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Diffraction of Electrons 
 

Object:  Verify that electrons are waves; i.e., that they diffract just like light waves.  This lab is 
then used to measure their wavelength or, alternatively, measure the spacing between the 
layers of carbon atoms in polycrystalline graphite that causes the diffraction. 

 
Apparatus: Electron diffraction tube (electron gun, thin graphite screen, fluorescent screen), power 

supply for filament and accelerating voltage, wires, ammeter, and flexible plastic ruler 
with scale in mm. 

 
 
Introduction 
 It is well known that X-rays, being light waves, diffract from crystalline surfaces just like 
visible light reflecting from a diffraction grating.  The condition for constructive interference is given 
by Bragg’s Law: 

 
   

 

2d sinθ = mλ; m =1,2,3...     (1) 
 
where θ is the so-called grazing angle of incidence (see Fig. 27.13 on p. 877 of your book; it’s not the 
same as the usual angle of incidence, but its complement) and d is the distance between the planes of 
atoms in the crystal. X-ray diffraction is commonly used to determine the molecular structure of 
molecules, and perhaps is most famous for identifying the helical structure of the DNA molecule, the 
foundation of molecular genetics. 
 
 Remarkably, electrons (which we know are particles of charge -1.6 x 10-19 C and mass 9.1 x 10-

31 kg) also show the identical property of diffraction when a beam of them shines on a crystal.  
Therefore we conclude they also have a wavelength. About 100 years ago, Louis de Broglie 
conjectured that the wavelength of a particle is given by  

  

 

λ =
h

mv
 

where h  is Planck’s constant, m is the mass of the particle, and v its velocity.   
 

How do we find this wavelength? While we don’t measure the velocity of the particle directly, 
we DO know its kinetic energy if we accelerate the particle through a potential difference ∆V: 
 

  

 

KE =
1
2

mv 2 = e∆V ⇒ mv = 2em∆V     (2) 

giving  

  

 

λ =
h

2em∆V
        (3) 
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To actually measure the wavelength using diffraction and interference, we use Bragg’s law (Eq. 1) 
where we make use of only first-order diffraction (m=1) such that  

 

sinθ =
λ

2d
=

h
2d 2em∆V

,       (4) 

we can see that by measuring ∆V and θ, we can determine the spacing d between the atomic layers in 
the crystal illuminated by the electron beam.  We will check this against the wavelength from de 
Broglie’s conjecture (Eq. 3). 
 

Experiment 
 
Shown below is a sketch of the electron diffraction tube.  Current is supplied to the filament (4) to heat 
it up so that it emits electrons. The electrons gain kinetic energy from a voltage difference ∆V applied 
between the cathode (3) and anode (5).  The electrons strike a thin screen of graphite (7).  Most go 
straight through and make a bright spot at the center of the fluorescent screen on the other side of the 
tube (8).   
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Initial Procedure 
 

 

φ S=L*2φ 
L= 135 mm 

Carbon 
crystals 

Screen 

Diffraction 
ring 
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Some of the electrons strike the graphite crystals at the correct angle θ for constructive interference 
(see Eq. (1)), and change their direction by an angle φ = 2θ (Look at Fig. 27.13 to convince yourself 
that the diffracting electrons change their direction by twice the grazing angle).  The electrons hit the 
screen some distance away from the central spot, as shown in the figure below. 
 

 
• Turn the knob on the power supply all the way counterclockwise (down) 

 
• Push on-off button on power supply to turn it on, and wait about 1 minute for filament to warm up.  

If the room is not too bright, you can see the yellow glow of the filament. 
 
• Turn the high voltage control knob up slowly, and soon you will see a small spot in the center of 

the screen.  This represents those electrons that go straight through, undiffracted. 
 
As you continue to increase the voltage (you only need to go to 4.0 kV, indicated on the meter on the 
power supply), you will see 2 faint circular rings around the central spot.  These rings represent the 
diffracted beams. 

 
1. So, if the electrons are supposed to diffract at a specific angle from the crystal, why do they make 

a circular pattern on the screen, and not a single spot at angle φ from the central point?  The 
graphite (crystalline carbon) target is composed of many crystals oriented at random directions 
with respect to one another.  It is difficult and probably expensive to make large single crystals 
(which we would pass on to you in your lab fee) of graphite.  So this lab uses a powder of micro-
crystals formed into small target.  Electrons those electrons that strike a crystal oriented at the 
Bragg angle (see Eq. 1) with respect to the incident beam will diffract; otherwise they go straight 
through.  Since the millions of crystals are oriented randomly with respect to the electron beam, 
the diffracting electrons can lie on a cone of angle φ, rather than a single line. 

 
2. Why two rings?  Is it the first and second order diffraction?  Actually not.  The hexagonal 

arrangement of carbon atoms in the graphite crystal creates two diffraction planes of different 
spacing d: d0 = 0.213 nm and d1 = 0.123 nm. 

 

0.213 nm 

0.123 nm 
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Name: ____________________________  Name: ____________________________ 
 
 
Name: ____________________________  Name: ____________________________ 
 

Diffraction of Electrons 
Data Sheet 

 
Starting at a value of ∆V = 4.0 kV, measure (in mm or cm) the arc length S of the diameter of the two 
diffraction rings with your flexible ruler.  Wrap the ruler along the surface of the glass, making sure it 
goes through the central spot so you can be sure you are measuring along a diameter. The diffraction 
angle (in radians, not degrees; recall that 2π radians = 360˚) is approximately φ = S/(2L), where L 
is given to us by the tube manufacturer to be 135 mm. 

  
Measure the two diameters for 4 different voltage values (try ∆V = 4.0 kV, 3.6 kV, 3.2 kV, and 2.8 
kV).  The rings will get dimmer as you lower ∆V, and you may have to turn out the lights, or put your 
head and the screen under a thick cloth to block out the ambient light.  Record your values in the table 
below, and perform the necessary calculations to obtain the wavelengths from diffraction and from de 
Broglie’s formula. 

 
 
∆V(kV) Sinner Souter φinner φouter   
4.0     

3.6     

3.2     

2.8     

 
 

It has been stated that an inner and outer ring are formed due to two diffraction planes of different 
spacing d: d0 = 0.213 nm and d1 = 0.123 nm. But which spacing is responsible for each of the two 
rings?  Provide your reasoning for which spacing is responsible for each ring. [Hint: see equation (4)] 
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Ring Spacing responsible for creating ring  

(d0 = 0.213 nm or d1 = 0.123 nm. 
Inner  

Outer  

 
 

∆V(kV) λinner(nm) λouter(nm) λde Broglie(nm) 
4.0    

3.6    

3.2    

2.8    

            
 

On a sheet of graph paper or using Excel, make an x-y plot of the three wavelength measurements (y-
axis) vs (∆V)-1/2.  Use different symbols to plot the three different ways you determined λ.  Fit a line to 
the points corresponding to λde Broglie. 
 
 
On a sheet of graph paper or using Excel, make an x-y plot of λde Broglie vs sinθ.  Use different symbols 
to plot data that corresponds to the inner and outer rings.  Fit a line to each of the data sets, and 
determine the slope of the line. 



4/06/2012 Rev3         Page 7 of 8 
C:\Users\Dave Patrick\Documents\Labs\Lab ED\Diffraction of Electrons rev3.doc 
 

Analysis and discussion 
 

1. Changing the anode voltage causes the diffraction rings to change in diameter.  Does reducing 
the voltage make the rings larger or smaller?  How does this support the idea that the electron’s 
wavelength increases as the momentum is reduced? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Draw some conclusions from your λ vs (∆V)-1/2plots.  Do your calculated values for λinner and 

λouter reasonably match the theoretical λde Broglie  at each voltage level?  Explain why we used a 
linear fit.  What does the slope represent? Using your data, calculate a percent error for your 
calculated values of λinner and λouter  at each voltage level.  Use the theoretical λde Broglie as your 
standard value at each voltage level. 
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3. What physical constants of the apparatus can be extracted from the slopes of your λde Broglie vs 

sinθ plots? [Hint: See equation (1).]  Use the slopes to calculate the physical constants, and 
compare your experimental findings to the actual values that you have been provided.  Also, 
calculate a percent error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Comment on what you think could be sources of error (or lack of precision) that could lead to 

the differences you observe in question 2 above.  Try to think of at least three. 


