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Abstract: We present a further development of an analytical model for the tunneling ionization of atoms by a low-
frequency laser field of an arbitrary strength, including the strong-field region. The model uses a very accurate
approximation of the true ionization barrier/potential in the Schrodinger equation by the effective parabolic barrier/
potential-based on the a gorithm suggested by Miller and Good and later employed by Kulyagin and Taranukhin (KT)
for calculating the ionization rate W(F) of hydrogen atoms from the ground state. We point out and eliminate a number
of principal errors made by KT and calculate W(F) much more accurately. We demonstrate that the dependence of the
ionization rate on the laser field is monotonic and does not show any effect of the stabilization ("loca ionization
suppression") claimed by KT. Our results for W(F) are in agood agreement with the results of quantum fully-numerical
simulations. The analytical method, further developed in the present paper, can be extended without difficulty to

calculations of the tunneling ionization for a number of other quantum systems.

PACS Numbers: 32.80.Fb, 31.15.-p.

1. INTRODUCTION

| onization of atomg/ionsingeneral and of hydrogen atoms
in particular by astrong Oscillatory Electric Field (OEF)
of thelaser or synchrotron radiation has been studied for
many years(see, e.g., reviews[ 1, 2]). Inthesituationwhere
hw << E; and simultaneously F << F, the character of
theionization is controlled by the parameter [3]

y = w(2E)Y?/F. . (1)

Here wand F arethefrequency and the characteristic
strength of the OEF, respectively; E,—the binding energy
of the outer atomic electron; F,—the atomic electric
field. In this paper, we use atomic units, except where
specified to the contrary.

The case of y >> 1 corresponds to the multiphoton
ionization of atoms, whilein the opposite case of y<< 1
there occursthetunneling ionization of atoms. Inthelatter
case the ionization rate for hydrogenlike atoms/ions is
given by the following expression:
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W (F) =4[2U (F)]%2 F!
exp{- (2/3) [2U (F)]¥¥F}, (2

where U (F) is the absolute value of the energy of the
atomic level that depends on the OEF strength F due to
the Stark effect. First observations of the tunneling
ionization were published in [4-6].

However, Eq. (2) isvalid only when the probability
of the tunneling ionization is very small, which is the
case for high and/or wide potential barriers. In the case
of strong fields F, for which Eq. (2) becomes invalid,
thereare no exact analytical solutions of the Schrédinger
equation for hydrogen atoms. For this case, one of the
ideas for approximate solutions is to substitute the true
potential by an effective potential, for which therewould
be an "exact" analytical solution of the Schrddinger
equation (see, e.g., paper [7] by Miller and Good).

Such an approach was used by Kulyagin and
Taranukhin (hereafter, KT) in[8]. In that paper, thetrue
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potential barrier for hydrogen atoms was substituted by
an effective parabolic barrier. The substitution allowed
using the well-known exact analytical result for the
transmission coefficient of the parabolic barrier (see, e.g.,
[9], Sect. 50).

The most important result by KT was a possibility
of a stabilization of the atoms with respect to the
ionization (they called it "local ionization suppression™).
Specifically, they found that such stabilization should
occur at electric fieldsabout 0.2 . Thisresult isof agreat
interest from the experimental point of view because
previously a stabilization of atoms with respect to the
ionization was predicted only at the limit of the
multiphoton ionization [10-12] (rather than in the
tunneling regime dealt with by KT).

However, our analysis of [8] revealed a number of
principal errors made by KT (specified in the next
sections of our paper). Therefore, thereremained an open
guestion whether or not the main result by KT —the
possibility of the stabilization in the tunneling regime—
would hold after correcting the errors made by KT.

For addressing this question, it was necessary to
perform detailed analytical cal culations of the tunneling
ioni zation of hydrogen atoms. In this paper, we performed
such calculations in spirit of the approach from [8], but
without the errors made by KT. Our results for the
dependence of theionization rate of hydrogen atoms on
the field strength (on the amplitude of the OEF) differ
significantly from the corresponding KT-results. Our
most important finding isthat thereis no stabilization in
the tunneling regime of theionization.

2. CALCULATION OF THE TRANSMISSION
COEFFICIENT FOR THE IONIZATION
BARRIER OF HYDROGEN ATOMS

We consider the ionization of hydrogen atoms from the
ground state in the situation where the frequency and the
amplitude of the OEF correspondtoy<< 1 (seeEq. (1)) —
just asin KT-paper. Let ahydrogen atom be subjected to
an electric field F. Then by using the parabolic
coordinates one can obtain from the Schrédinger equation
the following differential equation for the "n-part" of
the wave function:

d?x/dn? + [E (F)/2 + B, (F)/n + Fn/4 -
(P — 1)/(4n?)] X = O. (3

Here the parabolic coordinate n =r — z, wherer is
the absolute value of the radius-vector, the Cartesian

" \

coordinate z is chosen aong the laser field F; misthe
magnetic quantum number; E (F) isthe energy level of
the bound state of the hydrogen atom (E (F) < 0), and
B, (F) is the separation constant. Equation (3) has the
form of the one-dimensional Schrodinger equation, where
the role of the total energy is played by E (F)/4, while
therole of the potential energy isplayed by thefollowing
function:

U,(n) =-B,/(2n) - Fn/8 + (m? - 1)/(8n?). ... (4)

In the present paper, we consider the ionization of
hydrogen atoms from the ground state—just asin KT-
paper. In this case we have m = 0, so that Eq. (4) takes
the form:

U, (n, F) = =B, (F)/(2n) - Fn/8 - 1/(8n?). - (9)

We note that in the KT-paper the last termin U, (n)
was erroneously omitted.

Theanalytical method chosen by KT for calculating
the transmission coefficient through the ionization
barrier—the method being actually due to Miller and
Good [7]—consists of the following 4 steps presented
below in the genera form.

Step 1: For agivenarbitrary barrier/potential U, (n,
F) and for some arbitrarily chosen effective energy E/4,
to find analytically the classical turning pointsn, (F, E)
andn,(F, E).

Step 2: To represent the actual barrier as some
effective barrier in the parabolic approximation:

Uz(nv F) = Up (T], F) == Uop_ (k/Z) [n - (n1+ r]z)/z(]z)v
... (6

where U, isthetop of the parabolic barrier (yet unknown,
to be determined at Sep 3) and k is a paraboalic profile
curvature:

k (Ugp) =8 (-E/4 - Uy)/(n, - ny)> . (7

Sep 3: (Thisisthe central point of the method): To
find the parameter U, by solving analytically the
following equation:

N2 (F' E)

‘[ dnB-E(F)/4+U,(n, F)Q/2
T, E)

ﬂz(F!E)

- ‘[dnELE(F)/4+UP(n,F)Q'Z,...(S)
n,TF. E)

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010



lonization of Hydrogen Atoms by a Low-Frequency Laser Field of an Arbitrary Strength

where U, (n, F) in the left side is the actual (non-
approximated) given potential. It isworth noting that in
the quasiclassical limit, integrals from Eq. (8) control
the transmission coefficient. After substituting U, (n, F)
from (6) into the right side of Eq. (8), astraightforward
calculation of the integral in the right side of Eq. (8)
yields:

ﬂz(FvE)

f[ dnB-E(F)/4+U, (n, F)Ql2
mTF. E)

. (9)

Step 4: To substitute the obtained values of U, and
kK (Uyp) in the exact analytical solution for the
transmission coefficient for the parabolic barrier. It is
important to emphasi ze that the anal ytical resultsobtained
by this method are valid for both under-the-barrier
ionization and above-the-barrier ionization.

=1(n, -n,)(-E/4-U,) /4,

Now we proceed in accordance to the above
algorithm. The classical turning points are the solutions
of the equation:

U, (n, F)-E (F)/4=0. .. (10)

Following the notations of K T-paper (used also above
in EQ. (2)), we denote the absolute value the hydrogen
energy level as:

U(F)=-E(F); .. (12)

also from now on for brevity, we will skip the argument
F of the functions U, U,, and 3, in most expressions.
Then Eqg. (10) can be explicitly re-written as:

U,(n) +U/4
= - [F/(8n?)] (- 2Un?F + 4B,n/F + 1/F)

=[F/(8n?] (b-n) (n-a) (n+¢)=0. ... (12)

Thisisacubic equation with respect ton. It hasone
negative (real) root denoted as—c (F), so that ¢ (F) > 0.
The two other roots b (F) and a (F) either are real and
positive, or are complex numbers (mutually conjugated)
having apositivereal part—whether theseroots are real
or complex depends on the value of F. For definiteness,
we assumed that thereal part of b (F) isgreater or equal
than thereal part of a (F).

We note that the KT-equation analogous to Eq. (11)
wassimpler: it wasaquadratic equation. Thisis because
they omitted the term —1/(8n?) in the effective potential

U,(n).
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We denote the left side of Eqg. (8) by J (F):
J(F) = (F/8)¥2 Int (F),

b

Int (F) = J'(dx/x) Ho-x) (x-a) (x+c)g" .. (19

a

For calculating Int (F), we introduce the following
notations:

d=[(a+0)/(b+c)",
j =[al(b+c)]*2

Using the software "Mathematica" for analytical
calcul ations, we obtain:

Int =—i (2/3) (a+c) Y2{[b(a+c)+ (a°-c?)]
[E (Ud?) - E (arcsind, 1/d?)] - [b (2c-a) +
a(a+ 0] [K (V) -F (arcsind, Yd)] -
3ab [IT (1/(d? - j?), Ud?) - I (U(d? - j?),
arcsind, Vd?)]} ... (15)

Here F (¢, m), E (¢, m), and IT (n, ¢, m) are elliptic
integrasof thefirst, second, and third kinds, respectively;
K (m), E (m), and IT (n, m) are the complete dliptic
integra s of thefirst, second, and third kinds, respectively.

. (14)

We make two comments in passing. First, there are
aternative expressions for some parts of Eq. (15):

E (U/dP) - E (arcsin d, UcP)
=i (4) Meijer G [{{}, {1, 1}},

{{-12,12},{}}, 4, ... (16)
K (Uc?) - F (arcsin d, 1/c?)
=—idK (1- ), - (17)

where Meijer G [{{}, {1, 1}}, {{-V2, U2}, {}}, dq is
the Meijer G function. Equations (16) and (17) show in
particular that theleft sides of them are purely imaginary.
The expression [IT (1/(d? - k?), Yd?) - I1 (1/(d? - k?),
arcsin d, /d?)] is aso purely imaginary. Thus, Int in
Eqg. (15) isred, asit should be.

Second, in the case of the potential (5) without the
term—-1/(8n?), i.e., for the potentia erroneousdly truncated
by KT, the left side of Eq. (8) can be reproduced from
our result (15) by setting c = 0. Also adirect calculation
using the "Mathematica" yields for this case (i.e, for

KT-case)
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Idx Ho - x) (x - a)/xQ’2
= (2ba¥?/3) {[(a + b)/(ab)¥?] E (1 - a/b) -
2i [K (a/b) - F (arcsin (a/b)¥?, b/a)]}.
The exact expression for the transmission coefficient
D (F) of the parabolic barrier is (see, e.g., [9], Sect. 50)

D =1/[1 + exp (- 2rm)], ... (18)
where
o (F) =—(b-a) [(U/4-U,)/8] 12 ... (19)

The derivation of Eq. (19) is given in Appendix A,
where we corrected another error by KT: their result for
a (F) was erroneous. By combining Egs (9), (18), and
(19), we obtain the following transmission coefficient
for theionization barrier of hydrogen atomsin theground
state:

D(F)=1{1+exp[2%2J3(F)]}
= {1+ exp[FY?Int (F)]},

where J (F) isgiven by Eq. (15).

... (20)

3. CALCULATION OF THE IONIZATION
RATE FOR HYDROGEN ATOMSIN THE
GROUND STATE

Theionization rate W (F) can be represented in theform

W(F) =S(F) D (F), - (21

where S (F) istheinput flow probability. Following the
logic of the KT-paper, the function S (F) can be
determined by the transition to the weak field limit
(F <<F,) asfollows:

Thewesak field limit of Int (F)—denoted Int  (F)—
can be obtained in the form (see Appendix B):

Int. (F) = (2/3) (2U/F)¥2 - (4/3) (2/F)Y?
(12 + B2/U)Y2In {[BUYF - 12B,+
4 (B2 + U/2)Y2)/(B3 + U/2)V2} +
(2F)Y2[(1/3 +n2) (12 + B3/U)Y2 -
(1+1n2) B,]. .. (22)
Thenwefind theweak field limit of J (F) —denoted
J.(F)—by multiplying (22) by (F/8)Y2 (see (13)):
J(F) = 2U¥%(3F) - (2/3) (1/2 + B3/U)Y2
In{[8U%F - 12 B, + 4 (B3 + U/2)V7/
B2+ U/2)Y2} +(1/2) [(1/3 +In2)
(V2 +B2/U)Y2 - (1 +In2) B,].

e \

.. (23)

Substituting (23) in (20) and using Eq. (2) for the
ionization rate W (F) in thewesak field limit, wefind the
input flow probability:

S(F) = [4 (2U)52/F] exp { (1/2) [(1/3 + In2)
(U2 + B2/UYY2- (1 + In2) B,]}
[(B2 + U/2)V2/[8UYF - 12 B, +
4 (B3 + U,
y=(4/3) (1 +2p3/U)"% .. (24)

Thus, both for weak and strong fields, the tunneling
ionization rate W (F) can be presented in the form:

W(F) =S(F) D [J(F),
J(F) = (FI8)¥2 Int (F), .. (25)

where Int (F) is given by our general analytical
result (15).

4. COMPARISON WITH PREVIOUS
ANALYTICAL AND FULLY-NUMERICAL
CALCULATIONS

For determining theroots a (F), b (F), and —c (F) of the
cubic Eqg. (12), one needs specific results for both the
absolute value of the energy U (F) and the separation
constant 3, (F). For U (F) we used theresults of quantum
fully-numerical calculations by Farrelly and Reinhardt
[13]. Then we obtained 3, (F) from analytical formulas
of Kondratovich and Ostrovsky [14]: 3, (F) isexpressed
through the parameter Z, (F) from [14] as 3, (F) =
1-Z,(F).

The comparison of our resultsfor theionization rate
Wwiththe KT-resultsispresentedin Figsl1and 2: Fig. 1
shows Wversus F, while Fig. 2 shows Wversusthe | aser
power density P. Itisseenthat our resultsare significantly
different from the KT-results. Namely, the dependence
of Won F (or Won P) is actually monotonic and does
not show any effect of the stabilization ("local ionization
suppression”) claimed by KT. The difference is due to
the principal errors made by KT, which we have pointed
out and eliminated in the present work.

It isinteresting to note that the omission of the term
—1/(8n?) by KT fromthe potential U, (F) isnot thereason
why they found (incorrectly) the "local ionization
suppression”. We performed al so the cal cul ations without
the term —1/(8n?) in the potential U, (F) from (5): the
result was still a monotonic dependence of W on F.
Further, our analysis showed that in the KT-result for
W (F), the peak at about F = 0.15 corresponds to the
boundary between under-the-barrier ionization at F < 0.15
and above-the-barrier ionization at F > 0.15. In the
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equation determining theturning pointsn, andn, (which
is a quadratic equation if the term —1/(8n?) is omitted
fromthe potential U, (F)), thetransition from under-the-
barrier ionization to above-the-barrier ionization
corresponds to the transition from two real roots n, and
n, to two complex roots n, and n,. Even if the term
—1/(8n?) isomitted, the properly cal culated dependence
W (F) remains monotonic at such transition—in
distinction to the K T-results. So, it seemsthat the reason
why KT found the decrease of W (F) at the interval
F =0.15 - 0.20 is that they did not adequately account
for the transition from under-the-barrier ionization to
above-the-barrier ionization.

W, a.u.

- I 1' I I F, a.u.
0.2 0.4 0.6 0.8 1

Fig. 1: Dependence of the ionization rate W of hydrogen atomsin
the ground state on the laser field F (W and F are in atomic units):
dots—our analytical results, solid line—-analytical results by
Kulyagin and Taranukhin [8]

Wi(a.u.)
1 B
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c O O o

6
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2
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Ig[P(W/em?)]

Fig. 2: Dependence of the ionization rate W (in atomic units) of
hydrogen atomsin the ground state on the laser power density P
(in W/cm?): dots—our analytical results, solid
line—analytical results by Kulyagin and Taranukhin [8]

Figure 3, shows the comparison of our analytical
results for W(F) with quantum fully-numerical
simulationsby Farrelly and Reinhardt [13] (who extended
to higher fields the earlier fully-numerical simulations
by Hehenberger, Mcintosh, and Brandas [15]). It is seen
that our analytical results are in a good agreement with
the fully-numerical calculation from [13].
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Fig. 3: Dependence of the ionization rate W of hydrogen atomsin
the ground state on the laser field F (W and F are in atomic units):

dots—our analytical results, solid line—fully—numerical
simulations by farrelly and reinhardt [13]

a.u.

5. CONCLUSIONS

We presented a further development of the analytical
model for the tunneling ionization of atoms by a low-
frequency laser field of an arbitrary strength, including
the strong-field region. The model uses a very accurate
approximation of the true ionization barrier/potential in
the Schrodinger equation by the effective parabolic
barrier/potential —based on the algorithm suggested by
Miller and Good [7] and later employed by KT [8] for
calculating theionization rate W (F) of hydrogen atoms
fromthe ground state. We have pointed out and eliminated
anumber of principal errors made by KT and cal culated
W (F) much more accurately.

Our results for W (F) differ very significantly from
the KT-results. Namely, the dependence of theionization
rate onthelaser field is actually monotonic and does not
show any effect of the stabilization ("local ionization
suppression™) claimed by KT. At the same time, our
resultsfor W(F) arein agood agreement with theresults
of quantum fully-numerical calculations[13].

Thus, from the theoretical point of view, the question
of a possible stabilization of hydrogen atoms in the
ground state with respect to the tunneling ionization has
been addressed by us and finally resolved in favor of the
absence of such stabilization. Now it might be a good
idea to conduct the corresponding experiment to verify
thistheoretical conclusion.

The characteristic feature of the analytical method
(which has been developed and extended here), is not
only its accuracy, but also its simplicity. This approach
can therefore be extended without difficulty to tunneling
ionization for a number of other quantum systems.
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APPENDIX A
CORRECT EXPRESSION FOR a (F)
CONTROLLING THE TRANSMISSION
COEFFICIENT D (F) INEQ. (18) AND IN
FORMULASFROM KT-PAPER [8§]
Thequantity o (F) isincorrectly given by KT. Indeed, in
[9], inproblem 4 after paragraph 50, the quantity € (which
was re-named to a by KT) is given in atomic units as:

e = E/KY?, - (A2

where E is the energy counted from the top of the
parabolic barrier (for energiesbelow thetop of thebarrier,

= —|EVKY?). In other words, in notations of KT, this
should be:

a=-[U (E)/4- Uop]/kﬂz. ..(A.2)
The quantity k, correctly calculated by KT, is:
k= (8/An?) [U (E)/4 - Ugdl -
AI'] = nz - rl1-
After substituting (A.3) in (A.2), we get:

o =An [U (B)/4 - Uy J{8 U (B)/4 - U]}
=—An {[U (E)/4 - U,)/8} ", - (A4)

what differs significantly fromtheincorrect KT-formula
for a.

- (A3)

APPENDIX B
WEAK FIELD EXPANSION OF THE
INTEGRAL FROM EQ. (15)

B.1. First we find the weak field limit of theroots b (F),
a (F), and —c (F) of the cubic equation:

n®-2uUn?F+4B,n/F+UF=0. ..(B.1)

From a simple analysis it follows that in this limit,
b - o, while a and c remain finite. Therefore, the
asymptotic value of b can be found as the largest root of
the truncated equation

né-2Un3F + 4B, n/F=0. ..(B.2)

Thuswe obtain the first two terms of the asymptotic
expansion of bintheform

b (F) = (2UIF) (1 - B2FIU?).

50 \

..(B.3)

The asymptotic values of theroots a (F) and —c (F)
can be found from another truncated equation obtained
by omitting the term n2in the cubic equation:

—2Un?F + 4B,n/F + 1/F = 0. ... (B.4)
Asaresult, we get:
a(F) =[(B3+U/2)"2+ B /U,
c (F) = [(B3 + U/2)¥2-B,]/U. ... (B.5)

B.2. The arguments of the elliptic integrals depend
on the quantitiesd = [(a + c)/(b + ¢)]Y?and j = [a/(b +
¢)]¥2. From the previous section it follows that in the
weak field limit we have: d - 0andj — 0. Thus, the
task is to find the expansion of the elliptic integrals as
d- Oandj - 0.

The bracket containing the elliptic integrals of the
first kind can be expressed as follows:
[K (1/d?) - F (arcsind, 1/d?)]
=—idK (1-d). ... (B.6)
Let us temporarily denote the argument of the
K-integral intheright sideask: k=1-d? By introducing
k' = (1 - k?) and noting that in the limit d - 0t can be
approximated ask' = 2V2d << 1, we can usethe asymptotic
result K (k') = In (4/k’) and obtain:
[K (1/d?) - F (arcsind, /d?)]
=—idIn(28?/d). .. (B.7)
The bracket containing the elliptic integrals of the
second kind can be represented in the form:
[E (1/d?) - E (arcsin d, 1/d?)]
= (ild) 1, (d),

1, () = J'dt qe-d?)/i-0)H" .. B9

By expanding |, (d) in the Taylor series, we obtain:

1,(d)=1,(0)+dI, (0)=1-c?1,(d),
1, (d) = dt [(2— d?) (1 - 12)] ~22 .. (B.9)

(herel,’(2) isthe derivative of |, (2)). For obtaining the
asymptotic value of 1, (d), we note that:

[K (Ud? - F (arcsin d, 1/d?)]

=-idl,(d). ... (B.10)
By comparing (B.10) and (B.6) wefind:
l,(d) =K (1-d. .. (B.11)
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Then by using the asymptotic value of K (1 — d?)
from (B.7), we get:
[E (1/d?) — E (arcsin d, 1/d?)]
=i [1/d - dIn(28?/d)]. .. (B.12)

The bracket containing the elliptic integrals of the
third kind can be represented in the form:

[TT (U/(d?-j3), d?) - II (U/(d? - j?), arcsin d, 1/d?)]

1
=id (- ) Idt(tz —d?+ )"
d

- o) a-e)g™

Theintegrand in (B.13) hassingularitiesat t = d and
at t = 1, where it goes to positive infinity. Inside the
integration range, the integrand has a minimum at
t = 3Y2/2. The location of the minimum as well as the
subsequent results are obtained in the limit d << 1 (we
remind that j < d).

.. (B.13)

We divide the integration range in two parts: from d
to d”™, the corresponding integral being denoted I ,,, and
fromd” ™ to 1, the corresponding integral being denoted
l,,. Here P (n) = 1/2", wheren=1, 2,3, ..., so thatd < d”
(n) <1.Theintegral |, can be approximated as follows:

P(n)

I, = J’dt i (2 -a?)

d

.. (B.14)

After integrating |,, from (B.14) analytically and
using n >> 1, we obtain:

Iy, =j~2In (2/d). ... (B.15)
Theintegral 1,, can be approximated as follows:

1

I, = J det (1-12) ",
)

.. (B.16)
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After integrating |,, from (B.16) analytically and
usingn>>1, wefindthat | ;, = const ~ 1, sothat it can be
disregarded compared to |,, = j=2 In (2/d) since j < d
<< 1.

Thus we get the asymptotic expression for the right
sideof (B.13) is:
[TT (U(P - j?), Ud?) — IT (U(d? - j?), arcsin d, V)]
=id(d?-j? j~2In (2/d). ..(B.17)

By substituting (B.7)), (B.12), and (B.17) in (4) we
obtain our Eq. (22) for Int_ (F).
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