32-bit. On 64-bit it is ignored.

—Mchkpt r
instructs the compiler to check for pointers that are de-referenced while initialized to NULL (pgf95 and

pghpf only).
—Mchkst k
instructs the compiler to check the stack for available space in the prologue of a function and before the

start of a parallel region. Prints a warning message and aborts the program gracefully if stack space is
insufficient. Useful when many local and private variables are declared in an OpenMP program.

239

PGI® User's Guide

240

If the user also sets the PG _STACK_USAGE environment variable to any value, then the program
displays the stack space allocated and used after the program exits. For example, you might see something
similar the following message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. For more information on
the PG _STACK_USAGE, refer to“PGI_STACK_USAGE,” on page 97.

This information is useful when you want to explicitly set a reserved and committed stack size for your
programs, such as using the —st ack option on Windows.

—Mcpp[=option [,option,...]]
run the PGI ¢pp-like preprocessor without execution of any subsequent compilation steps. This option is
useful for generating dependence information to be included in makefiles.

Note

Only one of the m, md, mm or mmd options can be present; if multiple of these options are listed,
the last one listed is accepted and the others are ignored.

The option is one or more of the following:

m
print makefile dependencies to stdout.

md
print makefile dependencies to filename.d, where filename is the root name of the input file being
processed.

mm
print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependencies to filename.d, where filename is the root name of the input file being
processed, ignoring system include files.

[no]comment
(don’t) retain comments in output.

[suffix: | <suff>
use <suff> as the suffix of the output file containing makefile dependencies.

—Mdl |
(Windows only) link with the DLL versions of the runtime libraries. This flag is required when linking with
any DLL built by any of The Portland Group compilers. This option implies —D_DLL, which defines the
preprocessor symbol _DLL.

—Mgccbug] s]
match the behavior of certain gcc bugs.

—Mi nf o[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the following:

Chapter 15. Command-Line Options Reference

all
instructs the compiler to produce all available —Minfo information.

[no]file
instructs the compiler to print or not print source file names as they are compiled. The default is to
print the names, -Minfo=file.

inline
instructs the compiler to display information about extracted or inlined functions. This option is not
useful without either the —Mextract or —Minline option.

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on vectorization.

opt
instructs the compiler to display information about optimization.

mp
instructs the compiler to display information about parallelization.

time
instructs the compiler to display compilation statistics.

unroll
instructs the compiler to display information about loop unrolling.

—Mnegi nf o[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the following:

all
instructs the compiler to produce all available information on why various optimizations are not
performed.

concur
instructs the compiler to produce all available information on why loops are not automatically
parallelized. In particular, if a loop is not parallelized due to potential data dependence, the
variable(s) that cause the potential dependence will be listed in the —~Mneginfo messages.

loop
instructs the compiler to produce information on why memory hierarchy optimizations on loops are
not performed.

—Mi nform | evel
instructs the compiler to display error messages at the specified and higher levels, where level is one of
the following;

fatal
instructs the compiler to display fatal error messages.

inform
instructs the compiler to display all error messages (inform, warn, severe and fatal).

241

PGI® User's Guide

severe
instructs the compiler to display severe and fatal error messages.

warn
instructs the compiler to display warning, severe and fatal error messages.

—Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally, the assembler
deletes this file when it is finished. The assembly file has the same filename as the source file, but with a .s
extension.

-Mli st
instructs the compiler to create a listing file. The listing file is filename.lst, where the name of the source
file is filename.f.

—Mneked! |
(Windows only) generate a dynamic link library (DLL).

—Mnukei mpli b
(Windows only) when used without -def:deffile, passes the -def switch to the librarian without a deffile.

—Mnol i st
the compiler does not create a listing file. This is the default.

—Mnoopennp
when used in combination with the —np option, causes the compiler to ignore OpenMP parallelization
directives or pragmas, but still process SGI-style parallelization directives or pragmas.

—Mnosgi np
when used in combination with the —np option, causes the compiler to ignore SGI-style parallelization
directives or pragmas, but still process OpenMP parallelization directives or pragmas.

—Mnopgdl! | mai n
(Windows only) do not link the module containing the default DIIMain() into the DLL. This flag applies to
building DLLs with the PGF95 and PGHPF compilers. If you want to replace the default DIIMain() routine
with a custom DIIMain(), use this flag and add the object containing the custom DIIMain() to the link line.
The latest version of the default DIIMain() used by PGF95 and PGHPF is included in the Release Notes for
each release; the PGF95- and PGHPF-specific code in this routine must be incorporated into the custom
version of DIIMain() to ensure the appropriate function of your DLL.

—Mnor pat h
(Linux only) Do not add —rpath to the link line.

—Mpr epr ocess
perform cpp-like preprocessing on assembly and Fortran input source files.

242

Chapter 16. OpenMP Reference
Information

The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program Interface. The
PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program Interface.

This chapter contains detailed descriptions of each of the OpenMP Fortran directives and C/C++ pragmas that
PGI supports. In addition, the section“Directive and Pragma Clauses,” on page 260 contains information
about the clauses associated with the directives and pragmas.

Parallelization Directives and Pragmas

Parallelization directives, as described in Chapter 5, ““Using OpenMP”, are comments in a program that are
interpreted by the PGI Fortran compilers when the option - np is specified on the command line. The form of a
parallelization directive is:

sentinel directive_nanme [cl auses]

Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by the PGCC C and
C++ compilers when the option -mp is specified on the command line. The form of a parallelization pragma
is:

#pragma onp pragme_nane [cl auses]

The examples given with each section use the routines onp_get _num t hr eads() and

onp_get _t hr ead_nunt() . For more information, refer to “Run-time Library Routines,” on page 55. They
return the number of threads currently in the team executing the parallel region and the thread number within
the team, respectively.

Note

Directives which are presented in pairs must be used in pairs.

This section describes the details of these directives and pragmas that were summarized in Chapter 5, “Using
OpenMP”. For each directive and pragma, this section describes the overall purpose, the syntax, the clauses
associated with it, the usage, and examples of how to use it.

243

PGI® User's Guide

ATOMIC

The OpenMP ATOMIC directive is semantically equivalent to a single statement in a CRITICAL...END CRITICAL
directive or the omp critical pragma.

1 $OVP ATOM C
Syntax:
1 $OW ATOM C #pragma onp atomnic
< C/ C++ expression statenent >
Usage:

The ATOMIC directive is semantically equivalent to enclosing the following single statement in a CRITICAL /
END CRITICAL directive pair. The omp atomic pragma is semantically equivalent to subjecting the following
single C/C++ expression statement to an omp critical pragma.

The statements must be one of the following forms:

For Directives: For Pragmas:
X = X operator expr x <binary_operator>= expr
X = expr operator X X++
X = intrinsic (X, expr) +4X
X = intrinsic (expr, X) X--
-X

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x, intrinsic
is one of MAX, MIN, IAND, IOR, or IEOR, operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV., and
<binary_operator> is not overloaded and is one of +, *, -, /, & *, |, << or >>.

BARRIER

244

The OpenMP BARRIER directive defines a point in a program where each thread waits for all other threads to
arrive before continuing with program execution.

Syntax:

| $OVP BARRI ER #pragma onp barrier

Usage:

There may be occasions in a parallel region, when it is necessary that all threads complete work to that
point before any thread is allowed to continue. The BARRIER directive or omp barrier pragma synchronizes
all threads at such a point in a program. Multiple barrier points are allowed within a parallel region. The
BARRIER directive and omp barrier pragma must either be executed by all threads executing the parallel
region or by none of them.

Chapter 16. OpenMP Reference Information

CRITICAL ... END CRITICAL and omp critical

The CRITICAL ...END CRITICAL directive and omp critical pragma require a thread to wait until no other thread
is executing within a critical section.

Syntax:
1$OWP CRITI CAL [(nane)] #pragma onp critical [(nane)]
< Fortran code executed in body of < C/ C++ structured bl ock >

critical section >
1$0OVP END CRITICAL [(nane)]

1$OWP CRITI CAL [(nane)]
< Fortran code executed in body of critical section >
1$OWP END CRITICAL [(nane)]

Usage:

Within a parallel region, there may exist subregions of code that will not execute properly when executed by
multiple threads simultaneously. This issue is often due to a shared variable that is written and then read again.

The CRITICAL ... END CRITICAL directive pair and the omp critical pragma define a subsection of code within a
parallel region, referred to as a critical section, which is executed one thread at a time.

The first thread to arrive at a critical section is the first to execute the code within the section. The second
thread to arrive does not begin execution of statements in the critical section until the first thread exits the
critical section. Likewise, each of the remaining threads wait its turn to execute the statements in the critical
section.

You can use the optional name argument to identify the critical region. Names that identify critical regions have
external linkage and are in a name space separate from the name spaces used by labels, tags, members, and
ordinary identifiers. If 2 name argument appears on a CRITICAL directive, the same name must appear on the
END CRITICAL directive.

Note

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal.

Example of Critical...End Critical directive:

PROGRAM CRI Tl CAL_USE
REAL A(100, 100), MX, LMX

INTEGER |, J
MX =-1.0
LMX = -1.0

CALL RANDOM SEEDY)
CALL RANDOM NUVBER(A)
I $OMP PARALLEL PRI VATE(1), FIRSTPRI VATE(LMX)
I $OWP DO
DO J=1, 100
DO 1 =1, 100
LMX = MAX(A(I, J), LMX)
ENDDO
ENDDO

245

PGI® User's Guide

I $OMP CRI TI CAL
MX = MAX(MX, LMX)

I $OMP END CRI Tl CAL

I $OMP END PARALLEL
PRINT *,"MAX VALUE OF A IS ", MX
END

Example of omp critical pragma

#i ncl ude <stdlib. h>
mai n() {
int a[100][100], nx=-1,1nx=-1, i, j;
for (j=0; j<100; j++)
for (i=0; i<100; i++)
ali][j]=1+(int)(10.0*rand()/ (RAND_MAX+1.0));
#pragma onp parallel private(i) firstprivate(l m)
{
#pragma onp for
for (j=0; j<100; j++)
for (i=0; i<100; i++)
Im = (Imx >ali][j]) 2 Im: ali][j];
#pragma onp critical
mk = (nx > 1mx) ? nk : | nx;
}

printf ("max value of a is %\ n", nx);

}

This program could also be implemented without the critical region by declaring MX as a reduction variable
and performing the MAX calculation in the loop using MX directly rather than using LMX. Refer to “PARALLEL
... END PARALLEL and omp parallel ” and “DO ... END DO and omp for ” for more information on how to use
the REDUCTION clause on a parallel DO loop.

Example of omp critical pragma

#i ncl ude <stdlib. h>

mai n() {
int a[100][100], nx=-1,
lmx=-1, i, j;

for (j=0; j<100; j++)
for (i=0; i<100; i++)
a[i][j]=1+(int)(10.0*rand()/(RAND_MAX+1.0));
#pragma onp parallel private(i) firstprivate(lnx)
{
#pragma onp for
for (j=0; j<100; j++)
for (i=0; i<100; i++)
Im¢ = (Imx >afi][j]) 2 Im: ali][j];
#pragma onp critical

nk = (nmx > 1nmx) ? nk : |nx;
}
printf ("max value of a is %\ n", nx);
}
C$DOACROSS

The C$DOACROSS directive, while not part of the OpenMP standard, is supported for compatibility with
programs parallelized using legacy SGI-style directives.

Syntax:

246

DO

Chapter 16. OpenMP Reference Information

C$DOACROSS [O auses]
< Fortran DO | oop to be executed
in parallel >

#pragma onp parallel [clauses]
< C/ C++ structured bl ock >

Clauses:

[{PRIVATE | LOCAL} (list)]

[{SHARED | SHARE} (list)]

[MP_SCHEDTYPE={ S| MPLE | | NTERLEAVE}]
[CHUNK=<i nt eger _expressi on>]

[I'F (logical _expression)]

Usage:

The C$DOACROSS directive has the effect of a combined parallel region and parallel DO loop applied to the
loop immediately following the directive. It is very similar to the OpenMP PARALLEL DO directive, but provides
for backward compatibility with codes parallelized for SGI systems prior to the OpenMP standardization effort.
The C$DOACROSS directive must not appear within a parallel region. It is a shorthand notation that tells the
compiler to parallelize the loop to which it applies, even though that loop is not contained within a parallel
region. While this syntax is more convenient, it should be noted that if multiple successive DO loops are to be
parallelized it is more efficient to define a single enclosing parallel region and parallelize each loop using the
OpenMP DO directive.

Avariable declared PRIVATE or LOCAL to a CSDOACROSS loop is treated the same as a private variable in a
parallel region or DO (see above). A variable declared SHARED or SHARE to a CSDOACROSS loop is shared
among the threads, meaning that only 1 copy of the variable exists to be used and/or modified by all of the
threads. This is equivalent to the default status of a variable that is not listed as PRIVATE in a parallel region or
DO (this same default status is used in CSDOACROSS loops as well).

... END DO and omp for

The OpenMP DO ...END DO directive and omp for pragma support parallel execution and the distribution of
loop iterations across available threads in a parallel region.

Syntax:

1 $OWP DO [d auses]
< Fortran DO | oop to be executed in
paral | el
| $OVP END DO [NOWAI T]

#pragma onp for [C auses]
< C C++ for loop to be executed in
parallel >

Clauses:

For Directives:

PRI VATE(| i st)

FI RSTPRI VATE(| i st)

LASTPRI VATE(| i st)

REDUCTI ON({operator | intrinsic } :
SCHEDULE (type [, chunk])

ORDERED

list)

For Pragmas:

private(list)
firstprivate(list)
| astprivate(list)
reducti on(operator:
schedul e (ki nd[,
ordered

nowai t

list)
chunk])

247

PGI® User's Guide

248

Usage:

The real purpose of supporting parallel execution is the distribution of work across the available threads. The
DO ... END DO directive pair and the omp for pragma provide a convenient mechanism for the distribution of
loop iterations across the available threads in a parallel region.

While you can explicitly manage work distribution with constructs such as the following one, these constructs
are not in the form of directives or pragmas.

Examples:

For Directives: For Pragmas:

IF (onp_get _thread nun() .EQ 0) if (onp_get thread num() == 0) {
THEN e

e }
ELSE I F (onp_get thread num() .EQ 1) else if (onp_get thread nunm() == 1) {

THEN

ENDI F

%

Tips

Remember these items about clauses in the DO...END DO directives and omp for pragmas:

Variables declared in a PRIVATE list are treated as private to each processor participating in parallel
execution of the loop, meaning that a separate copy of the variable exists on each processor.

Variables declared in a FIRSTPRIVATE list are PRIVATE, and in addition are initialized from the original
object existing before the construct.

Variables declared in a LASTPRIVATE list are PRIVATE, and in addition the thread that executes the
sequentially last iteration updates the version of the object that existed before the construct.

The REDUCTION clause for the directive is described in “PARALLEL ... END PARALLEL and omp parallel ,”
on page 251 and the reduction clause for the pragma is described in“Directive and Pragma Clauses,” on
page 260.

The SCHEDULE clause is explained in the following section.

If ORDERED code blocks are contained in the dynamic extent of the DO directive, the ORDERED clause
must be present. For more information on ORDERED code blocks, refer to “ORDERED ”.

If ordered code blocks are contained in the dynamic extent of the for directive, the ordered clause must be
present. See “ORDERED ,” on page 251 for more information on ordered code blocks.

The DO ... END DO directive pair directs the compiler to distribute the iterative DO loop immediately
following the !$OMP DO directive across the threads available to the program. The DO loop is executed in
parallel by the team that was started by an enclosing parallel region. If the '$OMP END DO directive is not
specified, the !$OMP DO is assumed to end with the enclosed DO loop. DO ... END DO directive pairs may
not be nested. Branching into or out of a !$OMP DO loop is not supported.

The omp for pragma directs the compiler to distribute the iterative for loop immediately following across
the threads available to the program. The for loop is executed in parallel by the team that was started by an

Chapter 16. OpenMP Reference Information

enclosing parallel region. Branching into or out of an omp for loop is not supported, and omp for pragmas

may not be nested.

e By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work waits until the other threads have finished their portion of work. If NOWAIT is specified,
the threads will not synchronize at the end of the parallel loop.

In addition to the preceding items, remember these items about !$OMP DO loops and omp for loops:

* The DO loop index variable is always private.

e The for loop index variable is always private and must be a signed integer.

e 1$OMP DO loops and omp for loops must be executed by all threads participating in the parallel region or

none at all.

 The END DO directive is optional, but if it is present it must appear immediately after the end of the

enclosed DO loop.

e The for loop must be a structured block and its execution must not be terminated by break.

e Values of the loop control expressions and the chunk expressions must be the same for all threads

executing the loop.

Examples:

Example of Do...END DO directive

PROGRAM DO_USE
REAL A(1000), B(1000)

DO | =1, 1000
B(1) = FLOAT(I)
ENDDO
| $OVP PARALLEL
I $OVP DO
DO | =1, 1000
A(l) = SQRT(B(1));
ENDDO

1 $OVWP END PARALLEL

END

Example of omp for pragma

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
mai n() {
float a[1000], b[1000];
int i;
for (i=0; i<1000; i++)
b[i] =1i;
#pragma onp parall el
{
#pragma onp for
for (i=0; i<1000; i++)
ali] = sart(b[i]);

}
.

The SCHEDULE clause specifies how iterations of the DO or for loop are divided up between processors. For
more information on this clause, refer to “Schedule Clause,” on page 261.

FLUSH and omp flush pragma

The OpenMP FLUSH directive and omp flush pragma ensure that all processor-visible data items, or only those
specified in list when it’s present, are written back to memory at the point at which the directive appears.

Syntax:

249

PGI® User's Guide

1$OWP FLUSH [(list)] #pragma onp flush [(list)]

Usage:

The FLUSH directive ensures that all processor-visible data items, or only those specified in the list, when it is
present, are written back to memory at the point at which the directive or pragma appears.

MASTER ... END MASTER and omp master pragma

250

The MASTER....END MASTER directive and omp master pragma allow the user to designate code that must
execute on a master thread and that is skipped by other threads in the team of threads.

Syntax:
| $OVP MASTER #pragma onp naster
< Fortran code executed in body of < C C++ structured bl ock >

MASTER section >
1 $OVP END MASTER

Usage:

A master thread is a single thread of control that begins an OpenMP program and which is present for the
duration of the program. In a parallel region of code, there may be a sub-region of code that should execute
only on the master thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the MASTER ... END MASTER directive pair or omp master pragma allows the user
to conveniently designate code that executes on the master thread and is skipped by the other threads.

There is no implied barrier on entry to or exit from a master section of code. Nested master sections are
ignored. Further, branching into or out of 2 master section is not supported.

Examples:

Example of MASTER...END MASTER directive

PROGRAM MASTER USE
| NTEGER A(O0: 1)
| NTEGER onp_get _thread_num
A=-1
1 $OVP PARALLEL
A(onp_get _thread_nun()) = onp_get _thread_num()
| $OVP MASTER
PRI NT *, "YOU SHOULD ONLY
SEE THI S ONCE"
1 $OVP END MASTER
1 $OVP END PARALLEL
PRINT *, "A(0)=",
A(0), " A(D=", AL
END

Example of omp master pragma

#i ncl ude <stdi o. h>
#i ncl ude <onp. h>
mai n() {
int a[2]={-1,-1};

Chapter 16. OpenMP Reference Information

#pragma onp parall el
{
a[onmp_get _thread_num()] = onp_get_thread_num();
#pragma onp master
printf("YOU SHOULD ONLY SEE THI S ONCE\n");

}
printf("a[0] =%, a[l]=%l\n",a[0],a[l]);
}
ORDERED

The OpenMP ORDERED directive and omp ordered pragma allow the user to identify a portion of code within
a ordered code block that must be executed in the original, sequential order, while allowing parallel execution
of statements outside the code block.

Syntax:
1 $OVP ORDERED #pragnma onp ordered
< Fortran code bl ock executed by < C/ C++ structured bl ock >

processor >
1 $OVP END ORDERED

Usage:

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive that includes
the ORDERED clause. The ordered pragma can appear only in the dynamic extent of a for or parallel for
pragma that includes the ordered clause. The structured code block between the ORDERED / END ORDERED
directives or after the ordered pragma is executed by only one thread at a time, and in the order of the loop
iterations. This sequentializes the ordered code block while allowing parallel execution of statements outside
the code block. The following additional restrictions apply to the ORDERED directive and ordered pragma:

 The ordered code block must be a structured block. It is illegal to branch into or out of the block.

e Itis illegal to branch into or out of the block.

e A given iteration of a loop with a DO directive or omp for pragma cannot execute the same ORDERED
directive or omp ordered pragma more than once, and cannot execute more than one ORDERED directive
or omp ordered pragma.

PARALLEL ... END PARALLEL and omp parallel

The OpenMP PARALLEL ...END PARALLEL directive and OpenMP omp parallel pragma support a fork/join
execution model in which a single thread executes all statements until a parallel region is encountered.

Syntax:
1 $OVP PARALLEL [auses] #pragma onp parallel [clauses]
< Fortran code executed in body of < C C++ structured bl ock >

parallel region >
1 $OVP END PARALLEL

Clauses:

251

PGI® User's Guide

252

For Directives: For Pragmas:

PRI VATE(| i st) private(list)

SHARED(| i st) shared(list)

DEFAULT(PRI VATE | SHARED | NONE) def aul t (shared | none)

FI RSTPRI VATE(| i st) firstprivate(list)

REDUCTI ON([{operator | intrinsic}:] list) reduction(operator: |ist)

COPYI N(I'i st) copyin (list)

| F(scal ar _| ogi cal _expr essi on) i f (scal ar_expression)

NUM_THREADS(scal ar _i nt eger _expr essi on) num t hr eads(scal ar _i nt eger _expr essi on)
Usage:

This directive pair or pragma declares a region of parallel execution. It directs the compiler to create an
executable in which the statements within the structured block, such as between PARALLEL and PARALLEL END
for directives, are executed by multiple lightweight threads. The code that lies within this structured block is
called a parallel region.

The OpenMP parallelization directives or pragmas support a fork/join execution model in which a single
thread executes all statements until a parallel region is encountered. At the entrance to the parallel region, a
system-dependent number of symmetric parallel threads begin executing all statements in the parallel region
redundantly. These threads share work by means of work-sharing constructs such as parallel DO loops or For
loops.

* The number of threads in the team is controlled by the OMP_NUM_THREADS environment variable. If
OMP_NUM_THREADS is not defined, the program executes parallel regions using only one processor.

* Branching into or out of a parallel region is not supported.

e All other shared-memory parallelization directives or pragmas must occur within the scope of a parallel
region. Nested PARALLEL ... END PARALLEL directive pairs or omp parallel pragmas are not supported and
are ignored.

e There is an implicit barrier at the end of the parallel region, which, in the directive, is denoted by the END
PARALLEL directive. When all threads have completed execution of the parallel region, a single thread
resumes execution of the statements that follow.

NOTE

By default, there is no work distribution in a parallel region. Each active thread executes the entire
region redundantly until it encounters a directive or pragma that specifies work distribution. For work
distribution, see the DO, PARALLEL DO, or DOACROSS directives or the omp for pragma.

Examples:
PARALELL ... END PARALLEL directive example: omp parallel pragma Example
PROGRAM WHI CH_PROCESSOR_AM | #i ncl ude <stdi o. h>
| NTEGER A(O0: 1) #i ncl ude <onp. h>
| NTEGER onp_get _thread_num mai n() {
A(0) = -1 int a[2]={-1,-1};
A(l) = -1 #pragma onp parall el
1 $OVP PARALLEL {
A(onp_get _thread_nun()) = a[onp_get _thread_nun()] =

Chapter 16. OpenMP Reference Information

onp_get _t hread_num() onp_get _thread_num();
1 $OVP END PARALLEL }
PRINT *, "A(0)=", A(0), printf("a[0] = %,
AL =" AL a[1] = %", a[0],a[1]);
END }

Clause Usage:

PRIVATE: The variables specified in a PRIVATE list are private to each thread in a team. In effect, the compiler
creates a separate copy of each of these variables for each thread in the team. When an assignment to a private
variable occurs, each thread assigns to its local copy of the variable. When operations involving a private
variable occur, each thread performs the operations using its local copy of the variable.

Tips about private variables:

e Variables declared private in a parallel region are undefined upon entry to the parallel region. If the first
use of a private variable within the parallel region is in a right-hand-side expression, the results of the
expression will be undefined (i.e., this is probably a coding error).

e Variables declared private in a parallel region are undefined when serial execution resumes at the end of
the parallel region.

SHARED: Variables specified in a SHARED list are shared between all threads in a team, meaning that all
threads access the same storage area for SHARED data.

DEFAULT: The DEFAULT clause lets you specify the default attribute for variables in the lexical extent of the
parallel region. Individual clauses specifying PRIVATE, SHARED, and so on, ov