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ABSTRACT: There are lots of studies of muonic atoms and molecules because of their various applications. In the
previous paper by one of us, there were analyzed Rydberg states of the muonic-electronic helium atom or helium-like ion
and there was used the fact that the muon motion occurs much more rapidly than the electron motion. Assuming that the
muon and nucleus orbits are circular, he applied the analytical method based on separating rapid and slow subsystems.
He showed that the electron moves in an effective potential that is mathematically equivalent to the potential of a
satellite orbiting an oblate planet like the Earth. He also showed that the “unperturbed” elliptical orbit of the electron
engages in two precessions simultaneously: the precession of the electron orbit in the plane of the orbit and the
precession of the orbital plane of the electron around the axis perpendicular to the plane of the muon and nuclear orbits.
In the present paper we study how the allowance for a relatively low eccentricity € of the muon and nucleus orbits affects
the motion of the electron. We derive an additional, e-dependent term in the effective potential for the motion of the
electron. We show analytically that in the particular case of the planar geometry (where the electron orbit is in the plane
of the muon and nucleus orbits), it leads to an additional contribution to the frequency of the precession of the electron
orbit. We demonstrate that this additional, e-dependent contribution to the precession frequency of the electron orbit can
reach the same order of magnitude as the primary, e-independent contribution to the precession frequency. Therefore, the
results of our paper seem to be important not only qualitatively, but also quantitatively.
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1. INTRODUCTION

There are lots of studies of muonic atoms and molecules because of their various applications — see, e.g., papers [1-
8] and references therein. In particular, in paper [6] the author considered Rydberg states of the muonic-electronic
helium atom or helium-like ion and used the fact that the muon motion occurs much more rapidly than the electron
motion. Therefore, he applied the analytical method centered at separating rapid and slow subsystems. He showed
that the electron moves in an effective potential that is mathematically equivalent to the potential of a satellite orbiting
an oblate planet (the Earth satellite being an example).

Further, in paper [6] it was shown that the “unperturbed” elliptical orbit of the electron engages in the following
two precessions simultaneously: the precession of the electron orbit in the plane of the orbit and the precession of the
orbital plane of the electron around the axis of symmetry of the muonic orbit. Despite these two precessions, the
elliptical orbit of the Rydberg electron does not change its shape. The fact that the area of the elliptical orbit is
conserved manifests the conservation of the square of the electron angular momentum. Thus, the system has higher
than geometrical symmetry: indeed, from the geometrical symmetry (which is axial) followed only the conservation
of the projection of the angular momentum on the axis of symmetry. This was a counterintuitive result of general
physical interest.
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In paper [6] the muon and nucleus orbits were considered circular. In the present paper we consider a more
general situation where the muon and nucleus orbits are elliptical. We study how the allowance for a relatively low
eccentricity € of the muon and nucleus orbits affects the motion of the electron. We derive an additional, e-dependent
term in the effective potential for the motion of the electron. We show analytically that in the particular case of the
planar geometry (where the electron orbit is in the plane of the muon and nucleus orbits), it leads to an additional
contribution to the frequency of the precession of the electron orbit. We demonstrate that this additional, e-dependent
contribution to the precession frequency of the electron orbit can reach the same order of magnitude as the primary,
g-independent contribution to the precession frequency.

2. NEW RESULTS

As in paper [6], in this study we analyze the system consisting of a muon, an electron and a nucleus of charge Z. Both
leptons are in Rydberg states such that their principal quantum numbers are n, >> 1 (for the muon) and n, >> 1(for
the electron). The electron is much further way from the nucleus than the muon — due to the large difference in the
masses of the two leptons.

In this study we consider the case of low-eccentricity orbits of the muon and the nucleus. For a Coulomb
potential

U=-7 ()

(where a0 = Ze?, e being the electron charge), the equation of the motion in the orbital plane is

P
=1
- + ecos@ (2)
Here
_ P, 2R
p= mra'E - m,a? )

where € is the eccentricity, (r, @) are the polar coordinates, £ is the energy, L in the angular momentum, and m_is the
reduced mass of the subsystem “particle — Coulomb center”.

For low-eccentricity orbits (¢ << 1), we have

p

¥ = m ~ p(1 — ecos@) = ry(1 — ecosy) 4)

where 7, is the radius of the circular orbit for € = 0. As the case € = 0 was analyzed in paper [6], the Rydberg electron
perceives the rapid subsystem (the nucleus and the muon) as two uniformly charged rings of radii R and R,
where R /R, =m, /m >>1(m_ is the mass of the nucleus). The effective potential for the Rydberg electron in
that case was

U(O) _ (Z - 1)32 _ GZ(RSO - ZR'rzruclO)
off r e

(3cos?6— 1) §)
In our case of € << 1, the quantities R, and R are the following functions of time:

R, = Ry o(1 — €cosit), Ry = Rpyero (1 — €coslit) (6)

where
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Q= {Ze*/[mu(Ryo + Ruueto)*]}? = [Ze*/(mpuRyo®)] (7
is the frequency of revolution of the muon and of the nucleus about their center of mass, and

N myMyuct
pr = 8
mu 23 Mnuel ( )

is the reduced mass of the pair “nucleus — muon”. Substituting Eq. (6) into Eq. (5), we obtain the following time-
dependent “potential”:

@ , ¢ (Rio— ZR%uq0) (0)
Ut) =0, + 53 {(3cos?6 — 1)ecost = Ugrr + W(r, cosB)cosfit 9)

The term W(r, cos 0) cos Q¢ can now be processed by the method of effective potentials [9-13] with respect to the
totally unperturbed Hamiltonian

2 2
P (Z-1)e
Ho = 2m,, T (10)
where
me(mu + Mpyer)
Py = (11)
Mg + My + My

is the reduced mass of the electron orbiting the nucleus-muon pair. For helium (Z = 2), m = 0.9999, so that for any

Z, m_ is very close to unity. Also, because R /R, >> 1, R, can be ignored in the potential.

The zeroth-order effective potential,

gsze"R&o(l — 2c0s?0+ 5cos'0) b
16m,,02r8 (12)

1
UO = W[Wl [W! HO]] =
where W is defined in Eq. (9) and [P, Q] are the Poisson brackets, is the time-independent term for the effective
potential. On substituting Q from Eq. (7) in Eq. (12), we get:

5 9e?m,e?R)jo(1 — 2cos?0 + 5cos*B) .
& 16m,,. Zr® (13)

Therefore, the complete effective potential in this case is

— 1
(@ -1)e* e’Ri oG] 9e’m 2R}y (1 — 2cos?8 + 5cos'B) (14)
= -5 Geos?0-1)+ 16moZr®

r

Next, we consider the orbits of the electron in the plane of the orbits of the muon and the nucleus, i.e., 0 = /2. It is
easy to check, by looking at the first and second derivatives of the effective potential from Eq. (14) with respect to
0, that this position corresponds to the stable equilibrium. In this case, the effective potential will be a Coulomb

potential with two terms of the 1/"-perturbation (from now on we will use the atomic units e =m_= 7 = 1):

: 2 2 4
_Z-1 Ko 9Tmy Ry
roo4 16m,zr

Ucfﬁ" (15)

The calculation of the 1/r"-perturbation for the Kepler problem can be found, e.g., in [14] (the treatment for the
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cases n = 2 and n = 3 can be found also in the textbook [15]). For the Coulomb potential —o/r perturbed by the
potential —f/" *!, the orbit undergoes a precession with the perihelion advance

a1

™
8¢ = 2mpP aL Zpl_n f(l + g.c089)" 1dg) (16)
0

where m is the reduced mass of the pair “particle — Coulomb center”, L is the angular momentum of the particle, €
is the eccentricity of its orbit, and p = L?/(ma.), in our case the particle being the electron. The ratio of the precession
frequency to the Kepler frequency is the perihelion advance scaled by 2m, so for the second term in Eq. (15) we
obtain the following ratio of the precession frequency in the plane of the orbit to the Kepler frequency

e

O)L]‘:’z —3ma(EZ - 1)s? (17)

where

(18)

The same result could be obtained by using Eq. (1.7.10) from book [16], where the potential corresponds to the
gravitational potential of the oblate Earth and is mathematically equivalent to Eq. (13) (without the last term) with the
following correspondence of the quantities:

GM 7 — 1362 1,R2 & 2 Z-1__ Rio

(the same treatment was used in paper [6]). Substituting the corresponding quantities into Eq. (1.7.10) from book
[16] and considering the case of 6 = w/2, we obtain the same result as in Eq. (17) (with e = 1 in the atomic units).

As an example, Fig. 1 shows the plot of the ratio rat, = |c0pip“)/coK| versus R for L =3 and Z = 2. It is seen that
in this ranges of R, the precession frequency copip“) remains sufficiently smaller than the Kepler frequency of the
electron ., which is the condition of the validity of the analytical result for copip“)/coK from Eq. (17).

rats

Rp
i 2 3 4 5 6

Fig. 1. Plot of the ratio rat = mpip“)/o)K from Eq. (17) versus R for L=3 and Z = 2.

Applying Eq. (16) for the second perturbing term (the last term in Eq. (15)), which corresponds to the effective
potential due to the low eccentricity of the muon-nucleus orbits, we obtain the following additional contribution to the
precession frequency (scaled by the Kepler frequency o, of the electron)

("’Sj)p _ 6352murmgr(z - 1)657f(E5)
Wy 256Z

,f(E;) = 429 — 495E, + 135E2 — 5E3 (20)

where
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2B
BTV 2D
is the absolute value of the scaled dimensionless energy of the electron. For the bounded motion of the electron, the
eccentricity of its orbit is €, = (1 — £)"> and 0 < E_ < 1 (E_ is the squared ratio of the semi-minor axis to the semi-
major axis of the unperturbed elliptical orbit). Concerning the function AE ) from Eq. (20), we note that as E_
increases from 0 to 1, f{£ ) monotonically decreases from 429 to 64.

As an example, Fig. 2 shows the plot of the ratio rat, = |o  ®/o,| versus R , and ¢ for £ << 1 (corresponding to
the relatively large eccentricity of the electron orbit (1 —¢) <<1), L =3, and Z = 2 (so that m, = 200.4). It is seen
that in these ranges of R, and ¢, the additional precession frequency wpip(z) remains sufficiently smaller than the
Kepler frequency of the electron o, which is the condition of the validity of the analytical result for copip(z)/coK from
Eq. (20).

Fig. 2. Plot of the ratio rat, = (:inp‘z)/o)K from Eq. (20) versus R_ and ¢ for E <<1 (corresponding to the relatively large
eccentricity of the electron orbit (1 —e) <<1), L =3, and Z = 2 (so that m, = 200.4).

The ratio (Dpip(z)/copip“) (denoted below as K ) of the additional contribution to the precession frequency from Eq.
(20) to the primary contribution to the precession frequency from Eq. (17) is:

_ 21e’myemer(Z — 1)°S°f(E)

K = 7 22)

Figure 3 shows the plot of K, versus §= RMO/L2 and E_(defined in Eq. (21)) for Z=2 and € = 0.02.

Fig. 3. Plot of the ratio K, of the additional contribution to the precession frequency from Eq. (19) to the primary contribution
to the precession frequency from Eq. (17) versus S = RHO/L2 and E_(defined in Eq. (21)) for Z= 2 and ¢ = 0.02.
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Fig. 4. Plot of the ratio K, versus S and Z for ¢ =0.02 and E << 1 (E, << 1 corresponds to a relatively large eccentricity of the
unperturbed electron orbit).

Figure 5 shows the plot of the ratio K, versus R, andeforZ=2,L=3,and E << 1.

Fig. 5. Plot of the ratio K, versus R and e for Z=2,L =3,and E <<1.

From Figs. 3 — 5 it is seen that within the ranges of the parameters, where the analytical results for wpip“)/coK
from Eq. (17) and for copip(z)/coK from Eq. (20) remain valid, the additional contribution copip(z) to the precession
frequency, caused by a relatively small eccentricity of the muon orbit (and of the nucleus orbit), can reach the same
order of magnitude as the primary contribution copip“).

3. CONCLUSIONS

We considered a situation where the muon and nucleus orbits in the “nucleus-muon-electron” system are elliptical —
the situation more general compared to paper [6], where the muon and nucleus orbits were set to be circular. For the
case where the eccentricity ¢ of the muon and nucleus orbits is relatively small, we obtained an additional, -
dependent term in the effective potential for the motion of the electron. By analytical calculations we demonstrated
that in the particular case of the planar geometry (where the electron orbit is in the plane of the muon and nucleus
orbits), it leads to an additional contribution to the frequency of the precession of the electron orbit. We showed that
this additional, e-dependent contribution to the precession frequency of the electron orbit can reach the same order
of magnitude as the primary, e-independent contribution to the precession frequency. Thus, the results of our paper
seem to be important not only qualitatively, but also quantitatively.
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