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ABSTRACT: A scaling that generalizes the empiric Richardson’s t® scaling law for the mean square of the mutual
separation of a pair of particles in a fluid or gaseous medium is generalized to the case of longer times but still before the
onset of the diffusion regime. This corresponds to the description of combined regime of Lévy flights and Lévy walks for
hydrodynamic turbulence in fluids and gases. The general concept of Lévy flights proposed by Shlesinger and colleagues
for turbulence was formulated in the frame of the nonlocal transport which is based on the Biberman-Holstein approach
to the transfer of excitation of a medium by photons, generalized to take into account the finiteness of the velocity of
excitation carriers. The application of this approach to describing the nonlocality of hydrodynamics of fluids or gases is
preceded by the success of its application to observations of plasma density fluctuations moving across a strong
magnetic field in tokamaks.

1. INTRODUCTION

The nonlocality (superdiffusion) of turbulence is expressed in the empirical Richardson t® scaling law [1] for the
turbulent relative dispersion, i.e. for the mean square of the mutual separation of a pair of particles, 1, (t)ina
fluid or gaseous medium,

T2air () o t2, (1)

This scaling was obtained within the framework of the diffusion model proposed by Richardson [1] (with the diffusion
coefficient K depending on distance r, Kocr4/3), suggested by experimental data for atmospheric turbulence.
Subsequently, the diffusion approach was developed in the direction of complicating the dependence of the diffusion
coefficient. Along with this, the awareness of the phenomena of superdiffusion of turbulent dispersion came onto the
scene, although Bachelor’s scaling [2], rzfair (t) = t2, for ballistic motions is discussed only in connection with the
initial stage of the separation of a pair of test particles. As a result, Richardson’s empirical scaling for pair correlations
was derived in various models (see, for example, review [3]), but at present, a nonlocal approach based on superdiffusion
models is considered more adequate, in which, by the definition of superdiffusion, rﬁair (t) o tB, where B> 1.
Within this framework, the concept of turbulence nonlocality is further developed, including attempts to reassess the
Richardson scaling (1) itself (see [3]).

The key step in the development of the theory of nonlocality of various processes in physics and other sciences
based on the concept of “Lévy flights”, introduced in [4] by Mandelbrot [5] (see [4, 6-8]), and Levy walks [9—11],
which generalize Lévy flights to the case of taking into account the finite velocity of carriers, was the idea of
Shlesinger and colleagues [10] on the possibility of describing the nonlocality of turbulence using a linear integro-
differential equation with a kernel, slowly decreasing with distance. This approach suggests that the essentially non-
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linear dynamics of what we call turbulence can be reduced to the evolution of a statistical ensemble of carriers that
have a large free path and, in fluid mechanics, can be associated with such stable objects as vortices/eddies. With
this approach, the severity of complex nonlinear dynamics is transferred to the axiom of the existence of long-lived
long-range motions in the medium, which are carriers of perturbations of this medium relative to some stable macroscopic
state of the medium. The nonlocal transport of perturbations of the medium is assumed to be described by linear
kinetic equations with the kernel of the integral operator, slowly decreasing with distance and belonging to the class
of Lévy distributions.

In [12], an approach similar in spirit to [10] was proposed. The formalism of the type of the Biberman-Holstein
equation [13, 14] for the transfer of excitation by photons in gases and plasmas (for details, see, for example, [15,
16]), generalized to take into account the finiteness of the velocity of excitation carriers, was taken as a basis. Before
formulating the model [12], it is appropriate to briefly describe the ideology of the Biberman-Holstein approach.

The basic equation for the excitation density of a medium in the problem of resonant radiation transfer is
formulated for the density of excited atoms or ions f (r, t). The Biberman-Holstein approach uses the approximation
of complete redistribution (CRD) in photon’s frequency in the elementary act of absorption of a photon by an atom
or ion and re-emission of a photon in the same spectral line for the model of a two-level atom or ion, which is
acceptable for the transfer of resonant radiation (generalization to the case of interdependent transfer of radiation in
many spectral lines is easily feasible). The kinetic equation for the excitation density of the medium, in the case of
stationary motionless unexcited medium, has the form:

of (r,t)
it

- [ wair=rinrery oav, - (z+0)fmn +atro), 2

where o is the lifetime of an excited atomic state with respect to spontaneous radiative decay; o is the rate of
collisional excitation quenching; q is the source of excitation of atoms, which is different from the excitation due to
the absorption of a resonant photon (i.e., the source of collisional excitation). The kernel W is determined by the
(normalized) spectral distribution of line emission source, &, and the absorption coefficient k,,, which is the inverse
free path length (for the theory of spectral line shapes see [17-23]). Here &, is specified as a function depending
only on the parameters of the emitted photon (frequency and direction) and independent of the parameters of the
absorbed photon, if the excited state was formed as a result of the absorption of the photon (i.e., there is the loss of
memory by the excited atom about the prehistory of excitation). This feature of is a consequence of the CRD
approximation mentioned above. In a homogeneous medium, W depends on the distance between the points of
emission and absorption of a photon:

1 dT(p) 1

W) = = o= e W @), TG) = [ & exp(keup) v 3)

where the function T(p), called the Holstein function (see, for example, [16]), is the probability that a photon will
freely travel a distance not less than fi without absorption. Thus, this function defines the distribution function for the
carrier free path length W, - (step-length PDF). Accordingly, the kernel W, Eq. (3), of the integral transport equation
(2) in three-dimensional coordinate space specifies the probability that the emitted photon will be absorbed at a
distance il from the point of photon’s birth. For practically interesting spectral line broadening mechanisms, including
the Doppler effect and various mechanisms that give the Lorentzian form of the spectral line shape (spontaneous
radiative decay, collisional perturbation of the excited state, including the dynamic Stark effect), the Holstein function
at distances corresponding to large optical thicknesses, defined by the value of the absorption coefficient at the
center of the spectral line kK, has a slow, power-law decay. For the Lorentzian (4) and Gaussian (i.e. Maxwellian
Doppler) (5) shapes of the spectral line, one has [14]:

1

Jmkop “4)

T(p)~
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T —
kop /T In(kop) )

Kop > 1.

Nonlocality (superdiffusion) of radiation transfer, described by the Biberman-Holstein equation (2), requires a special
definition of the average time £(r), required for a photon to pass the distance r from an instantaneous point source
q(r, 1) = 0(r — ro)I(z — t0). The commonly used concept of the average distance traveled by a photon in a given time
turns out to be inapplicable in the case of superdiffusion, because the function f(r, t) falls too slowly with increasing
distance from the primary source, and therefore the integral that determines the mean square of the displacement 2
diverges. The definition of (r) corresponding to the case of superdiffusion was given in [24] and has the following
form:

f= f dtfdr14m‘12f(r1, t). (6)
o 0

In [24], analytical expressions for the asymptotic behavior of £(r) (6) were obtained for two forms of the spectral
line shape. For the dispersion (Lorentzian) form of the spectral line shape, we have the motion of the effective
excitation front of the medium corresponding to the acceleration (r oc t2),

t =3tKer/m =17t JKkor, tDT, Ko > 1, (7

and for the Doppler form of the spectral line shape, the corresponding motion is almost free (r o t In(t/1)):

t = latigry/In(iyr), t>71, Kor > 1. ®)
Subsequently, in [25], it was indicated that both cases (7) and (8) are covered by a single formula,
t(p) = 1/Tas(p), ©)

where T__(p) is given by (4) and (5).

When analyzing the transport for various mechanisms of spectral line broadening, it was shown [26] that the
Biberman approximation [27], which makes it possible to reduce the equation integral with respect to coordinates to
an algebraic one, is applicable the better, the slower the Holstein function decreases with increasing distance. The
use of the approximation [27] in the theory of radiative transfer in one or many spectral lines is called the T method
[28] or the Escape Probability method [29, 30].

Equation (2) is integral over spatial coordinates and is not reducible to a differential equation: the term “diffusion”
in the titles of some articles, including [24], is explained only as a tribute to the then existing terminology and does not
correspond to the mathematical apparatus of diffusion. When the sought-for function f (r , t) is expanded under the
space integral in a Taylor series, in the case of an infinite volume of the medium, the diffusion coefficient turns out to
be infinite, and in the case of a finite volume, it depends on the size of the medium (see, for example, [16]), which in
principle contradicts the concept of diffusion. Despite the fact that the term Lévy flights had not yet penetrated into
the theory of radiative transfer at the time of publications [15, 16, 29, 30], the main transfer mechanism investigated
in these theoretical approaches, in fact, refers specifically to Lévy flights.

An alternative to the Biberman-Holstein equation, which is widely used to describe laboratory plasma, is an
approach often used in astrophysics, in which the pair of differential kinetic equations for photons and excited atoms/
ions is reduced to an integral, in spatial variables, equation for the radiation intensity (see, e.g., [31-35]). Here, the
dominant role of long free travels (i.e. Lévy flights) is also recognized, although usually without a proper name. The
role of Lévy flights for light in the traditional radiative transfer in spectral lines was studied, for example, in [36].
Here, multiple scattering of near-resonant light in hot atomic vapors, characterized by Doppler broadening of the
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spectral line, experimentally confirmed theoretical studies [37], where it was shown that photon trajectories in the
Biberman-Holstein model for the transfer of resonant radiation in spectral lines with Doppler, Lorentz, and Voigt
broadening mechanisms contain Lévy flights.

The current state of the concept of Lévy flights and walks can be found in an extensive review [11], covering
various fields of science. The latest results for the Green’s function of the problem of nonstationary transfer of
resonant radiation in the Biberman-Holstein model are presented in [38], including a generalization of the interpolated
self-similarity method [39] to the case of a finite speed of light or other medium excitation carriers in [40—42].
Further progress in this direction led in [43] to the derivation of a unified approximate analytical description of the
front of the nonstationary Green’s function for transfers in the Lévy flights and Lévy walks modes.

The results of these works served as an impetus to the application of the Biberman-Holstein model in two
directions. In Section 2, we briefly discuss the application to the interpretation of experiments on diagnosing plasma
density fluctuations moving across a strong magnetic field in a tokamak [12] (as it turned out, tokamak plasma is a
really turbulent medium in agreement with Richardson’s t* law for hydrodynamic turbulence). In Section 3, a scaling
is proposed, which generalizes Richardson’s law to the combined mode of Lévy flights and Lévy walks for hydrodynamic
turbulence. One of the arguments in favor of the Biberman-Holstein approach is that it is at least another way to
derive Richardson’s t3 law (1).

2. SUPERDIFFUSION IN PLASMA TURBULENCE

The study of superdiffusion processes in plasmas is of great practical interest. Thus, in studies of magnetically
confined plasma for controlled thermonuclear fusion (primarily in the most successful direction, namely, in tokamaks),
it has long been recognized that the process of heat transfer across a strong magnetic field is anomalous in the sense
that the heat diffusion coefficients reconstructed from experimental data by solving inverse problems in the framework
of diffusion models of transfer significantly (by one and a half to two orders of magnitude) exceed the predictions of
theories from first principles. Therefore, in the interpretation of experiments and predictive modeling of plasma
behavior, phenomenological models suggested by the results of experiments are used. These models are, as a rule,
diffusion models; based on differential equations of the Fokker-Planck type in space variables. Attempts to construct
models of nonlocal transfer from first principles have not yet given the desired agreement with experiment. Let us
point out, for example, the theory of non-stationary non-local heat transfer by longitudinal waves in plasma [44],
brought to the final result for electron Bernstein waves (this method generalized the model of non-local transfer by
electron and ion Bernstein waves [45] to the case of non-stationarity). Significantly greater success was achieved in
the application of the above-mentioned Escape Probability method to the calculation of a separate component of the
energy balance in tokamaks, namely, energy losses caused by the electron cyclotron radiation [46, 47]. This approach
extended and modified the approach [48—50] to the heat transfer by electron cyclotron waves in thermonuclear
plasmas (the current state of this issue can be found in [51]).

Let us consider a model of the microscopic dynamics of localized excitations of a medium (e.g., density
perturbations) in a macroscopically quasi-homogeneous quasi-stationary medium. This model is an application of the
Lévy walk concept to this class of problems. Similarly to the Biberman-Holstein model, we will consider two types
of excitation of the medium, which can be transformed into each other. These two types can also be considered as
different states (rest and motion) of the same object. This approach is applicable, for example, to biological migration,
for which the applicability of the Lévy walk concept is well known (see, for example, review [11], section VI). In
[61], a method was proposed and tested on synthetic experimental data for obtaining the Green’s function of two-
dimensional biological migration based on kinetic equations similar to those described below. The dominance of long-
range movements (i.e., Lévy flights) corresponds to the fact that, for example, in search of food, animals try to
escape from the place of the last stop as far as possible. Therefore, the trajectory of such motion topologically
coincides with the trajectory of the excitation of the medium in the Biberman-Holstein model (compare, for example,
Fig. 1 in[43], Fig. 1 in [52] and Fig. 4 in [6]). This motion was called “Lévy walk with rests” (Figure 1 in [11]). In the
model we are considering, it is precisely such motions that are meant, but the common name is shortened to “Lévy
walks”.
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Let us consider a system of nonlocal transport equations for the intensity I;(r, n,t) (i.e., the energy flux density)
of medium’s excitation carriers (e.g., running fluctuations of density) and standing excitations of the medium (e.g.,
standing fluctuations of density) f (r, t):

af(r, 1 -
f((;; t) _ _(;-I— J)f(r,t) +Jdakﬁg)1dﬂ(") Iz(r,v,t)+q(rt), (10)
1015(r, v, t) ha Py (v)

+ (n,Niy(r,v,t) = —kzW) Iz(r,v,t) + - f(r,t). (11)

v dat 4

Let us describe the phenomenological functions and parameters included here, which should be restored by comparing
the predictions of this model with experimental data.

Here v is the velocity of carriers of excitation, ¥ = nv, which is assumed to be constant all the way between
the point of birth and disappearance due to the transformation into a standing excitation of the medium. This means
that we assume the existence of localized long-lived motions in a medium with a long free path, which are usually
called solitons. An example of such motion in the two-dimensional case in plasmas and other media is the stable
solutions of the nonlinear Kadomtsev-Petviashvili equation [53] (in the one-dimensional case, such an example is the
Korteweg-de Vries equation). A discussion of general problems in the theory of solitons can be found, for example,
in [54].

The source of standing excitations of the medium is given by the function q(r, t), which is the power density of
the source of production of such excitation of the medium.

The spectral distribution of the probability of carrier’s emission with frequency &, normalized to the integral over
frequency, is given by the function P;(v). The frequency (energy) and velocity of carriers are determined by the law
of motion of the carrier (for linear waves in a homogeneous stationary medium, this relation is the law of wave
dispersion).

The reciprocal length of the free path of the carrier from the point of birth to the stop in the medium and
transformation into a standing excitation of the medium is given by the “absorption coefficient” of the carriers with
the frequency @, Kz (v).

The average lifetime of standing excitation is given by the parameter T, and the average reciprocal time of the
disappearance of standing fluctuations without the creation of a carrier of excitation (the so-called “quenching” of
the excitation of the medium) is given by the parameter G.

The processes of generation of standing and running excitations of the medium are elementary mechanical
processes in the sense that they exist as mutually inverse mechanical (i.e. reversible in time) processes. The proposed
model assumes that standing excitation forgets the history of its occurrence. Equations (10) and (11) are written for
carriers with a certain velocity, and it is assumed that there is some velocity distribution, which, like all other parameters
and functions introduced above, can be restored by comparing the predictions of this model with experimental data.

Note that in the case of an infinite velocity of carriers (i.e., in the case of transfer in the Lévy flights mode), the
system of equations (10), (11) reduces to the Biberman-Holstein equation (2), and when this velocity is finite (i.e., in
the case of transfer in the Lévy walk mode) instead of the function f(ry,t) in (2) there is a function

0 |r —14] lr — 14|
O iy

(here 9(x) — the Heaviside step function), which corresponds to taking into account the retardation. The derivation
of such a generalization of the Biberman-Holstein equation from the system of equations (10), (11) can be found, for
example, in section 2 in [41].

An essential feature of the system of equations (10), (11) is that it is possible to reduce dependence of practically
interesting integral characteristics only on the Holstein function. This means that such differential characteristics as
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the normalized spectrum of the source function, P;(v), and the reciprocal free path, x (v), enter the final result only
as part of the Holstein function.

It concerns the law of motion of the excitation front from a point instantaneous source, i.e. effective front of the
Green’s function. In contrast to the case of Lévy flights, where one has to work with the definition of the front in the
form (6), for standing (and similarly for running) excitations of the medium, this front can be specified by a simple
standard relation

(resc©)’ = ([ P*hrescr.0r) / ([ frestr. ), (12)
since the numerator in (12) no longer diverges due to the limitation of distances by the ballistic motion front:
Thalt = vt. (13)

For the front (12), as well as for the front of excitation carriers, in [43] for a wide class of distribution functions over
the free path of carriers (3),

YKo

Wstep(p) = 1+ Kop)V“'

0<y<y2 (14)
where K is an inverse characteristic length, which in the case of excitation transfer by resonant photons corresponds
to the value of the absorption coefficient at the center of the spectral line, analytical expressions were obtained for
practically interesting times and distances in transfer problems, namely for kyp > Land t = T.

It was shown in [12] that the proximity of the nonlocality parameter vy, obtained in [12], to the corresponding
parameter for the Richardson t® law (1) make it possible to qualify the transport of density fluctuations in a tokamak
plasma across a strong magnetic field as turbulence. Note that studies of the nonlocal properties of turbulence,
including the deviation of statistics from the Gaussian one in various plasma turbulence phenomena, are reflected in
the collective monograph [55].

The phenomenological model [12] of turbulence nonlocality, based on the system of kinetic equations (10), (11)
and going beyond the diffusion Fokker-Planck models, can be considered, when applied to plasma, as a
phenomenological generalization of the quasilinear theory of weak plasma turbulence, which goes back to [56], in the
wave part of this kinetics (a review of the status of the quasilinear approach to plasma turbulence is presented in
[57]). Going beyond the diffusion Fokker-Planck models has already been made, and for specific physical models in
the case of a stationary flow in the space of wave numbers (not the thermodynamic limit), examples of the Kolmogorov
spectrum in various problems of physics have been found [58]. In the problem considered in [12], it is important that
it was possible to establish the closeness of the kinetics of plasma density fluctuations to what we call turbulence
within the general framework of interpreting the results of experiments, without specifying the physical model of
elementary excitations of the medium.

3. EXTENSION OF RICHARDSON’'S T3 LAW TO THE COMBINED LEVY FLIGHT AND LEVY
WALK REGIME

The hypothesis of the locality of elementary processes in the existing quasi-linear theory of weak plasma turbulence
seems to be quite justified, since for elementary processes it is possible to propose mechanical (i.e., reversible in
time) models from first principles. For hydrodynamic turbulence, this aspect inevitably requires additional axiomatics,
which obviously are the well-known hypotheses of Kolmogorov and Obukhov for homogeneous stationary turbulence.
Lack of rigorous justification, i.e. the lack of a derivation from the Navier-Stokes equations sometimes allows
researchers to qualify this approach as dimensional reasoning. Therefore, in the existing rather free field in the
theory of hydrodynamic turbulence, it is quite legitimate to propose other models with their own axiomatics. Such an
attempt is the generalization of Richardson’s t3 law (1) given below to the combined regime of Lévy flights and Lévy
walks. Such a generalization is suggested, as noted above, by the idea of Schlesinger and colleagues [10] and the
success of the model [12] in interpreting experiments on cross-correlation reflectometry of tokamak plasma.
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Let us turn to model (10), (11) with the intention of establishing a connection between the phenomenological
parameters introduced in it and the key parameters of the existing theory of hydrodynamic turbulence. It is important
to note that although model (10), (11) did not discuss the possible physical mechanisms of elementary acts in the
kinetic model, such possibilities in the theory of linear waves are well known and form the basis of the already
mentioned quasilinear theory of weak plasma turbulence. The problem, however, lies in the fact that models of
superdiffusion transfer of energy by linear plasma waves have not yet been created, which would provide explanations
for the observed nonlocality phenomena, for example, in thermonuclear plasma (for example, we repeat the reference
to [44, 45], but this list can be continued up to the present moment). Therefore, the problem of identifying adequate
elementary acts responsible for the observed phenomena of superdiffusion transfer is to a comparable extent faced
by both the theory of turbulent plasma and the theory of non-plasma hydrodynamic turbulence.

In this section, we will not solve the latter problem, but will only draw a bridge between the phenomenology of
plasma and non-plasma hydrodynamic turbulence.

For hydrodynamic turbulence of fluids and gases, the key parameters are the Kolmogorov length 1 and velocity
vy, as well as the corresponding time ¢,,:

n= (V3/80)1/4' Uy = (V50)1/4, by = (V/50)1/2: (15)

where V is the kinematic viscosity in units of m?/s, &, characterizes the specific energy dissipation rate in units of m?/

s3.

Let us propose analogs of the Kolmogorov parameters in a kinetic transport model of the Biberman-Holstein type
with allowance for retardation. An analogue of the Kolmogorov length is the path length at the center of the spectral
line, k), since, as in the Kolmogorov model, is the minimum characteristic length:

1
(KO) turb

Of course, this and other parameter relationships make sense up to an order of magnitude.

=1 (16)

An analogue of the Kolmogorov velocity is the characteristic velocity of running excitations of the medium
(carriers). Batchelor’s scaling for the initial stage of mutual separation of closely spaced test particles works in favor
of the analogy for velocities:

(e ®) ~ ()~ @2 a7)

In the plasma turbulent motions along the minor radius of a toroidal plasma in a tokamak, this corresponds to a
characteristic velocity restored [12] from the observed peaks in the spectrum of the quasi-coherent mode. Since t,
has a simple relationship with n and v,,, we can put

Treilis (18)

To estimate the pair correlation function (turbulent relative dispersion) in order of magnitude, which is quite acceptable
considering the very status of such an integral estimate of the distribution function in kinetic problems, we will use the
analytical approximation results for the Green’s function of the nonlocal transfer in the combined mode of Lévy
flights and Lévy walks, according to (7.10) in [43]:

r,,aira,Rc.y))Z 1
( n ~(tn)2/”+ (tn)z 1 (1-I-_y) (19)

where R is the retardation parameter,
R, = ctKy, (20)
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which is the ratio of the lifetime of the excitation of the medium at rest and in motion (here C is the characteristic
velocity of the carriers). With the specified correspondence to the Kolmogorov turbulence parameters (15), R_ turns
out to be just a certain number in the range determined by the accuracy of estimates (16)-(18), i.e. actually turns out
to be some free parameter. Preservation of the last factor in the second term in the denominator in (19) ensures that
the front velocity (turbulent pair dispersion) is less than the ballistic limit (13).

Note that the proposed scaling (19) covers only the transition between transfers in the Lévy flight and Lévy walk
modes. To construct a more general scaling, it is necessary to take into account the Batchelor ballistic regime at the
initial stage and the diffusion regime at the final stage, see Figs. 5-7 in [59].

Calculation of (19) for y=2/3 are shown in Fig. 1. If the retardation effect is neglected (i.e. R, — o0), Richardson’s
t3law (1) is obtained from (19). Comparison of calculations for various values of the retardation parameter with the
results of numerical simulations in [59], where Richardson scaling (1) works up to time t~102t,, shows that a
possible niche exists for taking into account the retardation and the respective appearance of ballistic scaling of Lévy
walks with a value of the retardation parameter R_ equal to few-several tens.

¥=2/3,Rc=30
11 4 &
10 general -’
1010 } == walks ,,’
s I T— flights P 4
- ===+ Dallistic
= 10°;
-
= 10? 4
=
10° 4
10°
104 +7
101 10? 10° 104

tit,

Figure 1. Dependence of pair dispersion on time for the nonlocality parameter y=2/3 and retardation parameter R = 30. The
results are shown for Lévy flights (black line), L évy walks (pink dashed line), combined Lévy flights and walks (19) (yellow
curve); ballistic front (13) (red dotted line).

The faster growth of the pair correlation with time, obtained in simulations [59] in the regions where the Richardson
law (1) was expected (i.e., between the Batchelor ballistic regime and the diffusion regime, see Fig. 7 in [59]),
suggests that the case of smaller values of the nonlocality parameter ¥ may also be considered, for example, y = 1/2.
This choice is also interesting in that the spectral probability density shape P; corresponding to this case in model
(10),(11) has a Lorentzian form, which often occurs in various physical models, where the broadening of the spectral
distribution compared to the monochromatic one is due to the finiteness of the lifetime of the excited state, the
relaxation of which leads to the birth of a carrier (running excitation of the medium).

Calculations by formula (19) for y = 1/2. are shown in fig. 2. Comparison for various values of the retardation
parameter with the results of numerical simulations in [59] shows that a possible niche for taking into account the
retardation and the respective appearance of the ballistic scaling of Lévy walks exists for the retardation parameter
R of the order of 10°.
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Figure 2. Dependence of pair dispersion on time for the nonlocality parameter Y=1/2 and retardation parameter R = 100. The
results are shown for Lévy flights (black line), L évy walks (pink dashed line), combined Lévy flights and walks (19) (yellow
curve); ballistic front (13) (red dotted line).

Thus, the kinetic model (10), (11) allows us to qualitatively consider the problem of expanding the range of
applicability of the Richardson law (1) and the problem of its possible generalization and reassessment, which, in
particular, was actively discussed in [3]. Although Richardson’s law (1) is supported by an extensive database,
including, for example, recent experimental and theoretical studies in [60], the behavior of turbulent pair correlation
(turbulent pair dispersion) at large times and the change of regimes (scalings) with time is of undoubted interest.

4. CONCLUSIONS

In this paper, we show the possibility of a universal description of the characteristics of nonlocality of transfer in a
stochastic medium (including turbulence of gases and fluids) using a formalism like the Biberman-Holstein model for
the transfer of excitation of a medium by photons, generalized to take into account the finiteness of the velocity of
excitation carriers. Universality lies primarily in the fact that the main results are explicitly expressed in terms of the
distribution function of medium excitation carriers in their free path, which has the form of a Lévy distribution, and
such a function is directly related to the Holstein function in the Biberman-Holstein model. The approach we developed
earlier [12] made it possible to establish the closeness of the nonlocality (superdiffusion) parameter of plasma density
fluctuations moving across a strong magnetic field in a tokamak to the Richardson t® law for the mean square
separation of a pair of particles in a fluid or gaseous medium. The key feature of the developed approach is that it
was possible to establish the proximity of the kinetics of plasma density fluctuations to hydrodynamic turbulence
within the general framework of interpreting the results of experiments using the phenomenological model of transfer
in the Lévy walk mode, which does not require specifying the physical model of elementary excitations of the
medium.

The developed kinetic model made it possible to suggest at a qualitative level a generalization of Richardson’s t3
law for the combined regime of Lévy flights and Lévy walks for the turbulence in fluids and gases. Although
Richardson’s t* law is supported by an extensive database, the behavior of turbulent pair correlation (turbulent pair
dispersion) at large times and the change in regimes (scalings) with time is of undoubted interest.
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