
Ionization of Hydrogen Atoms by a Low-Frequency Laser Field of an Arbitrary Strength

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010 45

IONIZATION OF HYDROGEN ATOMS BY A LOW-FREQUENCY LASER FIELD
OF AN ARBITRARY STRENGTH

V.P. GAVRILENKO
Center for Surface and Vacuum Research, Federal Agency on Technical Regulating and Metrology, Novatorov Street 40/1,

Moscow 119421, Russia

E. OKS
Department of Physics, 206 Allison Lab., Auburn University, Auburn, AL 36849, USA

Abstract: We present a further development of an analytical model for the tunneling ionization of atoms by a low-
frequency laser field of an arbitrary strength, including the strong-field region. The model uses a very accurate
approximation of the true ionization barrier/potential in the Schrödinger equation by the effective parabolic barrier/
potential-based on the algorithm suggested by Miller and Good and later employed by Kulyagin and Taranukhin (KT)
for calculating the ionization rate W(F) of hydrogen atoms from the ground state. We point out and eliminate a number
of principal errors made by KT and calculate W(F) much more accurately. We demonstrate that the dependence of the
ionization rate on the laser field is monotonic and does not show any effect of the stabilization ("local ionization
suppression") claimed by KT. Our results for W(F) are in a good agreement with the results of quantum fully-numerical
simulations. The analytical method, further developed in the present paper, can be extended without difficulty to
calculations of the tunneling ionization for a number of other quantum systems.

PACS Numbers: 32.80.Fb, 31.15.-p.

1. INTRODUCTION

Ionization of atoms/ions in general and of hydrogen atoms
in particular by a strong Oscillatory Electric Field (OEF)
of the laser or synchrotron radiation has been studied for
many years (see, e.g., reviews [1, 2]). In the situation where

ω  << Ei and simultaneously F << Fa, the character of
the ionization is controlled by the parameter [3]

γ = ω (2Ei)
1/2/F. ... (1)

Here ω and F are the frequency and the characteristic
strength of the OEF, respectively; Ei— the binding energy
of the outer atomic electron; Fa— the atomic electric
field. In this paper, we use atomic units, except where
specified to the contrary.

The case of γ >> 1 corresponds to the multiphoton
ionization of atoms, while in the opposite case of γ << 1
there occurs the tunneling ionization of atoms. In the latter
case the ionization rate for hydrogenlike atoms/ions is
given by the following expression:

W (F) = 4 [2U (F)]5/2 F–1

exp{– (2/3) [2U (F)]3/2/F}, ... (2)

where U (F) is the absolute value of the energy of the
atomic level that depends on the OEF strength F due to
the Stark effect. First observations of the tunneling
ionization were published in [4– 6].

However, Eq. (2) is valid only when the probability
of the tunneling ionization is very small, which is the
case for high and/or wide potential barriers. In the case
of strong fields F, for which Eq. (2) becomes invalid,
there are no exact analytical solutions of the Schrödinger
equation for hydrogen atoms. For this case, one of the
ideas for approximate solutions is to substitute the true
potential by an effective potential, for which there would
be an "exact" analytical solution of the Schrödinger
equation (see, e.g., paper [7] by Miller and Good).

Such an approach was used by Kulyagin and
Taranukhin (hereafter, KT) in [8]. In that paper, the true
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potential barrier for hydrogen atoms was substituted by
an effective parabolic barrier. The substitution allowed
using the well-known exact analytical result for the
transmission coefficient of the parabolic barrier (see, e.g.,
[9], Sect. 50).

The most important result by KT was a possibility
of a stabilization of the atoms with respect to the
ionization (they called it "local ionization suppression").
Specifically, they found that such stabilization should
occur at electric fields about 0.2 . This result is of a great
interest from the experimental point of view because
previously a stabilization of atoms with respect to the
ionization was predicted only at the limit of the
multiphoton ionization [10 – 12] (rather than in the
tunneling regime dealt with by KT).

However, our analysis of [8] revealed a number of
principal errors made by KT (specified in the next
sections of our paper). Therefore, there remained an open
question whether or not the main result by KT — the
possibility of the stabilization in the tunneling regime—
would hold after correcting the errors made by KT.

For addressing this question, it was necessary to
perform detailed analytical calculations of the tunneling
ionization of hydrogen atoms. In this paper, we performed
such calculations in spirit of the approach from [8], but
without the errors made by KT. Our results for the
dependence of the ionization rate of hydrogen atoms on
the field strength (on the amplitude of the OEF) differ
significantly from the corresponding KT-results. Our
most important finding is that there is no stabilization in
the tunneling regime of the ionization.

2. CALCULATION OF THE TRANSMISSION
 COEFFICIENT FOR THE IONIZATION
 BARRIER OF HYDROGEN ATOMS

We consider the ionization of hydrogen atoms from the
ground state in the situation where the frequency and the
amplitude of the OEF correspond to γ << 1 (see Eq. (1))—
just as in KT-paper. Let a hydrogen atom be subjected to
an electric field F. Then by using the parabolic
coordinates one can obtain from the Schrödinger equation
the following differential equation for the "η-part" of
the wave function:

d2χ/dη2 + [E (F)/2 + β2 (F)/η + Fη/4 –
(m2 – 1)/(4η2)] χ = 0. ... (3)

Here the parabolic coordinate η = r – z, where r is
the absolute value of the radius-vector, the Cartesian

coordinate z is chosen along the laser field F; m is the
magnetic quantum number; E (F) is the energy level of
the bound state of the hydrogen atom (E (F) < 0), and
β2 (F) is the separation constant. Equation (3) has the
form of the one-dimensional Schrödinger equation, where
the role of the total energy is played by E (F)/4, while
the role of the potential energy is played by the following
function:

U2 (η) = – β2/(2η) – Fη/8 + (m2 – 1)/(8η2). ... (4)

In the present paper, we consider the ionization of
hydrogen atoms from the ground state— just as in KT-
paper. In this case we have m = 0, so that Eq. (4) takes
the form:

U2 (η, F) = –β2 (F)/(2η) – Fη/8 – 1/(8η2). ... (5)

We note that in the KT-paper the last term in U2 (η)
was erroneously omitted.

The analytical method chosen by KT for calculating
the transmission coefficient through the ionization
barrier— the method being actually due to Miller and
Good [7]— consists of the following 4 steps presented
below in the general form.

Step 1: For a given arbitrary barrier/potential U2 (η,
F) and for some arbitrarily chosen effective energy E/4,
to find analytically the classical turning points η1 (F, E)
and η2 (F, E).

Step 2: To represent the actual barrier as some
effective barrier in the parabolic approximation:

U2 (η, F) ≈ UP (η, F) = – U0P – (k/2) [η – (η1 + η2)/2]2,
... (6)

where U0P is the top of the parabolic barrier (yet unknown,
to be determined at Step 3) and k is a parabolic profile
curvature:

k (U0P) = 8 (–E/4 – U0P)/(η2 – η1)
2. ... (7)

Step 3: (This is the central point of the method): To
find the parameter U0P by solving analytically the
following equation:
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where U2 (η, F) in the left side is the actual (non-
approximated) given potential. It is worth noting that in
the quasiclassical limit, integrals from Eq. (8) control
the transmission coefficient. After substituting UP (η, F)
from (6) into the right side of Eq. (8), a straightforward
calculation of the integral in the right side of Eq. (8)
yields:

( ) ( )
( )

( )2

1

,

1/ 2

,

/ 4 ,

F E

P

F E

d E F U F

η

η

 η − + η ∫
= ( ) ( )1/ 2

2 1 0/ 4 / 4.PE Uπ η − η − − ... (9)

Step 4: To substitute the obtained values of U0P and
k (U0P) in the exact analytical solution for the
transmission coefficient for the parabolic barrier. It is
important to emphasize that the analytical results obtained
by this method are valid for both under-the-barrier
ionization and above-the-barrier ionization.

Now we proceed in accordance to the above
algorithm. The classical turning points are the solutions
of the equation:

U2 (η, F) – E (F)/4 = 0. ... (10)

Following the notations of KT-paper (used also above
in Eq. (2)), we denote the absolute value the hydrogen
energy level as:

U (F) = – E (F); ... (11)

also from now on for brevity, we will skip the argument
F of the functions U, U2, and β2 in most expressions.
Then Eq. (10) can be explicitly re-written as:

U2 (η) + U/4
= – [F/(8η2)] (η3 – 2Uη2/F + 4β2η/F + 1/F)

= [F/(8η2)] (b – η) (η – a) (η + c) = 0. ... (12)

This is a cubic equation with respect to η. It has one
negative (real) root denoted as— c (F), so that c (F) > 0.
The two other roots b (F) and a (F) either are real and
positive, or are complex numbers (mutually conjugated)
having a positive real part— whether these roots are real
or complex depends on the value of F. For definiteness,
we assumed that the real part of b (F) is greater or equal
than the real part of a (F).

We note that the KT-equation analogous to Eq. (11)
was simpler: it was a quadratic equation. This is because
they omitted the term –1/(8η2) in the effective potential
U2 (η).

We denote the left side of Eq. (8) by J (F):

J (F) = (F/8)1/2 Int (F),

Int (F) = ( ) ( ) ( ) ( ) 1/ 2
/

b

a

dx x b x x a x c − − + ∫ ... (13)

For calculating Int (F), we introduce the following
notations:

d = [(a + c)/(b + c)]1/2,
j = [a/(b + c)]1/2. ... (14)

Using the software "Mathematica" for analytical
calculations, we obtain:

Int = – i (2/3) (a + c) – 1/2 {[b (a + c) + (a2 – c2)]
[E (1/d2) – E (arcsin d, 1/d2)] – [b (2c –a) +
a (a + c)] [K (1/d2) – F (arcsin d, 1/d2)] –
3ab [(1/(d2 – j2), 1/d2) –  (1/(d2 – j2),
arcsin d, 1/d2)]} ... (15)

Here F (ϕ, m), E (ϕ, m), and  (n, ϕ, m) are elliptic
integrals of the first, second, and third kinds, respectively;
K (m), E (m), and  (n, m) are the complete elliptic
integrals of the first, second, and third kinds, respectively.

We make two comments in passing. First, there are
alternative expressions for some parts of Eq. (15):

E (1/d2) – E (arcsin d, 1/d2)
= i (π/4) Meijer G [{{}, {1, 1}},

{{–1/2, 1/2}, {}}, d2], ... (16)

K (1/d2) – F (arcsin d, 1/d2)

= – i d K (1 – d2), ... (17)

where Meijer G [{{}, {1, 1}}, {{–1/2, 1/2}, {}}, d2] is
the Meijer G function. Equations (16) and (17) show in
particular that the left sides of them are purely imaginary.
The expression [(1/(d2 – k2), 1/d2) – (1/(d2 – k2),
arcsin d, 1/d2)] is also purely imaginary. Thus, Int in
Eq. (15) is real, as it should be.

Second, in the case of the potential (5) without the
term –1/(8η2), i.e., for the potential erroneously truncated
by KT, the left side of Eq. (8) can be reproduced from
our result (15) by setting c = 0. Also a direct calculation
using the "Mathematica" yields for this case (i.e., for
KT-case)
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( ) ( ) 1/ 2
/

b

a

dx b x x a x − − ∫
= (2ba1/2/3) {[(a + b)/(ab)1/2] E (1 – a/b) –

2i [K (a/b) – F (arcsin (a/b)1/2, b/a)]}.

The exact expression for the transmission coefficient
D (F) of the parabolic barrier is (see, e.g., [9], Sect. 50)

D = 1/[1 + exp (– 2πα)], ... (18)

where

α (F) = – (b – a) [(U/4 – U0p)/8]1/2 ... (19)

The derivation of Eq. (19) is given in Appendix A,
where we corrected another error by KT: their result for
α (F) was erroneous. By combining Eqs (9), (18), and
(19), we obtain the following transmission coefficient
for the ionization barrier of hydrogen atoms in the ground
state:

D (F) = 1/{1 + exp [23/2 J (F)]}
= 1/{1 + exp [F1/2 Int (F)]}, ... (20)

where J (F) is given by Eq. (15).

3. CALCULATION OF THE IONIZATION
 RATE FOR HYDROGEN ATOMS IN THE
 GROUND STATE

The ionization rate W (F) can be represented in the form

W (F) = S (F) D (F), ... (21)

where S (F) is the input flow probability. Following the
logic of the KT-paper, the function S (F) can be
determined by the transition to the weak field limit
(F << Fa) as follows:

The weak field limit of Int (F)— denoted Intas (F)—
can be obtained in the form (see Appendix B):

Intas (F) = (2/3) (2U/F)3/2 – (4/3) (2/F)1/2

(1/2 + β2
2/U)1/2 ln {[8U2/F – 12β2 +

4 (β2
2 + U/2)1/2]/(β2

2 + U/2)1/2} +
(2/F)1/2 [(1/3 + ln2) (1/2 + β2

2/U)1/2 –
(1 + ln2) β2]. ... (22)

Then we find the weak field limit of J (F)—denoted
Jas (F)— by multiplying (22) by (F/8)1/2 (see (13)):

Jas (F) = 2U3/2/(3F) – (2/3) (1/2 + β2
2/U)1/2

ln {[8U2/F – 12 β2 + 4 (β2
2 + U/2)1/2]/

(β2
2 + U/2)1/2} + (1/2) [(1/3 + ln2)

(1/2 + β2
2/U)1/2 – (1 + ln2) β2]. ... (23)

Substituting (23) in (20) and using Eq. (2) for the
ionization rate W (F) in the weak field limit, we find the
input flow probability:

S (F) = [4 (2U)5/2/F] exp {(1/2) [(1/3 + ln2)
(1/2 + β2

2/U)1/2 – (1 + ln2) β2]}
[(β2

2 + U/2)1/2/[8U2/F – 12 β2 +
4 (β2

2 + U/2)1/2]]γ,
γ = (4/3) (1 + 2 β2

2/U)1/2. ... (24)

Thus, both for weak and strong fields, the tunneling
ionization rate W (F) can be presented in the form:

W (F) = S (F) D [J (F)],
J (F) = (F/8)1/2 Int (F), ... (25)

where Int (F) is given by our general analytical
result (15).

4. COMPARISON WITH PREVIOUS
ANALYTICALAND FULLY-NUMERICAL
 CALCULATIONS

For determining the roots a (F), b (F), and –c (F) of the
cubic Eq. (12), one needs specific results for both the
absolute value of the energy U (F) and the separation
constant β2 (F).  For U (F) we used the results of quantum
fully-numerical calculations by Farrelly and Reinhardt
[13]. Then we obtained β2 (F) from analytical formulas
of Kondratovich and Ostrovsky [14]: β2 (F) is expressed
through the parameter Z1 (F) from [14] as β2 (F) =
1 – Z1 (F).

The comparison of our results for the ionization rate
W with the KT-results is presented in Figs 1 and 2: Fig. 1
shows W versus F, while Fig. 2 shows W versus the laser
power density P. It is seen that our results are significantly
different from the KT-results. Namely, the dependence
of W on F (or W on P) is actually monotonic and does
not show any effect of the stabilization ("local ionization
suppression") claimed by KT. The difference is due to
the principal errors made by KT, which we have pointed
out and eliminated in the present work.

It is interesting to note that the omission of the term
–1/(8η2) by KT from the potential U2 (F) is not the reason
why they found (incorrectly) the "local ionization
suppression". We performed also the calculations without
the term –1/(8η2) in the potential U2 (F) from (5): the
result was still a monotonic dependence of W on F.
Further, our analysis showed that in the KT-result for
W (F), the peak at about F = 0.15 corresponds to the
boundary between under-the-barrier ionization at F < 0.15
and above-the-barrier ionization at F > 0.15. In the
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equation determining the turning points η1 and η2 (which
is a quadratic equation if the term –1/(8η2) is omitted
from the potential U2 (F)), the transition from under-the-
barrier ionization to above-the-barrier ionization
corresponds to the transition from two real roots η1 and
η2 to two complex roots η1 and η2. Even if the term
–1/(8η2) is omitted, the properly calculated dependence
W (F) remains monotonic at such transition — in
distinction to the KT-results. So, it seems that the reason
why KT found the decrease of W (F) at the interval
F = 0.15 – 0.20 is that they did not adequately account
for the transition from under-the-barrier ionization to
above-the-barrier ionization.

Fig. 1: Dependence of the ionization rate W of hydrogen atoms in
the ground state on the laser field F (W and F are in atomic units):

dots– our analytical results, solid line –analytical results by
Kulyagin and Taranukhin [8]

Fig. 2: Dependence of the ionization rate W (in atomic units) of
hydrogen atoms in the ground state on the laser power density P

(in W/cm2): dots– our analytical results, solid
line– analytical results by Kulyagin and Taranukhin [8]

Figure 3, shows the comparison of our analytical
results for W(F) with quantum fully-numerical
simulations by Farrelly and Reinhardt [13] (who extended
to higher fields the earlier fully-numerical simulations
by Hehenberger, McIntosh, and Brändas [15]). It is seen
that our analytical results are in a good agreement with
the fully-numerical calculation from [13].

Fig. 3: Dependence of the ionization rate W of hydrogen atoms in
the ground state on the laser field F (W and F are in atomic units):

dots– our analytical results, solid line– fully– numerical
simulations by farrelly and reinhardt [13]

5. CONCLUSIONS

We presented a further development of the analytical
model for the tunneling ionization of atoms by a low-
frequency laser field of an arbitrary strength, including
the strong-field region. The model uses a very accurate
approximation of the true ionization barrier/potential in
the Schrödinger equation by the effective parabolic
barrier/potential – based on the algorithm suggested by
Miller and Good [7] and later employed by KT [8] for
calculating the ionization rate W (F) of hydrogen atoms
from the ground state. We have pointed out and eliminated
a number of principal errors made by KT and calculated
W (F) much more accurately.

Our results for W (F) differ very significantly from
the KT-results. Namely, the dependence of the ionization
rate on the laser field is actually monotonic and does not
show any effect of the stabilization ("local ionization
suppression") claimed by KT. At the same time, our
results for W (F) are in a good agreement with the results
of quantum fully-numerical calculations [13].

Thus, from the theoretical point of view, the question
of a possible stabilization of hydrogen atoms in the
ground state with respect to the tunneling ionization has
been addressed by us and finally resolved in favor of the
absence of such stabilization. Now it might be a good
idea to conduct the corresponding experiment to verify
this theoretical conclusion.

The characteristic feature of the analytical method
(which has been developed and extended here), is not
only its accuracy, but also its simplicity. This approach
can therefore be extended without difficulty to tunneling
ionization for a number of other quantum systems.
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APPENDIX A
CORRECT EXPRESSION FOR (F)

CONTROLLING THE TRANSMISSION
COEFFICIENT D (F) IN EQ. (18) AND IN

FORMULAS FROM KT-PAPER [8]

The quantity α (F) is incorrectly given by KT. Indeed, in
[9], in problem 4 after paragraph 50, the quantity ε (which
was re-named to α by KT) is given in atomic units as:

ε = E/k1/2, ... (A.1)

where E is the energy counted from the top of the
parabolic barrier (for energies below the top of the barrier,
ε = – |E|/k1/2). In other words, in notations of KT, this
should be:

α = – [U (E)/4 – U0p]/k
1/2. ... (A.2)

The quantity k, correctly calculated by KT, is:

k = (8/∆η2) [U (E)/4 – U0p].
∆η = η2 – η1. ... (A.3)

After substituting (A.3) in (A.2), we get:

α = ∆η [U (E)/4 – U0p]/{8 [U (E)/4 – U0p]}
1/2

= –∆η {[U (E)/4 – U0p]/8}1/2, ... (A.4)

what differs significantly from the incorrect KT-formula
for α.

APPENDIX B
WEAK FIELD EXPANSION OF THE

INTEGRAL FROM EQ. (15)

B.1. First we find the weak field limit of the roots b (F),
a (F), and –c (F) of the cubic equation:

η3 – 2Uη2/F + 4β2 η/F + 1/F = 0. ... (B.1)

From a simple analysis it follows that in this limit,
b → ∞, while a and c remain finite. Therefore, the
asymptotic value of b can be found as the largest root of
the truncated equation

η3 – 2Uη2/F + 4β2 η/F = 0. ... (B.2)

Thus we obtain the first two terms of the asymptotic
expansion of b in the form

b (F) = (2U/F) (1 – β2F/U2). ... (B.3)

The asymptotic values of the roots a (F) and –c (F)
can be found from another truncated equation obtained
by omitting the term η3 in the cubic equation:

–2Uη2/F + 4β2η/F + 1/F = 0. ... (B.4)

As a result, we get:

a (F) = [(β2
2 + U/2)1/2 + β2]/U,

c (F) = [(β2
2 + U/2)1/2 – β2]/U. ... (B.5)

B.2. The arguments of the elliptic integrals depend
on the quantities d = [(a + c)/(b + c)]1/2 and j = [a/(b +
c)]1/2. From the previous section it follows that in the
weak field limit we have: d → 0 and j → 0. Thus, the
task is to find the expansion of the elliptic integrals as
d → 0 and j → 0.

The bracket containing the elliptic integrals of the
first kind can be expressed as follows:

[K (1/d2) – F (arcsin d, 1/d2)]
= – i d K (1 – d2). ... (B.6)

Let us temporarily denote the argument of the
K-integral in the right side as k: k = 1 – d2. By introducing
k ' = (1 – k2) and noting that in the limit d → 0 it can be
approximated as k' = 21/2d << 1, we can use the asymptotic
result K (k’) = ln (4/k’) and obtain:

[K (1/d2) – F (arcsin d, 1/d2)]as
= – i d ln (23/2/d). ... (B.7)

The bracket containing the elliptic integrals of the
second kind can be represented in the form:

[E (1/d2) – E (arcsin d, 1/d2)]
= (i/d) I1 (d),

I1 (d) = ( ) ( )
1

1/ 2
2 2 2/ 1

d

dt t d t − − ∫ ... (B.8)

By expanding I1 (d) in the Taylor series, we obtain:

I1 (d) = I1 (0) + d I1' (0) = 1 – d2 I2 (d),
I2 (d) = dt [(t2 – d2) (1 – t2)] – 1/2 ... (B.9)

(here I1’(z) is the derivative of I1 (z)). For obtaining the
asymptotic value of I2 (d), we note that:

[K (1/d2) – F (arcsin d, 1/d2)]
= – i d I2 (d). ... (B.10)

By comparing (B.10) and (B.6) we find:

I2 (d) = K (1 – d2). ... (B.11)
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Then by using the asymptotic value of K (1 – d2)
from (B.7), we get:

[E (1/d2) – E (arcsin d, 1/d2)]as

= i [1/d – d ln(23/2/d)]. ... (B.12)

The bracket containing the elliptic integrals of the
third kind can be represented in the form:

[ (1/(d2 – j2), 1/d2) – (1/(d2 – j2), arcsin d, 1/d2)]

= i d (d2 – j2) ( )
1

12 2 2

d

dt t d j
−

− +∫
( ) ( ) 1/ 2

2 2 21t d t
−

 − −  ... (B.13)

The integrand in (B.13) has singularities at t = d and
at t = 1, where it goes to positive infinity. Inside the
integration range, the integrand has a minimum at
t = 31/2/2. The location of the minimum as well as the
subsequent results are obtained in the limit d << 1 (we
remind that j < d).

We divide the integration range in two parts: from d
to dP (n), the corresponding integral being denoted I31, and
from dP (n) to 1, the corresponding integral being denoted
I32. Here P (n) = 1/2n, where n = 1, 2, 3, …, so that d < dP

(n) < 1. The integral I31 can be approximated as follows:

I31 = ( )
( )

1/ 22 2 2 .

P n

d

dt j t d
−− −∫ ... (B.14)

After integrating I31 from (B.14) analytically and
using n >> 1, we obtain:

I31 = j – 2 ln (2/d). ... (B.15)

The integral I32 can be approximated as follows:

I32 = ( )
( )

1

1/ 23 21 .

P n

dt t t
−− −∫ ... (B.16)

After integrating I32 from (B.16) analytically and
using n >> 1, we find that I32 = const ~ 1, so that it can be
disregarded compared to I31 = j – 2 ln (2/d) since j < d
<< 1.

Thus we get the asymptotic expression for the right
side of (B.13) is:

[(1/(d2 – j2), 1/d2) – (1/(d2 – j2), arcsin d, 1/d2)]as

= i d (d2 – j2) j – 2 ln (2/d). ... (B.17)

By substituting (B.7)), (B.12), and (B.17) in (4) we
obtain our Eq. (22) for Intas (F).
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