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ABSTRACT: Circular Rydberg States (CRS) were studied theoretically and experimentally in lots of works. In particular, 
in the previous paper by one of us, there were derived analytical expressions for the energy of classical CRS in collinear 
electric (F) and magnetic (B) fields of arbitrary strengths imposed on a hydrogenic system (atom or ion). In that paper the 
author provided formulas for the dependence of the classical ionization threshold Fc(B) and of the energy at this threshold 
Ec(B) valid for the magnetic field B of an arbitrary strength. He also analyzed the stability of the motion by going beyond 
the CRS. In addition, for two important particular cases previously studied in the literature – classical CRS in a magnetic 
field only and classical CRS in an electric field only – some new results were also presented in that paper, especially 
concerning the Stark effect. In the present paper we study analytically CRS of a heliumic system (He atom or He-like 
ion) subjected to an electric field of an arbitrary strength. We show that the difference in the unperturbed structure of the 
heliumic systems (compared to hydrogenic systems) causes the decrease of the classical ionization threshold, as well as 
increases the energy and the orbit radius at the ionization threshold. Also, the allowance for the non-zero size of the internal 
subsystem increases the maximum possible absolute value of the induced electric dipole moment.
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1.	 INTRODUCTION
Circular Rydberg States (CRS) were studied theoretically and experimentally in lots of works – see, e.g., papers 
[1-10] and references therein. In particular, in paper [11] there were derived analytical expressions for the energy of 
classical CRS in collinear electric (F) and magnetic (B) fields of arbitrary strengths imposed on a hydrogenic system 
(atom or ion). In paper [11] the author provided formulas for the dependence of the classical ionization threshold Fc(B) 
and of the energy at this threshold Ec(B) valid for the magnetic field B of an arbitrary strength. He also analyzed the 
stability of the motion by going beyond the CRS. In addition, for two important particular cases previously studied 
in the literature – classical CRS in a magnetic field only [9] and classical CRS in an electric field only [10] – some 
new results were also presented in paper [11].

In the present paper we study analytically CRS of a heliumic system (He atom or He-like ion) subjected to an 
electric field of an arbitrary strength. We show that the difference in the unperturbed structure of the heliumic systems 
(compared to hydrogenic systems) causes the decrease of the classical ionization threshold, as well as increases the 
energy and the orbit radius at the ionization threshold.

2.	 RESULTS
We consider a He atom or a He-like atom/ion, where the electrons are in circular Rydberg states, the orbits are 
concentric and coplanar, and the classical orbit radius of one electron is significantly different from that of the other. 
This system is placed into an electric field F parallel to the axis of the orbits.

The revolution frequency of the inner system “Zp+ – e–” is
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ωint = √𝑍𝑍𝑍𝑍2
𝑚̅𝑚𝑟𝑟3 (1) 

where Z is the nuclear charge, e is the electron charge, r is the distance between the nucleus and the inner electron 
and m̄ is their reduced mass: 

𝑚̅𝑚 = 𝑀𝑀𝑀𝑀
𝑀𝑀 +𝑚𝑚 (2) 

where M is the nuclear mass and m is the electron mass. The radii of rotation of the nucleus and the inner electron 
are 

𝑟𝑟1 =
𝑚𝑚

𝑀𝑀 +𝑚𝑚 𝑟𝑟, 𝑟𝑟2 =
𝑀𝑀

𝑀𝑀 +𝑚𝑚𝑟𝑟 (3) 

The revolution frequency of the outer system "(Zp+ and e–) – e–" is 

ω𝑒𝑒𝑒𝑒𝑒𝑒 = √(𝑍𝑍 − 1)𝑒𝑒2
𝑚̅𝑚′𝑅𝑅3  (4) 

where R is the distance from the center of the inner system to the outer electron and m̄' is the reduced mass of the 
outer system: 

𝑚̅𝑚′ = (𝑀𝑀 +𝑚𝑚)𝑚𝑚
𝑀𝑀 + 2𝑚𝑚  (5) 

As R >> r by the original statement, ωext << ωint, which means that the inner system represents the rapid subsystem 
and the outer system represents the slow subsystem. Therefore, the outer electron perceives the nucleus and the 
inner electron as charged circular rings of radii r1 and r2 with the charge distributed uniformly around each ring. 

The primary potential term for the outer electron is the Coulomb monopole interaction with the inner system: 

𝑈𝑈0 = −𝑍𝑍 − 1
𝑅𝑅  (6) 

The quardupole interaction terms of the outer electron with the nuclear and electronic rings are (see, e.g., [12, 13])  

𝑈𝑈1
(1) = −𝑍𝑍𝑒𝑒2𝑟𝑟12

3cos2θ − 1
4𝑅𝑅3 , 𝑈𝑈1

(2) = −𝑒𝑒2𝑟𝑟22
3cos2θ − 1

4𝑅𝑅3  (7) 

where θ is the spherical polar angle, so the total quadrupole interaction is found by adding both and utilizing (3): 

𝑈𝑈1 = −(𝑍𝑍𝑚𝑚2 +𝑀𝑀2)𝑒𝑒2𝑟𝑟2
(𝑀𝑀 +𝑚𝑚)2

3cos2θ − 1
4𝑅𝑅3  (8) 

We will use atomic units, where m = e = 1. Thus, the Hamiltonian of the outer electron, on which we will concentrate 
our analysis, is 

 

𝐻𝐻 = 𝐿𝐿2
2ρ2 −

𝑍𝑍 − 1
𝑅𝑅 − (𝑍𝑍 +𝑀𝑀2)𝑟𝑟2

(𝑀𝑀 + 1)2
3cos2θ − 1

4𝑅𝑅3 + 𝐹𝐹𝐹𝐹 (9) 



Classical Stark Effect of Circular Rydberg States of He and He-like Ions

International Review of Atomic and Molecular Physics, 13 (1), January-June 2022	 29

2 

 

where L is the angular momentum and (ρ, φ, z) are the cylindrical coordinates of the outer electron. Because                 
M >> 1, the quadrupole term can be approximated further: 

𝐻𝐻 = 𝐿𝐿2
2ρ2 −

𝑍𝑍 − 1
𝑅𝑅 − 𝑟𝑟2 3cos

2θ − 1
4𝑅𝑅3 + 𝐹𝐹𝐹𝐹 (10) 

With R = (ρ2 + z2)1/2 and the scaled quantities 

𝑤𝑤 = 𝑍𝑍 − 1
𝐿𝐿2 𝑧𝑧, 𝑣𝑣 = 𝑍𝑍 − 1

𝐿𝐿2 ρ, 𝑝𝑝 = 𝑣𝑣2, 𝑓𝑓 = 𝐿𝐿4
(𝑍𝑍 − 1)3 𝐹𝐹, λ =

√𝑍𝑍 − 1
𝐿𝐿2 𝑟𝑟, ε = 𝐿𝐿2

(𝑍𝑍 − 1)2 𝐻𝐻 (11) 

we express the scaled energy of the outer electron in the following form: 

ε = 1
2𝑝𝑝 −

1
√𝑤𝑤2 + 𝑝𝑝

− λ2
4

2𝑤𝑤2 − 𝑝𝑝
(𝑤𝑤2 + 𝑝𝑝)5 2⁄ + 𝑓𝑓𝑓𝑓 (12) 

To find the equilibrium, the derivatives of (12) with respect to the scaled coordinates w and p should vanish: 

𝜕𝜕ε
𝜕𝜕𝜕𝜕 = 0, 𝜕𝜕ε

𝜕𝜕𝜕𝜕 = 0 (13) 

The first equation yields 

− 𝑓𝑓
𝑤𝑤 = 1

(𝑤𝑤2 + 𝑝𝑝)3 2⁄ + 3λ2
4

2𝑤𝑤2 − 3𝑝𝑝
(𝑤𝑤2 + 𝑝𝑝)7 2⁄  (14) 

and the second one yields 

1
𝑝𝑝2 =

1
(𝑤𝑤2 + 𝑝𝑝)3 2⁄ + 3λ2

4
4𝑤𝑤2 − 𝑝𝑝

(𝑤𝑤2 + 𝑝𝑝)7 2⁄  (15) 

When f increases from 0, the system acquires an induced dipole moment, with w < 0 for f > 0, so that the orbital 
plane is shifted along the axis of symmetry in the direction opposite to that of the electric field. Fig. 1 schematically 
presents this situation for f > 0. There are two equilibrium points for an infinitesimal f: the stable one at w ≈ – f and 
the unstable one at infinity. 

 
 
 
 
 
 
 
 
 
 
Fig. 1. The shift of the orbital plane of the electron in the presence of the electric field parallel to the axis of symmetry of the orbit. 

The nucleus of charge Z is at the origin z = 0. 

 
Fig. 2 shows the equilibrium points (w, v) satisfying (14) and (15) depending on the electric field increasing from  
f = 0.01 to f = 0.2 with λ = 0.05. 
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Fig. 2. Equilibrium points in the plane (w, v) depending on the electric field increasing from f = 0.01 to f = 0.2 with λ = 0.05 (the 
points corresponding to the increasing field are shown with a color gradient, from red to violet). 

As expected, we observe here the two equilibria. The set of points on the right (near w = 0, v = 1) corresponds 
to the solution of the unperturbed electron in the Coulomb field of the nucleus without the external electric field, 
modified by the external electric field f and the size of the inner system λ. The set of points on the left (beginning 
from the top-left point) corresponds to the equilibrium where |w| and v tend to infinity as f tends to zero. We see 
that the electric field increases the orbit radius and shifts the orbit center down from zero on the z-axis (for f > 0) 
for the zero-w equilibrium, and produces the opposite effect on the infinite-w equilibrium (decreases the orbit radius 
and brings the center closer to the nucleus). 

Fig. 3 shows the equilibrium points (w, v) for the electric field f = 0.1 with λ increasing from λ = 0.01 to                  
λ = 0.3. 

 

 

 

 
 

(a) (b) 
 
Fig. 3. Equilibrium points in the plane (w, v) depending on the size of the inner system λ from λ = 0.01 to  λ = 0.3 (a) for the zero-w 

(stable) equilibrium and (b) for the infinite-w (unstable) equilibrium (the points corresponding to the increasing λ are shown with a 
color gradient, from red to violet). 

From Fig. 3 we see that the effect of λ on the equilibrium is similar to the effect of the electric field: the non-
point-like nature of the inner system increases the orbit radius and shifts the orbit center down from zero on the z-
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axis (for f > 0) for the zero-w stable equilibrium, and produces the opposite effect on the infinite-w unstable 
equilibrium. 

Fig. 4 shows the dependence of the outer electron's energy on the electric field strength, for the values of                
λ = 0.1 and λ = 0.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Dependence of the scaled energy ε of the outer electron on the electric field f for λ = 0.1 (dashed curve) and λ = 0.2 (solid 
curve). 

The case of λ = 0 was studied in paper [11]. As in that case, we observe the existence of an ionization threshold, 
the point f = fc and ε = εc where both equilibria exhibit a V-type crossing. At the crossing, the outer electron switches 
from the stable equilibrium to the unstable equilibrium, the latter leading to the ionization. From Fig. 4 we see that 
the non-zero size of the inner system increases the ionization threshold energy and decreases the critical electric 
field corresponding to the ionization threshold. 

To find the ionization threshold, we use the fact that both implicit functions p(w) given by (14) and (15) have 
the same point (w, p) (the point of equilibrium) and their derivatives are equal because this point is where both 
curves are tangent to each other – for a lesser field they intersect in two points and for a greater field they have no 
common points. By differentiating (14) and (15) with respect to w, solving each resulting equation for dp/dw and 
setting the two solutions equal, we obtain the third equation in addition to (14) and (15), which gives us the set of 
the quantities (w, p, f) corresponding to the ionization threshold for a given λ. 

Fig. 5 shows the dependence of the critical field fc corresponding to the ionization threshold on the size of the 
inner system λ. 
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Fig. 5. Dependence of the critical field fc corresponding to the ionization threshold on the size of the inner system λ. 

As we observed earlier, the non-zero λ decreases the critical electric field. 

Fig. 6 shows the energy of the outer electron at the ionization threshold. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Dependence of the energy εc of the outer electron at the ionization threshold on the size of the inner system λ. 

We see that the non-zero size of the inner system increases the energy at the ionization threshold. 

For the quadrupole interaction term starting from (7) to be valid, the orbit radius of the outer electron must be 
much greater than the size of the inner system: R/r = η >> 1. Using (11), this yields 

η = √𝑤𝑤2 + 𝑝𝑝
λ√𝑍𝑍 − 1

≫ 1 (16) 

Fig. 7 shows the ratio of the orbit radii depending on f for the case of λ = 0.1 and on λ for the case of f = 0.1. 
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(a) (b) 
Fig. 7. Dependence of the ratio of the orbit radius of the outer electron to that of the inner electron (a) on the electric field for 

scaled size of the inner system λ = 0.1 and (b) on λ for the scaled electric field f = 0.1. 

From Fig. 7 we see that the ratio is relatively large in the cases considered, which confirms the validity of the 
analysis. We remind the readers that there are two states of equilibrium of different energies: the lower branch in 
each plot in Fig. 7 corresponds to the zero-w equilibrium, which is stable, and the upper branch corresponds to the 
infinite-w equilibrium, which is unstable. The upper branch, which corresponds to the unstable equilibrium, 
corresponds also to large orbit radii R; therefore, the ratio η = R/r is greater than in the case of stable equilibrium, 
which corresponds to the lower branch in Fig. 7. 

We also performed an analytical approximation of the equilibrium shift and orbit radius, the energy, and the 
ionization threshold, for small values of λ and compared them to the zero-λ values from paper [11]. In the 
approximation, the subscript “0” refers to the zero-λ values. Equations (17) – (19) show the approximate values of 
the axial shift, electric field and energy depending on the parameter p (squared scaled orbit radius). 

𝑤𝑤 ≈ −√𝑝𝑝(𝑝𝑝1 3⁄ − 1) +
5

4𝑝𝑝1 3⁄ − 1

√𝑝𝑝(𝑝𝑝1 3⁄ − 1)
λ2 = 𝑤𝑤0 −

1
𝑤𝑤0

( 5
4𝑝𝑝1 3⁄ − 1)λ2 (17) 

 

𝑓𝑓 ≈
√𝑝𝑝1 3⁄ − 1

𝑝𝑝3 2⁄ − 2𝑝𝑝1 3⁄ − 1
4𝑝𝑝17 6⁄ √𝑝𝑝1 3⁄ − 1

= 𝑓𝑓0 −
1

4𝑝𝑝4𝑓𝑓0
(2 − 1

𝑝𝑝1 3⁄ )λ2 (18) 

 

ε ≈ 3
2𝑝𝑝 −

2
𝑝𝑝2 3⁄ + λ2

2𝑝𝑝7 3⁄ = ε0 +
λ2

2𝑝𝑝7 3⁄  (19) 

Equations (20) – (23) show the approximate values of the ionization threshold point, as well as the values of the 
electric field and electron energy corresponding to this point. 

𝑤𝑤𝑐𝑐 ≈ −27
64 − 11(23)

6λ2 ≈ −0.421875 − 0.965706λ2 (20) 

𝑝𝑝𝑐𝑐 ≈ (98)
3 + 7 ⋅ 23 ⋅ 37λ2

310 + 212 ⋅ 112λ2 = 𝑝𝑝𝑐𝑐0 +
7 ⋅ 23 ⋅ 37λ2

310 + 212 ⋅ 112λ2 (21) 
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𝑓𝑓𝑐𝑐 ≈
212
39 − 5 ⋅ 223

317 λ2 = 𝑓𝑓𝑐𝑐0 −
15
2 𝑓𝑓𝑐𝑐02 λ2 ≈ 0.208098 − 0.324787λ2 (22) 

 

ε𝑐𝑐 ≈ −27
35 +

220
314 λ

2 = ε𝑐𝑐0 +
3
2 |ε𝑐𝑐0|

3λ2 ≈ −0.526749 + 0.219231λ2 (23) 

For λ = 0.25, the accuracy of the approximation (compared to the numerical solution used here) in the case of 
fc is 1.2% and in the case of εc is 0.2%, which shows that the approximation is good for the realistic values of λ. 

From the approximation we see once again that the non-zero size of the internal system decreases the electric 
field, corresponding to the classical ionization threshold, and increases the energy and the orbit radius corresponding 
to it. We also note that Eq. (20) shows the maximum possible value of the induced electric dipole moment wmax: the 
allowance for the non-zero size of the internal system increases |wmax| compared to its value at λ = 0. 

3.    CONCLUSIONS 

For hydrogenic CRS studied in paper [11], the electric field caused the induced electric dipole moment (manifested 
by the shift of the circular orbit of the electron in the direction opposite to the applied field) and thus the quadratic 
Stark effect. Of course, there was no linear Stark effect because the unperturbed circular orbit of the electron did 
not have the electric dipole moment.  

In the present paper we studied analytically how the difference of heliumic systems from hydrogenis systems – 
the difference due to the non-zero size of the inner subsystem (manifested by the non-zero value of the parameter λ 
defined in Eq. (11)) – affects the results. We found that increasing the size of the inner system (i.e., the parameter 
λ) decreases the electric field corresponding to the classical ionization threshold, and increases the energy and the 
orbit radius corresponding to it. Also, the allowance for the non-zero size of the internal subsystem increases the 
maximum possible absolute value of the induced electric dipole moment compared to its value at λ = 0. 
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