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ABSTRACT: In our previous review, we covered various types of one-electron Rydberg quasimolecules in different
environments, such as under electric and/or magnetic fields or in plasma. In the present review we cover the dynamics of
certain types of muonic atoms with symmetry higher than geometric, as well as the dynamics of various atomic systems
subjected to a high-frequency laser field. Examples are hydrogen atoms and hydrogenlike ions, He atoms and He-like
ions, Li atoms and Li-like ions. These systems in the high-frequency laser field effectively have the spherical symmetry
while their geometrical symmetry is only axial. The review covers various counterintuitive results concerning the
dynamics of all of the above atomic systems, as well as their fundamental and practical importance.

Keywords: dynamics of muonic atoms; dynamics of atoms in a high-frequency laser field; higher than geometrical
symmetry

TABLE OF CONTENTS
Chapter 1. Introduction
Chapter 2. Dynamics of Rydberg States of Muonic-Electronic Helium and Helium-like lons

Chapter 3. Dynamics of Muonic-Electronic Helium and Helium-like Ions: The Allowance for the Eccentricity of the
Muon and Nucleus Orbits

Chapter 4. Dynamics of Circular Rydberg States of Helium Atoms or Helium-like Ions in a High-Frequency Laser
Field

Chapter 5. Dynamics of Circular Rydberg States of Lithium Atoms or Lithium-like lons in a High-Frequency Laser
Field

Chapter 6. Conclusions of the Review

References

CHAPTER 1. INTRODUCTION

The concept of symmetry plays the crucial role in the dynamics of physical systems. There are two kinds of
symmetry. First, there could be a geometrical symmetry dictated by the symmetry of the configuration of the system,
for instance, spherical or axial symmetry. Second, there are physical systems possessing a symmetry higher than the
geometrical one: the algebraic symmetry. The latter systems are of fundamental importance. The reason is that
analytical solutions can be found for such systems due to their algebraic symmetry. This is important because the
alternative treatment simulations lack the physical insight provided by the analytical solutions.
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In our previous review (referenced in Chapter 2 below) we presented the study of various types of one-electron
Rydberg quasimolecules. In the present review, first we cover the dynamics of certain types of muonic atoms with
symmetry higher than geometric. Then we review studies of the dynamics of various atomic systems subjected to a
high-frequency laser field. Examples are hydrogen atoms and hydrogenlike ions, He atoms and He-like ions, Li
atoms and Li-like ions. These systems in the high-frequency laser field effectively have the spherical symmetry
while their geometrical symmetry is only axial.

The review covers various counterintuitive results concerning the dynamics of all of the above atomic systems, as
well as their fundamental and practical importance. Throughout the whole review, we use atomic units (h = e=m_=1).

In the first two chapters, we present the studies of muonic atoms, particularly, of muonic-electronic helium and
helium-like ions; in the latter one we considered the case of a non-zero eccentricity of the orbits of the subsystem
muon — nucleus. The other two chapters contain the studies of helium and lithium atoms or heliuny/lithium-like ions in
a laser field of high frequency.

CHAPTER 2. CLASSICAL ANALYTICAL SOLUTION FOR RYDBERG STATES OF MUONIC-
ELECTRONIC HELIUM AND HELIUM-LIKE IONS

2.1. Introduction

In [1,2] we carried out the study of the Rydberg states of the configurations of a nucleus with charge Z, an electron,
and also a muon, in the configuration which has both the muon and the electron in circular states — see our previous
review [3] (referred below as Part ), specifically Chapter 5 for the case Z=1.! We studied such pZe systems (both
for Z=1 ([1] and Chapter 5 of [3]) and for Z > 1 [2]) considering many practical applications of muonic atoms and
molecules, in which one of the electrons is replaced by the heavier particle 1 (see, e.g., [11-15]). We showed that
the muon and electron motion can be considered rapid and slow subsystems accordingly, which at first sight is
counterintuitive. In a more illustrative way, the muon rapidly rotates in a circular orbit about the axis connecting the
proton and the electron, while this axis slowly rotates together with the relatively slow motion of the electron in a
circular orbit. We saw that the spectral lines of the muon in the quasimolecule ppe experience a red shift with respect
to the muonic hydrogen spectral lines from the muon.

In this chapter we also study Rydberg states of quasimolecules pZe for Z > 1 (i.e, Rydberg states of muonic-
electronic helium and helium-like ions) [16]. However, this chapter has differences from [2]. The configurations that
we studied here are stable, and the orbit of the electron, in general, is an ellipse (though we neglected the interaction
between the electron and the muon). In [2] we took into account the action of the electron on the muon; however, in
the rotating frame used in [2] the muon motion is metastable? ; besides, we only studied circular electronic orbits in

(2].

Because the muon motion has a much higher frequency than the electron motion in this muonic type of helium
atoms, we use the technique of separating rapid and slow subsystems. We show that the motion of the electron in an
effective potential in this system is a mathematical analogue of the satellite motion in the potential of an oblate planet
(e.g, the oblate Earth).

Using this corresponding example from celestial mechanics, we found that the unperturbed electron orbit undergoes
simultaneously two precessions. One is the precession of the orbit of the electron in the orbital plane, and the other
is the precession of the plane of the orbit around the axis of symmetry of the muonic orbit. These two types of
precession have different frequencies, and we present analytical expressions for both. We note that the shape of the
electron orbit is unchanged under these two precessions. This means that the squared angular momentum of the
electron is (approximately) conserved, which shows that there is the hidden symmetry in the system.

We remind the reader that, e.g., in the motion in the Coulomb field, this hidden symmetry classically manifests
itself by the conservation of the Runge—Lenz vector and quantally manifests itself by the appearance of the additional
degeneracy in the energy levels — see. e.g., textbooks [17,18]. For a hydrogen-like atom or ion in an electric field
which is uniform in space and constant in time, there is a generalized Runge—Lenz vector [19], the projection of
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which on the direction of the electric field is conserved. For an electron in the two-Coulomb-center field, there is a
super-generalized Runge-Lenz vector [20], the projection of which on the internuclear axis is conserved.

2.2. Analytical results

We study a pZe-system which consists of a nucleus of charge Z, a muon and an electron. Both leptons are in
Rydberg states: their corresponding principal quantum numbers n >> 1 and 1, >> 1. Due to the large ratio of their
masses (m“fmE = 206.8) the muon is much closer to the nucleus than the electron. We consider the muon to be in a
circular Rydberg state, so that its angular momentum quantum number has the maximum value n,—1.

The muon — nucleus revolution frequency about their center of mass is

my,Z%e* a
—— 1
353
nuh
Here
m,M
pnuct (2)

ur =
mp + Mnucl

is the reduced mass of the pair “nucleus — muon” and M is the mass of the nucleus. Particularly, for helium
Z=2),M /’mu = 35.28, which gives the reduced mass m, = 201.1 in atomic units (h =m_ = e = 1).

cl

mer(z - 1)264
KR ®

Here

= me(mp 5 Mnud)
°r m, ¥+ mu + Mnucl

4)
is the reduced mass of the pair “nucleus and muon — electron”. Particularly, for helium atoms (£ =2), m_ = 0.9999 in
atomic units, which means that for Z > 1, for all intents and purposes we can use m_ = 1.

From (1) and (3) we get the ratio of the two frequencies and see that it is much greater than unity

Q  m,Z™nd i
m—K - Mg, (Z —1)2nd * ®)
if the following condition is satisfied:

n, (murzz)1/3
ne < me, (2= D7 ©

For example, for helium atoms, the condition (6) becomes np/ne << 9 and the ratio of the frequencies (5) becomes

£ _ 804.4(1)3
R (ne) (7)
For Z>>1, (6) gives n /n, << 6 and (5) gives

0 _ Ny o

= = 206.8(ne) (8)

Wk
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Thus, we see that, for instance, at ”;./”e ~ 1, the muon revolution frequency is greater than the electron Kepler
frequency by 2 — 3 orders of magnitude (of course, /o, is even larger for np/nc < 1). So, the pair “nucleus — muon”
indeed represents a rapid subsystem, and the electron represents a slow subsystem.

Therefore, to solve for the electron orbit in the second-order approximation, we perform averaging over the
rapid subsystem. This presents the physical situation described below. The electron perceives both the muon and the
nucleus as circular rings of radii R and R_ , respectively, with the charge of each one uniformly distributed over the
ring of the corresponding radius (R“ and R ). The ratio of these radii is

R M
i - nucl s 1 (9)
Rnucl mp

cl

Particularly, for helium, R /R =35.28.

Therefore, the motion of the electron occurs in the effective potential energy which includes two terms, U and
U@, The first term UV is the effective Coulomb potential of the muon and the nucleus “taken as one™:

(Z —1)e?
—

v = (10)
The second term U™ is the quadrupole potential term (the dipole moment of the muonic and nuclear “rings” is zero).
In the spherical coordinates where the z-axis is the axis of symmetry of the muonic “ring”, its part UH‘Z’ of the second
term is

3cos?0 — 1

2) _ _ 2p2
Uu - ERH 473

(11)

In these expressions, r is the magnitude of the electron radius-vector and 0 is its polar angle. The quadrupole
potential energy of a charged ring is derived, e.g., in [21].

The expression for the quadrupole contribution of the nuclear “ring” is

3cos?B—1

(2 _

Unucl - ZezRgucl A3 (12)
Due to (9), the ratio |U‘2‘M/ U® | has the following form:
(2) 2 2

U R M2,
=gl = 2 1 (13)

U?‘tucl ZRnut:t mu

For example, for helium [U® /U® | |=622>> 1. For Z>2, theratio [U® /U | |is even greater: due to the roughly
linear dependence of M, on Z, [U® /U® | also depends roughly linearly on Z. Therefore, the effect of the
nuclear “ring” on the quadrupole potential energy can be neglected for most practical purposes.

Thus, the effective potential energy of the electron takes the following form:

(Z — 1)e? , 3cos?0 — 1

r - ezRﬁ 473
We can make a comparison of our expression for U_ in (14) with the one for the potential energy U, of a satellite in
the oblate Earth’s gravitational field (see, e.g., the book by Beletsky [22])

Uer = = (14)

GmM; 5 3cos?0 —1
Up =— " — GmMg|I;|R 3

(15)
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In (15), m is the mass of the satellite, M_ is the mass of the Earth, R is the Earth’s equatorial radius, and /, is a
constant parameter describing the relative difference between the Earth’s equatorial and polar diameters.

If we compare the following quantities in (15) with those in (14)

e’R? RZ
= —_ 2 2 = i = B
GmMg = (Z — 1)e*, |I|R 2GmM, _ 2(Z—1) (16)

then the right-hand sides of (15) and (14) will become identical. This means that the Rydberg electron motion in
muonic-electronic helium atoms or helium-like ions is mathematically identical to the motion of a satellite in the field
of an oblate planet (such as the oblate Earth). The solution for such motion presented, e.g., in the book by Beletsky
[22], shows that the satellite’s elliptical orbit experiences two types of precession: the orbit precession in its own
plane and the precession of the orbit plane around the axis parallel to the polar diameter of the Earth. The shape of
the satellite orbit is unchanged under these two types of precession. Their frequencies are given by Egs. (1.7.10) and
(1.7.11) from Beletsky book [22].}?

From the corresponding quantities in (16), we find the two precessions frequencies of the Rydberg electron orbit
in muonic-electronic systems considered here. The precession of the orbit in its own plane has the frequency

3Z-1 my Mer

== (1— 2; 4p€ry2
Wpip = 5732 (1 — 5cos L)(le+1/2 (mur) wg (17)

where the Rydberg electron’s Kepler frequency w, is given by (3), “pip” in the subscript index stands for “precession
in plane”, and i is the angle between the electron orbit plane and the plane of the muonic and nuclear “rings”, called
the inclination. To obtain (17), we used the relation between the semi-latus rectum p of the unperturbed elliptical orbit
and the angular momentum M of the Rydberg electron:

M (L+1/2)%R
T @Z-1Dme? (Z-m,e? (18)

P

where /_ is the electron’s angular momentum quantum number.

The precession of the electron’s orbital plane around the axis of symmetry of the muonic “ring” has the
frequency

_3Z-1 . ony Mg,
- COS!(EG + 1/2) (mur) Wg (19)

where “pop” in the subscript index stands for “precession of plane”.

The above-mentioned situation is shown schematically in Figure 1. The bold dot represents the nucleus, the
circle represents the muon ring, and the precessing elliptical orbit is of the electron.

Fig. 1. The nucleus (bold dot), the muonic ring (circle), and the precessing orbit of the electron.

International Review of Atomic and Molecular Physics, 15 (1), January-June 2024 / 5



The motion of the Rydberg electron in muonic-electronic helium atoms or helium-like ions is also mathematically
equivalent to the problem of a hydrogen Rydberg atom in an electric field with linear polarization E(7) = E  cos o, ¢
produced by a laser radiation of a high frequency, where the laser frequency o, is much greater than the Rydberg
electron’s Kepler frequency [24].

In all of the above-mentioned configurations the squared angular momentum M? is approximately conserved
(besides the exact conservation of the projection M_ of the angular momentum onto the symmetry axis), which is the
consequence of the fact that the shape of the elliptical orbit is unchanged under the precessions. Therefore, these
configurations have a hidden symmetry, 1.e., the symmetry which is higher than the geometrical one (in our case,
the geometrical symmetry is the axial symmetry). Thus, the hidden symmetry of a muonic-electronic helium atom or
helium-like ion in Rydberg states should be of general physical interest.

2.3. Conclusions

We studied muonic-electronic helium atoms or helium-like ions (we concentrated primarily on helium atoms), with
both leptons in Rydberg states, and the muon in a circular Rydberg state. We used the appropriate here method of
separating the rapid and slow subsystems, the subsystem “nucleus — muon” being rapid and the electron being slow.

We showed that the electron undergoes motion in a modified Coulomb potential, whose second term is the
quadrupole interaction with the muonic “ring”. Then we showed that the electron’s effective potential energy
mathematically coincides with the satellite’s potential energy in an orbit about an oblate planet (for example, the
oblate Earth). Using this, we concluded that the electron orbit experiences two different simultaneous precessions:
the precession of the orbit in its own plane, and the precession of the orbital plane itself about the axis of symmetry
of the muonic “ring”. We analytically derived the expressions for the frequencies of both precessions.

The precessions mentioned above should be observed in spectral lines corresponding to the electron’s radiative
transitions as these two series of satellites. In the first one, the satellites would be separated (in the frequency scale)
from the spectral line’s unperturbed position by the frequency ®_ (17) and its multiples. In the second one, the
satellites would be separated (in the frequency scale) from the spectral line’s unperturbed position by the frequency
o, (19) and its multiples.

We noted that the perturbation does not affect the shape of the electron’s elliptical orbit, which manifests the
(approximate) conservation of its squared angular momentum. This means that the configurations considered above
possess a hidden symmetry. This result is counterintuitive and it presents a general physical interest. We also
noted that the problem of the Rydberg electron motion in muonic-electronic helium atoms or helium-like ions mentioned
above also mathematically coincides with the problem of a hydrogen Rydberg atom in an electric field with the linear
polarization of a laser radiation of high frequency, as well as with the three-dimensional motion of a circumbinary
planet about a binary star.

The results of this chapter and of our previous paper [2] complement each other. Therefore, these two works
combined should improve a physical insight into Rydberg states of muonic-electronic helium atoms and helium-like
ions.

CHAPTER 3. CLASSICAL DYNAMICS OF MUONIC-ELECTRONIC HELIUM AND HELIUM-LIKE
TIONS: THE ALLOWANCE FOR THE ECCENTRICITY OF THE MUON AND NUCLEUS ORBITS

3.1. Introduction

There are numerous applications of muonic atoms and molecules — see, e.g., [11-15] and references therein. This
inspired the studies of systems pZe composed of a nucleus Z, an electron and a muon (see [1,2,16], Chapter 5 of [3]
and Chapter 2 of the present review).

In particular, in Chapter 2 we studied Rydberg states of the muonic-electronic helium atom or helium-like ion,
considering that the motion of the muon is much more rapid than the motion of the electron. Therefore, we employed
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the analytical method of separating rapid and slow subsystems. It was shown that the electron motion occurs in a
potential which is identical to that of a satellite about an oblate planet (for instance, a satellite about the Earth).

Then, in Chapter 2 we showed that the “unperturbed” electronic elliptical orbit undergoes two types of precession
at the same time: the precession of the orbit of the electron in its own plane and the precession of the orbital plane of
the electron around the axis of symmetry of the orbit of the muon. The shape of the elliptical orbit of the Rydberg
electron, however, is unchanged. The conservation of the orbit’s area means that the square of the angular momentum
of the electron is conserved. Thus, the system possesses symmetry which is higher than geometrical: from the
geometrical symmetry alone (which is axial), it only follows that the projection of the angular momentum on the axis
of symmmetry is conserved. This was a counterintuitive result which has a general physical interest.

In Chapter 2 we considered circular orbits of the muon and the nucleus. In this chapter we study a more general
situation where the orbits of the muon and the nucleus are elliptical. We find how a relatively small eccentricity & of
their orbits changes the electronic motion. We find an additional term in the effective potential for the electronic
motion. We demonstrate that in the particular case of the motion in the plane (where the orbits of the electron and the
system “nucleus — muon” are in the same plane), there is an effect on the frequency of the precession of the orbit of
the electron. We show that this contribution can have the same order of magnitude as the primary, eccentricity-
independent contribution to the frequency of the precession.

3.2. New results

As in Chapter 2, here we study the configuration which consists of a nucleus of charge Z, a muon and an electron.
Both leptons are in Rydberg states, which means that their principal quantum numbers are n, >> landn >>1 (“p”
stands for the muon and *“e” for the electron). The electron has a far greater distance from the nucleus than the
muon because the two leptons have a large difference in their mass.

In this chapter we study the case of small-eccentricity orbits of the system “muon — nucleus”. For a Coulomb
potential

U=-—- (20)
(where a = Ze?, and e is the elementary charge), the equation of the planar orbit is
p
;= 1 + ecosg (2D)

Here

(22)

where ¢ is the eccentricity of the orbit, (7, @) are the polar coordinates, £ is the energy, L is the angular momentum,
and m_is the reduced mass of the subsystem “particle — Coulomb center”.

When the eccentricity is small (g << 1), this gives
p
S
1 + ecosgp
where r, is the orbit radius for £ = 0. Because the situation with £ = 0 was studied in Chapter 2, the electron feels the rapid
subsystem “nucleus — muon” as two rings of radii R and R, charged uniformly, where R#O/Rm = mml/m}l >> 1. The
potential for the electron then was

~ p(1 — ecos@) = 1,(1 — ecos) (23)
10

y© — _ (Z—1)e? _ ez(RElU — ZR%uc10)

off = - e (3cos?0 — 1) (24)
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In the present situation & << 1, K, and R have the dependence on time:

R, = R,o(1 — gcost), Ryyci = Ruucio(1 — €cosilt) (25)
where
" Ze? Ze?
mpr (Rpﬂ * Rnuci{))3 mera(] (26)

is the revolution frequency of the system “nucleus — muon” about its center of mass, and
——_— mumnucl
pr = 27
mu T Mapuct ( )

is the reduced mass of this system. Plugging (25) in (24), we receive this time-dependent “potential”:

U = u©® 4 ez(Rlle — ZR3c10)

eff 273 (3c0s?8 — 1)ecosQt = v® 4+ W (r, cosB)cos(lt (28)

eff

Now we employ the term W(r, cos 8) cos Qt in the method of effective potentials [24-28] with respect to the totally
unperturbed Hamiltonian

p?  (Z-1)e?
Hy = 2m,, - 7 (29)
where
me (mp * mnucl)
Moy = (30)

Mme + My + Myya

is the reduced mass of the system “electron — the pair nucleus-muon™. The helium atom (Z = 2) has m_ = 0.9999,
therefore, in the case of any Z, m_ 1s practically equal to 1. Besides, since Rw/Rmlc o >> 1, wecanomit R =~ from the
potential.

1

The zeroth-order potential,

4 o 9e?e’R};(1 — 2cos?0 + 5cos*0) -
(i m[ '[ ’ 0]] - 16merﬂ27"3 ( )

U,

where W is given in (28) and [P, O] are the Poisson brackets, is the time-independent term. Taking Q from (26) and
plugging it into (31), we get:

9em,,e*Riy(1 — 2cos?0 + 5cos*)

0 16m,, Zr®

(32)
Therefore, the full expression for the effective potential in this case is

— @
Uerr = Uepy
(Z—-1e? e*RY,

=— - g (3cos?0 — 1)

- 9e?m,.e?R o (1 — 2c0s?0 + 5cos*0)
16m,,Zr8

Next, we consider the electron orbits which are in the same plane as the muon — nucleus orbits, which means that
6 = m/2. This is stable equilibrium, as we can see from (33) differentiating it with respect to 8. Here, the resulting

potential is a Coulomb potential with two additional 1/7"-perturbations (as before, we use the atomic units e =m = h=1):

+ Uy

(33)
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o Z—-1 Ri  9e2my Ry
of =" 7 T w3t Tem, zre
The derivation of the 1/#-perturbation to the Kepler orbit is given, e.g., in [29] (the cases n =2 and n = 3 were also

considered in [17], Chapter 3, problem 3). In the case of the Coulomb potential —o/7 with a perturbation by the
potential —f/#" * ', the orbit precesses with the perihelion advance

(34)

L

a1
8§D = ZmBﬁ(zp]‘”I(l + g.cos0)" td@) (35)
0

where m is the reduced mass of the system “particle — Coulomb center”, L is the particle’s angular momentum, ¢_ is
the orbit eccentricity, and p = L?/(ma); in the case we are considering the particle is the electron. The precession
frequency divided by the Kepler frequency is equal to the perihelion advance divided by 2z, so for the precession
caused by the second term in (34), the frequency of the precession in the orbit plane divided by the Kepler frequency
is

€

Opip _ 32 m_ 1\g2
iy Fmer(Z =S (36)
where
Ryo

and “pip” in the subscript index in (36) stands for “precession in plane”. We could come to an identical conclusion by
using Eq. (1.7.10) from [22], where the potential is the oblate Earth gravitational potential and is mathematically the
same as (32) (excluding the last term) with the quantities corresponding in this way:

aMme @ -1t Rt o p e ity S
— — = — L1 =
i =1tk 2P T E Y Tz - D

(38)
(we employed the same approach in Chapter 2). Putting this correspondence into Eq. (1.7.10) from book [22] and
using the above-mentioned assumption 8 = n/2, we get the same as (36) (again, e = 1 in the atomic units).

In Fig. 2, we have the plot of the ratio | , //®,| depending on R  for the case of L =3 and Z = 2. We see that
at these values of R“D, the frequency wpip“) of the precession in the orbit plane stays small compared to the Kepler
frequency o, of the electron, which serves as the validity condition for (36).

|wpip‘ ”/wk’l
0.35
0.30 /
0.25 /
0.20 P
0.15 yd
0.10 P
0.05 L

Fig. 2. Plot of the ratio |mpip‘”/mK! from (36) versus R  for L=3 and Z=2.
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Applying (35) to the next perturbation term, which is the last term in (34), and which is the contribution to the
potential from the small eccentricity of the orbits of the muon and the nucleus, we derive the additional term for the
precession frequency (divided by the Kepler frequency):

(2)
mpl'p _ ﬁgszmurmgr(z - 1)657f(55)

Wy 2567

,f(Es) = 429 — 495E, + 135EZ — 5E? (39)

where

2|E|L?

* T @ - D2 o

is the scaled dimensionless electron energy (taken by the absolute value). In the case of bounded electron motion,
the orbit eccentricity is e, = (1 — E)"and 0 <E_< 1.

In Figure 3, we have (£ ) from (39). As E_goes from zero to one, f{E ) monotonically diminishes from 429 down
to 64.

f(Ey)

0?2 0'.4 0:6 ofs 1?0 Es
Fig. 3. Plot of the function fiE) from (39), where E_is the scaled electron energy defined in (40).

Fig. 4 presents the three-dimensional plot of |w  “/w, | depending on R , and & for E <<'1 (the case of a large
electron orbit eccentricity (1 —¢) <<1), L =3, and Z= 2 (which means that m, = 200.4). We see that at these values
of R , and &, the next-order contribution to the frequency of the precession mpipfz) stays sufficiently less than the
electron Kepler frequency w,, which is the validity condition for the analytical result for wpipm;’ o, from (39).

2, 024 T 8 R 5
lwpip' = wi | o SR T 0.020

'y
Fig. 4. Plot of the ratio |mpip‘2’me| from (39) depending on R jand e for E <<1, L=3,and Z=2.

The ratio o, @/o " (which we name K,,) of the next-order term of the precession frequency (39) to the
primary term (36) is:

21em,, m¢ (Z — 1)°S5f (E;)

i = 41
Kan a7 @1
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0.8 0.0

Fig. 5. Plot of the ratio K, of next-order term of the precession frequency (38) to the primary term (36) depending on §' = RHUILZ
and E_(see (40)) for Z=2 and £=10.02.

Figure 6 presents K, depending on § and Z for £ = 0.02 and £ << 1.

Fig. 6. Plot of K| depending on S and Z for £=0.02 and E << 1.
Figure 7 presents K, depending on R and ¢ for the case of Z=2, L =3, and £, << 1.
il s

Fig. 7. Plot of K,, depending on R and ¢ for the case of Z=2,L =3, and E << 1.
il s

From Figs. 5 — 7 we see that within the ranges of the parameters where the validity conditions for both primary and
additional contributions to the precession frequency are satisfied, @ ), the additional contribution because of a low
eccentricity of the muon orbit (and of the nucleus orbit) can be of the same order of magnitude as the primary
contribution o .
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3.3. Conclusions

We studied the case where the muon and nucleus orbits in the “nucleus-muon-electron” system are elliptical, which
is a more general situation compared to Chapter 2, where the muon and nucleus orbits under consideration were
circular. In the situation of a relatively small eccentricity of the orbits of the muon and the nucleus, we obtained an
additional, eccentricity-dependent contribution to the effective potential for the electron. We showed analytically that
in the planar case (where the orbit of the electron is in the same plane as the orbits of the muon and the nucleus), it
yields an additional eccentricity-dependent term of the precession frequency of the orbit of the electron. We
demonstrated that this additional term can reach the same order of magnitude as the primary term, which does not
depend on the eccentricity of the orbit. Therefore, these results in this chapter have not only qualitative, but also
quantitative importance.

CHAPTER 4. CIRCULAR RYDBERG STATES OF HELIUM ATOMS OR HELIUM-LIKE IONS IN A
HIGH-FREQUENCY LASER FIELD

4.1. Introduction

In [30,24,31] studies of a hydrogenic atoms/ions in a laser field of high-frequency were carried out. To give more
details, in [24,31] the focus was at classically-described Rydberg states. In [24,31], by “high-frequency” it was
meant that frequency o of the laser is much greater than the Kepler frequency o, = m e*/(n’i’) of the atom:
® >> @,. (m_ s the electron mass, e is the electron charge, and n >> 1 is the electronic principal quantum number.)
In this model, the laser field can be considered the fast subsystem and the Rydberg atom — the slow subsystem,
which allows an analytical solution. Particularly, in paper [24] the authors generalized the method of effective
potentials previously developed by Kapitza [27,28].

In [30,24,31] it was shown that this problem reveals interesting physics. With the laser field of linear or circular
polarization, the system possesses axial symmetry, which means that the squared angular momentum A#* is not
conserved (only M, the projection of the angular momentum on the axis of symmetry is conserved). However, in
[30,24,31] it was demonstrated that in this case M? is approximately conserved, so that this system possesses
approximate algebraic symmetry, which is higher than the geometrical symmetry.

Besides, in the cases of linear or circular polarization of the laser field, the system has celestial analogies.
Particularly, in the case of linear polarization, the electron motion is analogous to the satellite motion in the gravitational
field of an oblate planet: it undergoes two precessions — the orbit precession within its own plane and the precession
of the orbital plane itself. In the case of circular polarization, the electron motion is the same as the satellite motion in
the gravitational field of a (nonexistent) prolate planet: it undergoes the same two precessions.

We devote this chapter to the study of a helium atom or a helium-like ion whose one of the two electrons is in
a Rydberg state, while the system is under a laser field of high frequency. To obtain results, we use the method of
effective potentials [24,25], also given in book [26].

Then we considered circular Rydberg states of the electron (see the first footnote to Chapter 2, Section 1). We
demonstrate that there is precession of the orbital plane of the Rydberg electron caused by the laser field of high
frequency. We find the frequency of the precession analytically and show that it is different than the one for a
hydrogenic atom/ion. This precession would manifest itself in the radiation spectrum as satellites separated from the
spectral line at the Kepler frequency by the multiples of the frequency of the precession.

Another result that we found in this situation is that the laser field of high frequency induces a red shift of the
electron energy. We find this shift of energy analytically and analyze how it depends on the system parameters.

4.2. New results

We consider a He atom or a He-like ion in a laser field of high frequency. The inner electron of the atom or ion is in
state 1s and the outer electron is highly-excited. The quasinucleus, which is comprised of the nucleus of charge Z and
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a spherically-symmetric charge distribution given by the inner electron in state 1s, has the following potential (see,
e.g, [32]):

Z—1 1. ..
®(r) = — + (Zp+ ;)e'“”’r (42)

where p =M m /(M + m)is the reduced mass of the “nucleus — electron” (M is the mass of the nucleus and m, of
the electron) and  is the distance between the symmetry center and the outer electron. Atomic units h=e=m_ =1
are used here. The atom is submerged into a high-frequency laser field which has frequency © and amplitude F. It is
appropriate to use a classical or semi-classical analysis for Rydberg electrons.

4.2.1. Linearly-polarized laser field
For linear polarization, the semi-classical Hamiltonian for the outer (Rydberg) electron is
, D6, Py

1
H = H, + zFcoswt, H, = E(pIr 4 2 ¥ Tagn70
1

) — @) (43)

where u, =m (M +m)/(M + 2m) is the reduced mass of the system “nucleus Z with the inner electron — outer
electron”, the z-axis is in the same direction as the laser field F, (r, 8, ¢) are the electron spherical coordinates, F is
the laser field strength and o is its frequency. Both p and p, are close to unity: physically, they are in the range from
0.999864 for helium (Z = 2) to 0.999998 for He-like oganesson (Z = 118). The configurations in a field of high
frequency (far exceeding the largest frequency of the unperturbed system) can be treated using the method of
effective potentials [24-28]. The result of this procedure is an additional time-independent term in the Hamiltonian
H,. The effective potential of the zeroth-order,
1 F?
Uy = 7= [V.[V, Holl

0
42

- 41, w? (44)

where V= zF and the square brackets denote the Poisson brackets, is a shift of energy without coordinate dependence
and therefore it has no effect on the system dynamics. The effective potential of the first order is the first that affects
the system dynamics:

Up = =7 [V, Hol, [V, Hol, Hol] =

R207)3
- ;ufifiS ((Z = D1 + 3c0s28) + ((1 + 2x)(1 + 2x) + (3 + 6x + 6x% + 4x%)cos20)e™?) (45)
1

where

x = wZr (46)
The electron effective potential energy then is
Urs =U+ U+ Uy (47)
with U being the unperturbed energy.
In [24], where the subject of study was a hydrogen Rydberg atom in a laser field of high frequency with linear

polarization, the effective potential energy was shown to have the following form:

e? etF?

Y ,
Ue,"[(rr 9) - *?fﬁ(Bcoszef 1),y = (48)

4mZw*
where 0 is the polar angle in the spherical coordinates, i.e., the angle between the electron radius-vector r and the z-
axis directed along the laser field amplitude F. This effective potential energy has mathematical equivalence to the
satellite potential energy in the gravitational field of the oblate Earth (see, e.g., [32]), and it bears the following
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feature: in the general case of the elliptical unperturbed orbit, the latter undergoes two simultaneous precessions. The
first is the precession of the elliptical orbit in its own plane, and the second is the precession of the orbital plane itself
about the vector F. The frequencies of both have the same order of magnitude and they are much less than the
Kepler frequency of the electron.

In our case the general form of the effective potential energy is more complex. Therefore, we consider a
particular situation where the unperturbed electron orbit is circular. In this situation the orbital precession in the plane
does not apply, and only the precession of the plane of the orbit is considered.

Thus, we consider the case » = const, so the only dynamic variable is the angle 6. In such a case, we can bring
the potential energy to the form (48) with an extra term independent of 0, as shown below. Defining

f(x) = (14 2x)(1 + 2x2),g(x) = 3 + 6x + 6x2 + 4x° (49)

we transform (45) into the following expression:

_ _Fewiez-1 2 e 3f(x) —g(x) e
Uy =~ i (Geos™® = DA+ 9@ 37— + 5 3Z=1) (50)
The total energy of the electron is therefore
Z-1
Uy = st AU, (r) + AU(r, cos8) (51)

where the second term is the shift of energy compared to the unperturbed energy, and the third term is the one that
causes the precession.

From (50) and (48), the term

-2x
x —_—
90375 (52)
is a relative correction to the frequency of the precession of the plane of the orbit, and the quantity
3f(x)—g(x) e g-2x
fG) - 9@ 4 )
2 3(Z-1) 3(Z-1)
corresponds to a shift of energy. Incorporating the factor at the start of (50), we obtain the energy shift:
F2(Zp)®

3t w*
In circular orbits, the outer electron has the energy £ = —(Z — 1)/(2r), and, taking the quantity defined in (46), the
energy shift can be given the following form:
F2(Zw)? pzz-1)
— E

6F = —
3 w*

(35)

Figure 8 presents the energy shift depending on the unperturbed energy of the electron for Z=4, F=1, ® =100. The
Kepler frequency of the electron at such energies,

1 [BIEP
=1 0 (56)

is in fact much less than the frequency of the laser field.
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Fig. 8. The energy shift versus the unperturbed electron energy for Z=4, F =1, o = 100.

We see that the energy shift vanishes when the unperturbed energy is zero, and it has the asymptotic limit
— F*(Zp)’/(3pu,’w?) as the absolute value of the unperturbed energy increases (see Fig. 9).
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Fig. 9. The energy shift versus the unperturbed electron energy E for Z =4, F = 1, » = 100 for large negative values of E.
In Figure 10 we present the shift of energy depending on the charge Z ofthe nucleus at =1 and @ = 100 for
the two selected values of the unperturbed energy: E =-2 (blue, solid line) and £ =-5 (red, dashed line). [t has a
minimum at the point Z ~ (1 + (1 +24|E])"*)/4 (using the approximate values p = p, = 1). The non-monotonic
dependence of the shift of energy on Z is counterintuitive.

Fig. 10. The energy shift versus the nuclear charge Z for E = -2 (blue, solid line) and E = -5 (red, dashed line) for F =1,
o =100.
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In Figure 11 we present a plot of the shift of energy depending on both the charge of the nucleus and the
unperturbed energy for the values =1 and ® = 100. We see that the minimum of the shift in relation to the nuclear
charge in fact moves to greater values of Z as the absolute value of the unperturbed energy increases.

Fig. 11. The dependence of the energy shift on Z and E for F=1, © = 100.
The motion described by the effective potential energy

(Z-1)e* (Z-1)y
r T3

(3cos20 — 1) (57)

Uesr =

has mathematical equivalence to the satellite motion in the gravitational field of the oblate Earth, whose effective
potential in the latter case is (see, e.g., [32])

GMgm  GMgym|l,|R?

Ve = r 2r3

(3cos20 — 1) (58)

Here M, is the mass of the Earth, m is the mass of the satellite, R is the Earth equatorial radius, and 7, is a constant

parameter describing the relative difference between the equatorial and polar diameters of the Earth. The ratio of
the precession frequency Q of the plane of the satellite to the Kepler frequency o, is [22]:

Q 3|, R

—_— M (5)2C05i (59)

Wg i 2

G(M
gk = ’% (60)

is the satellite Kepler frequency, m is the mass of the satellite, and 4_ is the major semi-axis of its unperturbed
elliptical orbit. In (59), i is the angle between the orbit plane of the satellite, also called the inclination, and the
equatorial plane of the Earth. p is the semi-latus rectum of the unperturbed orbit.

where

If we bring into the correspondence the following quantities in (58) with those in (57)

2y

GMgm = (Z = 1)e?, ||R? = — (61)

then the energy expression from (58) would become identical to (57). By substituting |[|R* = 2y/e* in (59), we get
the corresponding expression for the ratio of the frequencies for our case:

Q 3y .

w—K lo = WCOSL (62)
where the Kepler frequency o, is given by (56) and the subscript “0” refers to the unperturbed case.

In circular orbits,

16 \ International Review of Atomic and Molecular Physics, 15 (1), January-June 2024



Review of the Dynamics of Atomic and Molecular Systems of Higher than Geometric Symmetry....
Z—=1
=-r=-———

so that the ratio for the unperturbed case in (62) becomes

Q 12y|E|? .
™ lo = mCOS! (64)
where in our case the quantity v is (see (50))
FZ
= i ©
The dependence of x from (64) on the unperturbed energy in the case of circular orbits is
o _wZ-1)
X = Wr = 21 (66)

In (51), AU (r) is a relatively small shift of the electron energy. The motion beyond the plane of the unperturbed

circular 0rb1t is described by the truncated U o (see (50), (51)):

Z-1 1)y -2
7 oAy ()3(2 )

where g(x) is from (49), » is from (63) and x from (66). Therefore, the frequency of the precession divided by the
electron Kepler frequency is

Ugppr = ———)(3c0s?0 — 1) (67)

i B 3_Y i 2 e“ZX ) Yl |2 . *21’ . 68
(-l),'( - TZ ( g(‘x) 3(2 _ 1))COSL (Z )z ( (x) 3(2 ))COS! ( )
and the relative correction to the precession frequency is
0 e—ZJ(
o = 9K) 3Z-1) (69)

with g(x) from (49) and x(E) from (66).

In Figure 12 we show the relative correction to the frequency of the precession of the orbital plane of the
Rydberg electron depending on the energy of the electron for a few values of Z.

B0 (I 0 O B B e B B A e A e B g

Fig. 12. Dependence of the relative correction to the precession frequency of the orbital plane of the Rydberg electron on the
electron energy for Z = 4 (blue solid curve), Z =6 (green dashed curve), and Z =9 (red dotted curve).

The relative correction to the precession frequency AQ/Q has an asymptotic limit of 1/(Z — 1) at large negative
values of the electron energy.
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4.2.2. Circularly-polarized laser field

In this section we consider the case of the laser field of the amplitude F and frequency o with circular polarization,
the polarization field being orthogonal to the z-axis. The time variation of the laser field is

F= F(e coswt + e sinwt) (70)

where e _and e are the orts of the x- and y-axes (orthogonal to the z-axis). The semi-classical Hamiltonian of the
outer electron here has the form

H = Hy + xFcoswt + yFsinwt (71)
where H is given in (43). Denoting
V = xF = Frsinfcos@, W = yF = FrsinBsing (72)

where (7, 0, @) are the spherical coordinates, and applying the method of effective potentials [24-26], we obtain the
effective potential of the zeroth order

1 F?
Up = 7 (V. [V, Hol] + [W, [W, Ho]]) = 2P (73)
and of the first order
i -1
Uy = = ([[V. Hol. [[V. Hol. Hol] + [[W. Hol. [[W, Ho], HolD) + 5 [[V. Hol. W, Ho]] =
= F"(Zu)% ((Z = 1)(1 + 3cos20) + ((1 + 2x + 2x2 — 4x3) + (3 + 6x + 6x2 + 4x*)cos20)e™2%) (74)
Bpiw*x?

with x given in (46). Repeating the derivation from the linear-polarization case, we present U, in the same form as in
(50):

_FEwiiez-1) 2 e~ 3fi(x) —g(x) e
Uy _W((3COS 0-1(1 +9‘(x)3(z_1))+ > 3(2_1)) (75)
The differences from (50) are the initial sign and another function f|(x):
fi(x) =14 2x + 2x% — 4x3 (76)
From (75) we find that the shift of energy caused by the circularly-polarized laser field is
2EHZ
sg = @ 5, 7

3w

which is twice as large as the one caused by the linearly-polarized laser field. The relative correction to the frequency
of the precession of the orbital plane in the circular-polarization case is found to be identical to the linear-polarization
case (given in (52) and (69)).

4.3. Conclusions

We considered a helium atom or a helium-like ion with one of the two electrons in a Rydberg state, the atom being
placed into a laser field of high frequency. We used the generalized method of effective potentials from [24-26] to
obtain the analytical results.

Then we considered circular Rydberg states. It was found that there are two main effects of the laser field. The
first one is the precession of the orbital plane of the Rydberg electron. We found the frequency of the precession and
demonstrated that it is different from the one in the case of a hydrogen atom/hydrogen-like ion. In the radiation
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spectrum this precession should manifest itself as satellites separated from the Kepler frequency spectral line by
multiples of the frequency of the precession. The second effect is the red shift of the energy of the Rydberg electron
because of the laser field; we found the analytical expression for this shift. We studied how it depends on the system
parameters. We found that the shift monotonically increases by absolute value when the Rydberg electron unperturbed
binding energy increases. Besides, we demonstrated that the shift depends non-monotonically on the nuclear charge
Z: this dependence has a maximum. The non-monotonic dependence of the energy shift caused by the laser field on
the charge of the nucleus is counterintuitive.

Finally we would like to mention that for the interaction between atoms and a laser field of high frequency, the
method of effective potentials [27,28,25], which we used in the present chapter, is more advantageous than the
method given by Kramers [33] and Henneberger [34], and after that used by Gavrila ef al. in the treatment of
hydrogen atoms [35,36]. The latter method essentially consists of switching to the frame which oscillates with an
electron in the laser field and then time-averaging of the corresponding time-dependent perturbation. Nevertheless,
first, this method applied to hydrogen atoms in the laser field of high frequency, as in the paper by Gavrila [35], fails
to detect the hidden (algebraic) symmetry of the system, which was revealed in papers [30,24] using the method of
effective potentials; thus, the method of Kramers—Henneberger does not have the physical insight in comparison
with the method of effective potentials. Second, the method of effective potentials is carried out analytically to the
arbitrary order with respect to the laser field [25,26], but this feature is apparently not present in the method of
Kramers—Henneberger.

CHAPTER 5. CIRCULAR RYDBERG STATES OF LITHIUM ATOMS OR LITHIUM-LIKE TONS IN
A HIGH-FREQUENCY LASER FIELD

5.1. Introduction
In Chapter 4 and [37], we considered a helium atom or a helium-like ion in a laser field of high frequency. In this
chapter we study a lithium atom or a lithium-like ion in a laser field of high frequency. The atom/ion under consideration

has two inner electrons in the state 1s, and the third, outer, electron is in a highly excited (Rydberg) state. The
potential @ of a configuration of a nucleus of charge Z and two inner electrons in state 1s is [32,38]

Z—2 5 P

= i Ve 2Z—gplur

®=——+2((Z-u+-)e (78)
where p=M m /(M + m ) is the reduced mass of the system “nucleus Z — electron” (M is the nucleus mass and m,
is the electron mass) and r is the distance between the electron and the center of the atom. We use atomic units:
h=e=m_=1.The atom is in a high-frequency laser field of frequency @ and amplitude /. Rydberg electrons can be
treated classically or semi-classically.

5.2. New results
5.2.1. Linearly-polarized laser field
First, we consider the linear polarization of the laser field. The outer electron has the following Hamiltonian:

1, P5.  Po
H = Hy + zFcoswt, Hy = 5 = (07 + 5+ 555
i |

) — () (79)

where u, = m (M + 2m )/(M + 3m ) is the reduced mass of the system “nucleus Z with the two inner electrons —
outer electron”, the z-axis is collinear with the laser field F, (r, 0, ¢) are the electron spherical coordinates. p and p
are very close to unity: they are in the range from 0.999922 for lithium (Z = 3) to 0.999998 for Li-like oganesson
(Z = 118). To study systems in a high-frequency field, when the field frequency is much larger than the highest
frequency of the unperturbed system, it is appropriate to use the method of effective potentials [24-28]. Applying this
method yields a time-independent term added to the Hamiltonian /. The effective potential of the zeroth order,
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Ao i)

1
Uy = 55 V.1V, Hol| =

where V' = zF and [P, (] are the Poisson brackets, is a coordinate-independent shift of energy and thus it does not
affect the dynamics of the system. The effect on the system dynamics is given by the effective potential of the first
order:

1
Uy = — [V, Hol. [V, Hol, Hol] =

5
FZ-19W*@-2)  ax* 20() (81)
= - I (3(2_2)9 + (3cos H—l)(1+3(2_2)e )
where x is similar notation to that in (46) and used in [37]:
5
X =WEZ—pr (82)
and
g(x) =3+ 6x + 6x? + 4x° (83)
For x << 1, (81) becomes
F?Z 1—3cos%0
(84)

1 ~
4piwt 3

Its only difference from the corresponding effective potential of the first order, obtained in [24] for a hydrogen
Rydberg atom in a high-frequency laser field with linear polarization, is the factor Z. As given in [24], this type of
effective potential is a mathematical analogue of the satellite potential energy which orbits around the oblate Earth
[22].

The most important physical detail of this kind of effective potential is that the corresponding system has a
higher than geometrical symmetry. It reveals itself as the conservation of the squared angular momentum A#,
while from the geometrical (axial) symmetry, only the conservation of the projection M_ of the angular momentum on
the laser field direction follows. For the configuration studied in the present chapter; allowing for finite values of
x = WZ — 5/16)r breaks this algebraic symmetry and reduces it to the geometrical (axial) symmetry.

As given in Chapter 4 and in [37] and references therein, the perturbation (81) modifies the unperturbed Coulomb
potential and shows the following physical behavior: for the general case of an elliptic orbit, the orbit undergoes two
precessions: one is the precession of the elliptic orbit in its own plane, and the other one is the precession of the plane
of the orbit itself about the vector F. The frequencies of both precessions have the same order of magnitude, and
they are much smaller than the electron’s Kepler frequency. As in Chapter 4 and [37], we consider a circular
unperturbed orbit of the outer electron. In this situation the first kind of precession (of the elliptic orbit in its plane)
loses its meaning and we consider only the second precession (of the orbital plane).

The potential (81) resembles the potential for the helium-like case in (50), which we reproduce here for comparison:

_ PEwiE-1), 4 . g(x) .
By = = 4pfwtx? 3(Z-1) B Peas A0 + 3(Z-1) e L
Thus, the quantity
A 2g(x) .
0 3z-2¢ L

is a relative correction to the precession frequency of the orbit plane, and
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P2 e, P

s — _ 2x 87
Htetxd -0 3120 (37)

8E =

is a shift of energy. For a circular orbit, the outer electron energy is £ = —(Z — 2)/(2r) and, taking (82), we obtain the
expression for x depending on the unperturbed energy:

5
B Wz —1g)Z - 2) (88)

5
X(E) =nZ - = °F

and then we give the energy shift the following form:

2F2(Z - 2N 1))
_—_ E

3piwt

SE = (89)

Figure 13 presents the shift of energy depending on the unperturbed electron energy for the selected values of Z = 4,
6 and 9 in the laser field with 7= 1 and o = 80.

- 1.2x10

Fig. 13. The energy shift versus the unperturbed electron energy for Z = 4 (blue, solid curve), Z = 6 (red, dashed curve) and
Z =9 (green, dotted curve) for F= 1, o = 80.

It is seen that the energy shift vanished at the zero unperturbed energy and has the limit 2/*((Z — 5/16)p)*/(3p,*©*)
as the unperturbed energy increases by the absolute value. Calculating the ratio of the shift of energy in our case to
that in the helium-like case given by (55), which becomes

OF (1 — et
R G T (20)

we see that for negative £ and Z > 2, this ratio always exceeds unity, so for the given value of the outer electron
energy, the shift is always greater by the absolute value in the lithium-like case than in the helium-like case.

Figure 14 presents the shift depending on the charge Z of the nucleus. Looking at the similarity of it with Figure
10 in Chapter 4, we notice that it is similar, and the lithium-like case has a greater shift.

Fig. 14. The energy shift versus the nuclear charge Z for E = -2 (blue, solid curve), E = -5 (red, dashed curve) and E = -8
(green, dotted curve) for F =1, © = 100.
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It is seen that with the growth of Z, the absolute value of the energy shift first increases, then attains a maximum
value, and then decreases. The non-monotonic dependence of the shift on the charge of the nucleus is counterintuitive.

Figure 15 presents the ratio of the lithium-like shift to the helium-like one given by (90) as a function of the

electron energy, for the charge of the nucleus Z = 4.

L

— v,
2
1 L r

L

-0 1%

Fig. 15. The ratio of the energy shift in the Li-like case to the one in the He-like case, depending on the energy of the
electron, for Z = 4.

Figure 16 shows the ratio of the lithium-like energy shift to the helium-like one given by (90) as a function of the

charge of the nucleus, for the value of electron energy £ = —10.

SE / SEne

Fig. 16. The ratio of the energy shift in the Lidike case ta the one in the He-like case, def)énding on the nuclear charge, for E = -10.
The relative correction to the frequency of the precession of the plane is (86). Taking the outer electron energy
for circular orbits, £ = —(Z — 2)/(2r), and (82), the relative correction €2 as a function of £ and Z is

A0 2g(x(B)) _,.
SQ—E—WE 2x(E) (91)

with g(x) in (83) and x(E) in (88).
Figure 17 shows the relative correction as a function of the electron energy for selected values of Z.

i . £ E

PR/ LT LT T

Fig. 17. The relative correction to the precession frequency of the orbital plane of the Rydberg electron versus the electron
energy for Z =5 (blue solid curve), Z =8 (green dashed curve), and Z = 12 (red dotted curve).
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We observe that for Z =15, the relative correction is approximately 2/3 in the large part of the energy range. The
correction 6Q = AQ/Q goes to the limit of 2/(Z — 2) at large negative energy values.

To compare the relative correction 6Q in this (lithium-like) case to the relative correction in the helium-like case,
we calculate their ratio (the correction for the present case is in (91) and the correction for the helium-like case is in
(69) and (66) in Chapter 4):

9w (E) e _ mZEZ-1
80y, = 32-1 ° Xne(E) = 2E ®2)
The ratio of the two relative corrections is therefore
50 Z—1 g(x(E _(212-10)p
gx(E) @iz -

= e
80y, Z — 2 g(xye(E))

with g(x) in (83), x(E) in (88), and x, (E) in (92). For the case of Z> 2 and E < 0, (93) is strictly larger than 1, so 3£2

is always larger here than in the helium-like case, given the energy of the outer electron and the charge of the
nucleus.

We need to underline that in the radiation spectrum, this precession would cause satellites with the distances from
the spectral line at the Kepler frequency being equal to multiples of the frequency of the precession. Thus, our result
with the more exact expression for the precession frequency is important for the analysis of experiments.

5.2.2. Circularly-polarized laser field

Here we analyze the situation with the laser field having circular polarization, as well as the amplitude F and
frequency m, when the field of the polarization is orthogonal to the z-axis. This can be put into the expression

F = F(excoswt + eysinwt) (94)

In this expression e_and e_are the orts of the x- and y-axes (orthogonal to the z-axis). The outer electron Hamiltonian
is therefore '

H = H, + xFcoswt + yFsinwt (95)
where H is given in (79). Denoting

V = xF = Frsinfcos@, W = yF = Frsinfsing (96)

where (7, 8, @) are the spherical coordinates, and applying the method of effective potentials [24-28], we obtain the
following effective potential of the zeroth order:

1 _ F?
Uy = W(U/‘: [V.Holl + [W, [W, Hol]) = Tms 97)
and of the first order:
Uy = s 11V, Hol 1V, Hol, Hol) + (W, Hol, [1W, Hol, Hgl1) + 5 1V, Hol. W, o]} =
FPZ-20Z-2) 16 20() . (98)
= r —3(2—2)8 z +(3c0529—1)(1+3(2_2)e )

From (98) and (85), the latter representing the linear-polarization case, it is seen that the shift of energy is two times
greater than that of the linear-polarization case, and the precession frequency correction is equal to that of the linear-
polarization case.

International Review of Atomic and Molecular Physics, 15 (1), January-June 2024 / 23



5.3. Conclusions

We analyzed a lithium atom or a lithium-like ion in a laser field of high frequency. We obtained the effective potential
and demonstrated that if the outer electron’s distance from the nucleus is relatively small, the effective potential
differs only by a factor Z from the effective potential obtained in [24] for a hydrogen Rydberg atom in a high-
frequency laser field with linear polarization. We observed that in this case the effective potential is identical to the
satellite potential in the field of oblate Earth. We noted that the systems having this kind of effective potential possess
higher than geometrical symmetry characterized by the conservation of the squared angular momentum (in spite of
the geometrical symmetry being axial rather than spherical).

In the configuration analyzed in this chapter, after allowing for finite values of », we had the case of broken
algebraic symmetry. The symmetry was reduced to geometrical.

For circular Rydberg states we found a more exact value of the precession frequency of the Rydberg electron
orbital plane. This precession would cause satellites, whose distance from the spectral line at the Kepler frequency
equals multiples of the precession frequency. Thus, our result on the more exact value of the frequency of the
precession is important for the comparative analysis of experiments.

We also found the red shift of the highly-excited electron energy due to the laser field of high frequency. We
demonstrated that as the unperturbed binding energy of the Rydberg electron increases, the shift monotonically
increases by the absolute value. Nonetheless, the dependence of the shift on the charge of the nucleus turned out to
be non-monotonic. This is a counterintuitive result.

CHAPTER 6. CONCLUSIONS OF THE REVIEW

In this work we studied muonic systems and atoms in a high-frequency laser field. Specifically, in Chapter 2, we
studied muonic-electronic helium atoms or helium-like ions (primarily focusing on helium atoms), in which both
leptons are in Rydberg states, with the muon in a circular Rydberg state. We used the method of separation of rapid
and slow subsystems, showing that the subsystem “nucleus — muon™ can be treated as rapid, while the electron as
slow. We showed that the Rydberg electron effective potential energy is mathematically identical to the satellite
potential energy in the gravitational field of an oblate planet (e.g., the oblate Earth). Using this, we showed that the
electron’s unperturbed orbit experiences two different simultaneous precessions: one of them is the orbit precession
in its plane, and the other is the precession of the orbital plane around the axis of the muonic “ring”. We found
analytically the frequencies of both precessions. These precessions should manifest in spectral lines corresponding
to the radiative transitions of the electron as the two series of satellites as follows. In the first series, the satellites
would be separated (in the frequency scale) from the unperturbed position of the spectral line by the frequency o
(“pip” stands for “precession in plane”) and its multiples; in the second series, by the frequency o (“pop” stands
for “precession of plane™) and its multiples. We emphasized that the perturbation does not change the shape of the
elliptical orbit of the Rydberg electron, which manifests the (approximate) conservation of the squared angular
momentum of the Rydberg electron. This shows that the above-mentioned physical systems possess a hidden
symmetry, which is a counterintuitive result of general physical interest. We noted that the above problem of the
Rydberg electron motion in muonic-electronic helium atoms or helium-like ions is also mathematically identical to a
hydrogen Rydberg atom in a linearly-polarized electric field of a laser radiation of high frequency, and also to the
three-dimensional motion of a circumbinary planet around a binary star.

In Chapter 3, we studied a more general situation than in Chapter 2, namely where the muon and nucleus have
elliptical orbits. For the case of the eccentricity of the muon and nucleus orbits being relatively small, we found an
additional eccentricity-dependent term in the effective potential for the electron motion. We showed analytically that
in the special case where the orbit of the electron is in the plane of the muon and nucleus orbits, it gives an additional
contribution to the precession frequency of the electron orbit. We showed that this additional eccentricity-dependent
contribution can reach the same order of magnitude as the primary, eccentricity-independent contribution to the
precession frequency.

In Chapter 4, we studied a helium atom or a helium-like ion with one of its two electrons in a Rydberg state, with
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the system submerged into a laser field of high frequency. To solve the problem analytically, we used the generalized
method of effective potentials. We considered circular Rydberg states. We saw two main effects of the high-
frequency laser field. The first effect is the precession of the Rydberg electron’s orbital plane. We found an analytical
expression for the precession frequency and showed that it is different from the one in the case of a hydrogenic
atom/ion. In the radiation spectrum, this precession would manifest as satellites separated from the spectral line at
the Kepler frequency by multiples of the precession frequency. The second effect is a red shift of the energy of the
Rydberg electron caused by the high-frequency laser field. We found an analytical expression for this shift. We
studied its dependence on the system parameters. We found that the shift monotonically increases by absolute value
as the unperturbed binding energy of the Rydberg electron increases. Besides, we found that the shift depends non-
monotonically on the nuclear charge Z: this dependence has a maximum. The non-monotonic dependence of the
energy shift caused by the laser field on the nuclear charge is a counterintuitive result.

In Chapter 5, we studied a lithium atom or a lithium-like ion, with one of its three electrons being in a Rydberg
state, with the system submerged into a laser field of high frequency. To solve the problem analytically, we employed
the generalized method of effective potentials. We demonstrated that for a relatively small distance between the
outer electron and the nucleus, the system possesses higher than geometrical symmetry. For an arbitrary distance
between the outer electron and the nucleus, we had the case of the broken algebraic symmetry reduced to the
geometrical (axial) symmetry. We performed the analysis of the following two outcomes for circular Rydberg states.
One of the outcomes is the precession of the orbit plane of the highly excited electron — we calculated analytically
the frequency of this precession. It causes the following changes of the radiation spectrum: the appearance of
satellites at the distances from the unperturbed frequency of the spectral line equal to multiples of the precession
frequency. The other outcome is a shift of energy of the Rydberg electron. The dependence of this shift on the
charge of the nucleus was shown to be a non-monotonic function.

Notes

1. We note that circular Rydberg states (CRS) of atoms were studied extensively [4-7] theoretically and experimentally for the following
reasons. First, it was because CRS have long radiative lifetimes and strongly anisotropic collision cross sections, so that they facilitate
experiments on inhibited spontaneous emission and cold Rydberg gases [8,9]. Second, classical CRS are counterparts to fundamentally
important quantal coherent states. Third, in the quantal method using the 1/n-expansion (n being the principal quantum number), the
primary term corresponds to the classical description (see, e.g. paper [10] and references therein). (See Part I, Chapter 1 [3].)

2. In paper [2] the authors treated this system as a modified “rigid rotator” consisting of the electron, the nucleus, and the ring, over which
the muon charge is uniformly distributed, all distances within the system being fixed. In other words, it was assumed that as the muon
rapidly revolves in a circular orbit about the axis connecting the nucleus and electron, this axis slowly rotates, thus adiabatically
following a relatively slow electronic motion. This assumption is valid only for a limited time.

3. We note that Egs. (1.7.10) and (1.7.11) from Beletsky book [22] are also present in [23] where the three-dimensional motion of a
circumbinary planet about a binary star is considered. [23] shows that this problem is also mathematically equivalent to the satellite
motion about an oblate planet.
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