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MANY-BODY THEORY CALCULATIONS OF POSITRON BINDING TO NEGATIVE IONS

J.A.LUDLOW* AND G.F. GRIBAKIN
Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK

Abstract: A many-body theory approach developed by the authors [Phys. Rev. A 70 032720 (2004)] is applied to
positron bound states and annihilation ratesin atomic systems. Within theformalism, full account of virtual positronium
(Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all
important many-body correlation effects in the positron problem. Numerical calculations have been performed for
positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps
binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and
1.809 ns, have been obtained for PsH, PsF, PsCl, PsBr and Psl, respectively.

PACS Numbers: 36.10.Dr, 71.60.+z, 78.70.Bj, 82.30.Gg.

1. INTRODUCTION

A many-body theory approach devel oped by the authors
(Gribakin and Ludlow 2004) takesinto account all main
correlation effects in positron-atom interactions. These
are: polarization of the atomic system by the positron,
virtual positronium formation and enhancement of the
electron-positron contact density due to their Coulomb
attraction. Thefirst two effectsare crucial for an accurate
description of positron-atom scattering and the third one
is very important for calculating positron annihilation
rates. In this paper we apply our method to calculate the
energiesand annihilation ratesfor positron bound states
with the hydrogen and halogen negative ions.

Positron bound states can have a strong effect on
positron anni hilation with matter. For example, positron
bound states with molecules give rise to vibrational
Feshbach resonances, which leads to a strong enhance-
ment of the positron annihilation rates in many polya
tomic molecular gases (Gribakin 2000, 2001, Gilbert et
a. 2002, Gribakin et al. 2010). Neverthel ess, the question
of positron binding with neutral atoms or molecules has
been answered in the affirmative only recently, and the
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ubiquity of such statesisonly becoming clear now (Dzuba
et a. 1995, Ryzhikh and Mitroy 1997, Mitroy et al. 2001,
2002, Danielson 2009). On the other hand, it has been
known for many decades that positrons bind to negative
ions. Beyond the electron-positron bound state, or
positronium (Ps), the simplest atomic system capabl e of
binding the positron is the negative hydrogen ion (Ore
1951). The binding energy, annihilation rate and structure
of the resulting compound, positronium hydride (PsH)
have now been calculated to very high precision, e.g., by
variational methods (Frolov et al. 1997). Theinformation
available for heavier negative ions with many valence
electrons is not nearly as accurate (see Schrader and
Moxom 2001 for a useful review). Positronium halides
have received most of the attention, with some calcula-
tions dating back fifty years; see, e.g., the Hartree-Fock
calculations of Simons (1953) and Cade and Farazdel
(1977), quantum Monte-Carlo work by Schrader et a
(19923, 1993), and morerecent configuration interaction
results (Saito 1995, 2005, Saito and Hidao 1998, Miura
and Saito 2003).

At first glance, the physics of positron binding to
negative ions is much simpler than that of positron
binding to neutrals. Thedriving force hereisthe Coulomb
attraction between the particles. However, in contrast with
atoms, the electron binding energy in anegativeion (i.e.,
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the electron affinity, EA) is always smaller than the
binding energy of Ps, |E, | = 6.8 eV. This means that the
lowest dissociation thresholdin the positron-anion system
is that of the neutral atom and Ps, so that the positron
bound to anegativeion may still escape by Ps emission.
Hence, for the systemto betruly bound, its energy should
lie below the Ps-atom threshold, and the positron energy
in the bound state, &, must satisfy:

l&y| > |E, | - EA. ()

Thissituationissimilar to positron binding to atoms
with ionization potentials smaller than 6.8 eV. The
structure of these bound statesis characterized by alarge
“Ps cluster” component (Mitroy et al. 2002).

The proximity of the Ps threshold in anions means
that to yield accurate binding energies, the method used
must account for virtual Psformation. The positron aso
polarizes the electron cloud, inducing an attractive
polarization potential. It has the form —ae?/2r* at large
positron-target separations r, where a is the dipole
polarizability of the target The method should thus be
capable of describing many-electron correlation effects.
The halogen negative ions have np® valence confi-
gurations, and are similar to noble-gasatoms. Here many-
body theory may have an advantage over few-body
methods (Dzuba et a. 1996).

The many-body theory approach developed by the
authors (Gribakin and Ludlow 2004), employs B-spline
basis sets. This enables the sum of the electron-positron
ladder diagram sequence, or vertex function, to befound
exactly. This vertex function accounts for virtual Ps
formation. It is incorporated into the diagrams for the
positron correl ation potential and correlation corrections
to the electron-positron annihilation vertex. To ensure
convergence with respect to the maximum orbital angular
momentum of the intermediate electron and positron
states in the diagrams, |, we use extrapolation. It is
based on the known asymptotic behaviour of the energies
and annihilation rates asfunctionsof | (Gribakin and
Ludlow 2002).

In Gribakin and Ludlow (2004) the theory has been
successfully applied to positron scattering and annihi-
lation on hydrogen below the Ps formation threshold,
wherethe present formalismis exact. Thistheory isnow
extended to treat the more difficult problem of positron
interaction with multiel ectron atomic negative ions. We
test the method for H-, and consider the hal ogen negative
ions F, Cl~, Br-and I=. Note that aconventional notation
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for the positron bound with a negative ion A™ is PsA,
rather than €"A-, hence one has PsH, PsF, etc. (Schrader
1998).

2. CALCULATION OF POSITRON BINDING
USING DYSON’S EQUATION

The many-body theory method for positron bound states
issimilar to that developed for electron-atom binding in
negative ions (Chernysheva et al. 1988, Johnson et al.
1989, Gribakin et al. 1990, Dzubaet al. 1994), and used
for positron-atom bound states by Dzuba et al. (1995).

The Green function of the positron interacting with
a many-electron system (“target™) satisfies the Dyson
equation (see, e.g., Migdal 1967),

(E - I—A|O)GE (ror)=J=c(rorm)Ge (r,r')dr”

=35(r-r'), .. (2

where I—AI0 isthe zeroth-order positron Hamiltonian, and

¢ isthe self-energy. A convenient choice of H , isthat
of the positron moving in the field of the Hartree-Fock
(HF) target ground state. The self-energy then describes
the correl ation interaction between the positron and the
target beyond the static-field HF approximation (Bell and
Squires 1959). It can be cal culated by means of the many-
body diagrammatic expansion in powers of the el ectron-
positron and el ectron-el ectron Coulomb interactions (see
below).

If the positron iscapable of binding tothesystem, i.e.,
thetarget has apositive positron affinity PA, the positron
Green function G¢(r, r') hasapoleat E =€, =-PA,

W, () wo (')

ey 3

Ge(r,r) =~
g E-g
Here y, (r) isthe quasi particlewavefunction which

describes the bound-state positron. It is equal to the
projection of the total ground-state wavefunction of the
positron and N electrons, W, (r ,, ..., I, ), onto thetarget

ground-state wavefunction, ®(r, ..., ),
W, (¥) = SO (ryy s 1) W (rys sy, 1) dry oo dry.
(4
The normalization integral for g, (x),
.. (5)

a= ﬁwo (r)|2 dr <1,
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can be interpreted as the probability that the electronic
subsystem of the positron-target complex remainsin its
ground state.

The magnitude of a quantifies the extent to which
the structure of the complex isthat of the positron bound
to the anion, e*A-, as opposed to that of the Ps atom
orbiting the neutral atom. Such separation isafeature of
the “heuristic wavefunction model” (Mitroy et al. 2002).
If the former component dominates the wavefunction,
the value of ais expected to be close to unity. If, on the
other hand, the wavefunction contains a large “Ps cluster”
component, the value of a will be notably smaller.

By taking thelimit E - &,in Eq. (2), one obtainsthe
Dyson equation for the quasiparticle wavefunction
W, (r) (“Dyson orbital”) and the bound-state energy &,

Howo (1) +J-ZEO (ror ) wo (r)dr' =g, (r). ...(6)

This equation is analogous to the standard
Schrodinger eigenvalue problem, except that the
correlation potential = depends on the energy.

The eigenstates ¢, (r) of the Hamiltonian H,,

Heb. (r) =€d, (1), (7

are characterized by their energies € and the orbital
angular momentum |, implicit inthisnotation. They form
acomplete single-particle positron basis set. For negative

ions the spectrum of H, consists of both discrete

(Rydberg) and continuum states. This set can be used to
expand the quasi particle bound-state wavefunction:

W, () = =C.0. (r), . (8)
and cast the Dyson equation, Eq. (6) in the matrix form:
.. (9

where the sumsin Eqgs (8) and (9) include the positive-
energy continuum, aswell asthe discrete negative-energy
states, and

eC, +2 (e|]z, |e") C. = ,C.,

(e|zeler) = Id)?(r) Ze(rr) o, (r)drar. (10

In practice the continuum is discretized by using a
B-spline basis set (see below), and Eq. (9) becomes a
matrix eigenvalue problem. Therefore, to find g, and C,
one simply needs to diagonalize the matrix:

ed,. +(g|Zc|e). .. (12)

Itslowest eigenvalue €, (E) depends on the energy E
at which Z_ is calculated, and the diagonalization must
be repeated several times until self-consistency is
achieved: ¢, (E) = E. Knowing the dependence of the
eigenvalue on E allows one to determine the
normalization integral, Eq. (5), viathe relation (Migdal
1967),

1

0 u]
_ 9% (E) 1 . (12)

THT e

Note that owing to the spherical symmetry of the
target, thestates ¢, and ), have definite orbital angular
momenta. To find the bound positron ground state it is
sufficient to cal cul ate the self-energy matrix (10) for the
s-wave positron only.

E=¢,

The accuracy of the binding energy obtained from
the Dyson equation depends upon the accuracy to which
the self-energy has been determined. As mentioned in
the Introduction, polarization of thetarget and virtual Ps
formation are the two most important effects that need
to be accounted for. The effect of target polarization is
described in the leading order by the 2nd-order diagram
3@, Fig. 1 (a). Following Gribakin and Ludlow (2004),
the Ps formation contribution (M shownin Fig. 1 (b), is
obtained by summing the electron-positron ladder
diagram series to all orders, Fig. 2. This procedure
amounts to calculation of the electron-positron vertex
function I' shown by the shaded block. Analytical
expressions for the diagrams can be found in Gribakin
and Ludlow (2004).

For hydrogen, the self-energy isgiven exactly by the
two diagrams in Fig. 1, = = 3@ + (O, provided the
intermediate electron and positron states are calculated
in the field of the bare nucleus (Gribakin and Ludlow
2004). For multi-electron targets one may also consider
higher-order corrections not included in the virtual Ps
contribution, Fig. 1 (b). In the present calculation a set
of 3rd-order diagrams shown in Fig. 3 will be included.
Diagrams (@), (b), (c) and (d) represent corrections to
the 2nd-order polarization diagram, of the type described
by the random-phase approximation with exchange
(RPAE, Amusia et al. 1975). They account for the
electron-hole interaction and screening of the positron
Coulomb field, and correct the value of the dipole
polarizability a of the target. Diagram (€) accounts for
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the positron-hole repulsion. The contribution of the
diagrams in Fig. 3 is denoted collectively by =®.
Calculation of these diagramswill allow usto gaugethe
importance of these corrections, and even to include
effectively higher-order diagrams (see below).

€ \ € g vV, €
V8 % [0
n n
(a) (b)

Fig. 1. Main contributions to the positron self-energy. Diagram
(a) describes the effect of polarization in the lowest, second order,
>@: diagram (b) accounts for virtual Ps formation, =(". Top lines
in the diagrams describe the positron. Other lines with the arrows
to theright are excited electron states, and to the left—holes, i.e.
electron states occupied in the target ground state. Wavy lines are

the Coulomb interactions. Summation over the intermediate
positron, electron and hole statesis carried out.

- T T
T

Fig. 2: Electron-positron ladder diagram series and its sum, the

vertex function I" (shaded block). Comparison between the left-

and right-hand sides of the diagrammatic equation shows that I
can be found by solving a linear matrix equation.

o

(a)

(b) ()

(d) (e)

Fig. 3: Third-order contributions to the positron self-energy, =©.
Mirror images of the diagrams (c) and (d) are also included. The
top line describes the positron.

\
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Of course, any many-body theory calculation can at
best include only dominant classes of diagrams, |eaving
out an infinite number of other higher-order diagrams.
For example, the diagram in Fig. 4 has the effect of
screening the positron-el ectron interaction accompanying
virtual Psformationin =, Fig. 1 (b).

g V)

€
-—

\

Ky [25)

M3

1

£
Fig. 4: Screening correction to the virtual Ps contribution (.

The number of diagrams increases rapidly as one
moves to higher orders. The effort required to evaluate
these diagrams becomes prohibitiverelativeto their small
contribution. It would therefore be useful tofindasimple
method to estimate the contribution of the higher-order
diagrams. Thiswill allow usto takeinto account the effect
of electron screening beyond the corrections shown in
Fig. 3.

A useful quantity for estimating the size of a
contribution to the self-energy Z is a dimensionless
measure of its “strength” (Dzuba et al. 1994),

J-G(O) (r',r) =g (r,r')drdr’

_z<€v|iE|€v>

v \Y

O (2)

.. (14)

where GO is the Oth-order positron Green function
calculated at E= 0. Let:

9 (=)

S
gE Z(z)

... (15)

be the ratio of the strength of the sum of the 3rd-order
polarization diagrams (Fig. 3) to the strength of the 2nd-
order polarization diagram. This quantity S: can then be
used to estimate higher-order contributionsto >,

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010

P D F To remove this message, purchase the
product at www.SolidDocuments.com



Many-body Theory Calculations of Positron Binding to Negative lons

Asacheck, wetest that the binding energy obtained
using 3@*+3 = 5@ + 304 js close to that obtained with
Z@ multiplied by 1+ S, i.e., using

1+S) s@=50+3), ... (16)

An estimate of the total self-energy corrected for
the screening effects in the lowest order can then be
obtained as:

(1+s) 9 +200

As we will see in Section 4, the relative effect of
screening is negative, S: <0, which meansthat screening
reducesthe magnitude of the self-energy. Similar higher-
order termsin the self-energy expansion will alternatein
sign. Thus, for example, adiagram such asthat shownin
Fig. 5, will tend to compensate the lowest-order screening
correctionin Fig. 4.

- (17)

g €

- 7
___

-

Fig. 5: Higher-order screening correction to the virtual Ps
contribution =, cf. Fig. 4.

Assuming that the sequence of screening corrections
behaves like a geometric series, its effect can approxi-
mately be taken into account by using the screened self-
energy, which we denote >(:

1
S(so) = s F@+50g

We expect that this approximation should yield our
best prediction for the binding energy.

.. (18)

3. CALCULATION OF THE POSITRON
ANNIHILATION RATE IN THE BOUND
STATE

The spin-averaged positron annihilation rate ', in the

bound state can be expressed in terms of the average

contact el ectron-positron density p,, (see, e.g., Bereste-

tskii et al. 1982)

M, = TU5CPy ... (19)
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wherer is the classical radius of the electron, c isthe
speed of light, and Pep isgiven by the integral,

N
Pep = ZJ-‘LIJO (rl, rz,...,rN,r)‘2

x &(r —r;)dr, ...drdr ... (20)

where W, (r,, r,, ..., I'y, ) isthe full (N + 1)-particle
bound-state wavefunction of the N electron coordinates
r; and positron coordinater.

Figure 6 shows a series of diagrams that would
constitute a complete set of annihilation diagrams for a
one-electron system (Gribakin and Ludlow 2004). Here
€ represents the positron bound-state Dyson orbital

Y, (r) normalized as per Eq. (5).

£ E [ £ £ £ E £

- rd P T EZT
)+ ”/ + 2 S+ =
(a) (b) (©) (d)
£ £ £ £
== =
+ ?/ \\ P ?/ \% S +
= GaE======ch
(e) ()

Fig. 6: Many-body theory expansion for the contact electron-
positron density. The solid circle in the diagramsis the delta-
function annihilation vertex, cf. Eq. (20). Diagrams (b), (d) and (€)
are multiplied by two to account for their mirror images.

Diagram (@) in Fig. 6 is the overlap of the positron
and HF electron densities. It represents the independent-
particle approximation to the annihilation vertex with
the contact density:

N

ol = ZJ'

where @, (r) is the HF orbital of hole n. The first-order
correction, diagram (b), can be thought of asthe ana ogue

of =@, and will be denoted by pY. The diagrams with

CY
the vertex function I, e.g., (d) in Fig. 6, are particularly

important in the calculation of p_, as the annihilation
takes place at a point, and is strongly enhanced by the
Coulomb attraction in the annihilating electron-positron
pair.

, (r)|2|L|,l0 (r)|2 dr

- (20)

The diagrams shown in Fig. 6, represent a basic set
of contributionswith asingle hole line, which one needs
to consider to obtain areliable answer. We will denote
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o g p(eﬁ) representing
acorrection to the zeroth-order contact density. Similar
to the self-energy diagramsin Fig. 1, they represent the
exact answer for the positron-hydrogen system, provided
theelectronand positronintermediate statesare cal culated
in the field of the bare nucleus (Gribakin and Ludlow
2004). For complex many-electron systems it may be
necessary to account for the effectsof electron screening
when calculating Pep A series of RPA-type annihilation
diagramsistherefore also calculated, seeFig. 7.

thecorresponding density as p + pl®)

P «rj ) /,t p <_____._ , / . ._{’
$ /73 ~A// &
- & o //
(a) (b) (c) (d)
- 4 ’z:,f" { v
& § A =
. 3 )/-. g %'/
" S & - f\/{
(e) () (g)

Fig. 7: Annihilation diagrams with two Coulomb interactions,
including those of RPA-type, pg)) . The top line describes the

positron. All the diagrams have equal mirror images.

Similarly, screening corrections to the annihilation
diagrams containing the I" block can also be considered,
asshowninFig. 8.

\

Fig. 8: Screening correction to the annihilation diagram
containing the vertex function I'.

The diagrams shown in Fig. 7, pf;)) , can be thought

of asnext-order correctionsto pg ,diagram (b) inFig. 6.
By evaluating the ratio:

C = p(z) /p(l),

e ' Mep

- (22)

an estimate can be made of the total contact density Pep
that includes higher-order correctionsin amanner similar
to the self-energy [cf. Eq. (18)],

@, 1 @
1-CcPe
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. (23)

4. NUMERICAL IMPLEMENTATION

The Hartree-Fock ground state of the negative ions is
first found. The frozen-core HF Hamiltonian for an
electron or a positron (with and without exchange,
respectively) is then diagonalized in a B-spline basis
(Sapirstein et al. 1996). The corresponding eigenvectors
provide bases of single-particle electron and positron
states, cf. EQ. (7). The spectrum of these states for the
electron includes the negative-energy ground-state
orbitals (hole states) and positive-energy excited states
spanning the electron continuum, see, e.g., Fig. 6 in
Gribakin and Ludlow (2004). The positron basis contains
anumber of negative-energy Rydberg states augmented
by the discretized positive energy positron “continuum”.

The effective spanning of the continuum is achieved
by using an exponential radial knot sequence for the
B-splines. For H, thefirst 23 eigenstates generated from
aset of 60 splines of order 9 were used, with abox size
of R=30 au. For the other systems, namely F-, CI-, Br-
and I, thefirst 20 statesfrom a set of 40 splines of order
6 were used with R= 30 au. Only the outermost sand p
subshellswereincluded when cal cul ating the self-energy
and annihilation diagrams. More strongly bound inner-
shell electronsare only weakly perturbed by the positron.
Their contribution to the correl ation potential and annihi-
lation vertex isrelatively small, and has been neglected.

Thediagrammatic contributionstotheself-energy and
contact density describedin Sections2and 3, arecal cul ated
by direct summation over the intermediate electron and
positron states, and thevertex functionisfound by solving
alinear matrix equation. Theuseof B-splinebasesensures
quick convergence with respect to the number of states
with a particular angular momentum | included in the
calculation. In addition, the convergence with respect to
the maximum orbital angular momentumincludedinthe
calculation, | ..., alsoneedsto beconsidered. Thisisdone
by extrapolation through the use of the asymptotic
formul ae (Gribakinand L udlow 2002),

g, = &)™) - A . (28)
(I +1/2)
and
gl B 25
P =" {1 +1/2)’ - (29)

|max
where ¢l=) and plr=) are the bound-state energy and

contact density obtained in acalculationfor agiven! .,
and A and B are constants. While the derivation of
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Eqgs (24) and (25) is based on perturbation theory
(Gribakin and Ludlow 2002), this asymptotic behaviour
is confirmed by nonperturbative many-body-theory
calculations (Gribakin and Ludlow 2004), and by
configuration-interaction cal culations of positron binding
and annihilation in atoms (Mitroy and Bromley 2006).
The constants A and B are found numerically and have
different values for each system studied.

5. RESULTS
5.1. Detailsof Calculationsfor PsCl

In this section, a detailed examination of the results for
PsCl will be presented. This should illustrate how the
final results for the other systems were arrived at.

The positron radial wavefunctionsfor PsCl obtained
by solving the Dyson equation using the ab initio self-
energy >@*"*+3) and the screened self-energy (<) are
compared to the HF positron wavefunctionin Fig. 9. The
inclusion of the attractive correlation potential resultsin
lower energies of the positron bound states, and hence,
more compact wavefunctions. Otherwise thetwo Dyson
orbitals are very similar to each other.

0.6 T T T T

o
£
T

Radial wavefunction
o
()
| T

|
0 5 10 15 20
Radius (au)

Fig. 9: Radia positron wavefunction in PsCl: ---, Hartree — Fock;

— O—, Dyson orbital calculated using the self-energy =@+ +3);

—, Dyson orbital obtained with 6%, The HF and Dyson orbitals
on the graph are normalized to unity.

When solving the Dyson equation, the self-energy
and the bound-state energy €, were calculated for
a number of maximum orbital angular momenta, e.g.,
lax = 7 — 10, and then the asymptotic behaviour (24)
was used to find theresult for |, — oo. This procedure
is illustrated for PsCl in Fig. 10. Extrapolation from
.o = 10toinfinity increasesthe binding energy by about
0.5%.
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Before the contact density p_ can be determined,
the positron Dyson orbital must be correctly normalized
via Eqg. (12). This is achieved by calculating the self-
energy for anumber of energies E and finding the lowest
eigenvalue of the matrix (11) at these energies, giving
&, (E). This is repeated to self-consistency, E = €, (E),
and the gradient 0g, (E)/0E isfound at thispoint. Thisis
illustrated for PsCl in Fig. 11.

-0.203

.0.204F
-0.205-
-0.206

0.207F.~

= [ T A A A LS T T

k-
B . l l
0 0.001 0.002
3
/(. +1/2)
max

o

Fig. 10: Convergence of the binding energy for PsCl as afunction
of I..... Open circles connected by asolid line to guide the eye,
show the energies €, calculated using =@+ +9 at
E=-0.207 aufor |, = 7-10; dashed line shows extrapol ation.

-0.18 . . —

-0.20

Eigenvalue ¢ (au)

-0.22— ’ —

-0.4 -0.3 -0.2 -0.1
Energy E (au)
Fig. 11: Open circles connected by the solid line show the
positron energy £, (E) for PsCl obtained from the Dyson equation
with @+T+3) asafunction of the energy at which the self-energy
was calculated; dashed lineis €, = E. The intersection of the two
lines, £, (E) = E, gives the binding energy. The gradient of ¢, (E) at
this point is used to calculate the normalization constant a from
Eq. (5).

According to Eq. (25), the el ectron-positron contact
density P, CONVerges much more slowly than the energy,
and extrapolation with respect to | is much more

/ 79

P D F To remove this message, purchase the
product at www.SolidDocuments.com



J.A. Ludlow and G.F. Gribakin

important here. This is illustrated for PsCl in Fig. 12.
Extrapolation beyond | = 10 increases the contact
density, and hence, the annihilation rate, by about 30%.

The calculations are performed for a number of
approximations to the self-energy. This enables us to
determine the relative magnitude of various diagrams,
and helpsto clarify which physical effects areimportant
to include so as to obtain an accurate binding energy.
The positron energies obtained for PsCl using different
approximations are given in Table 1.

0.040 "~ -

0.035 SN

P ep
’
’

/!
AR I I

0.030

0.025 I | | | | | I I I | | 1 L L
/(I +1/2)

max

Fig. 12: Convergence of the electron-positron contact density Pep
for PsCl asafunction of I .. Open circles connected by a solid

line to guide the eye, show val ues of p(;)) + pgﬁ) + pg) obtained

forl, . =7-10inthecaculation using ¥(*"*3): dashed line
shows extrapolation.

Table 1
Positron bound-state ener gies g, (in au) for Cl- obtained using
various approximations to the correlation potential

HE Z(Z) Z(E r) Z(Z 3) Z(Z r 3) z(ﬁ 3) Z(Scr)

-0.1419 -0.1855 -0.2276 -0.1663 —0.2072 —0.1641 —0.1998

In the HF approximation, the energy of the lowest s
wave positron state is—0.1419 au. The Ps hinding energy
(BE) is determined from the positron affinity PA = |g |
using Eq. (26), which givesBE = 0.672 eV. Thisvalueis
in agreement with the HF results of Cade et al. (1977).
Therefore, PsCl is bound even in the static HF
approximation. However, the self-energy is essential in
determining an accurate hinding energy. The second-
order polarization diagram =@ increases the binding
energy, and the inclusion of the virtual Ps formation
contribution =" increases it even further. When we add
the 3rd-order corrections £ to =@, the binding reduces
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noticeably. This means that screening of the Coulomb
interaction isimportant. In particular, the positron binding
energy of 0.2276 au, obtained with £?* 1), becomes equal
t0 0.2072 au when the total self-energy 3?+>+3) js used.

However, this calculation neglects the effect of
screening on the virtual Ps-formation contribution (.
Evaluating the magnitude of screening via Eq. (15) we
obtain S = —0.45. When the effect of screening on =@
is included via the factor 1 + S, as per Eq. (16), add
closing parenthesis the corresponding result (labelled
3@+3) is very close to that obtained with Z?* 3 (see
Table 1). The application of approximation (18), denoted
S0 gives our best estimate of the positron binding
energy, 0.1998 au, corresponding to a Ps binding energy
of 2.245 eV. This value is only slightly below the

completely ab initio value of 2.437 eV obtained using
2(2 +T+ 3).

The contact densities calculated using the Dyson
orbitals obtained with @+ *+3 and () are quite close,
as are the energies and wavefunctions. We show the
breakdown of the contributions to p,, in Table 2. To
appreciate the scale of densitiesinvolved, it is useful to
remember that the contact density of ground state Psis
Pe, (P9) =187 =0.0398 au. Notethat although **7*3)
givesadightly larger binding energy and amore compact
positron wavefunction than ), the densities obtained
in the former approximation are lower. Thisisdueto a
smaller normalization constant a, which results from a
somewhat stronger energy dependence of Z?++3),

Table 2
Breakdown of contributionsto the electron-positron
contact density in PsCI (in au)

Approx.  p¥ ol pg? + p P(;) total Pep

Eq. (23)

$@+T+3 000841 0.00931 0.04263 —0.00155 0.04108 -
(=0 0.00872 0.00964 0.04444 —0.00162 0.04281 0.03929

Thezeroth-order diagram, p(;) givesonly about 20%
of thetotal density, with p(l) giving another 20% and the

€
rest coming from higher order diagramsin pgﬁ) (Fig. 6).
Aswiththeself-energy, theinclusion of screening effects
(pf:,), Fig. 7) reduces the total. However, the effect of

screening ontheannihilation vertex ismuch smaller than
that onthecorrel ation potential, asindicated by thevalue
of C=-0.17, Eq. (22). Physically, thisisrelated to the
fact that in the annihilation vertex corrections, small
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electron-positron separations dominate. Finally, using
Eqg. (23) to account for the effect of screening on the

diagrams in pgﬁ) we obtain our best prediction for the
contact density (last columninTable 2). Thiscorresponds
to the PsCl decay rateof 1.984 ns~%, whichisclosetothe
spin-averaged decay rate of Ps, 2.01 ns™1.

5.2 Resultsfor PsH, PsF, PsCl, PsBr and Psl

Thefinal resultsfor PsH, PsF, PsCl, PsBr and Psl obtained
with the correlation potential =@+ *+3) and density
pg) + pﬁf)) + p(;), and =) and screened densities from
Eq. (23), are shown in Table 3. In all cases the positron
isboundinthe swave, all higher lying quasi-bound states
being unstable against Ps emission. Note that the latter
is true for the electron-spin-singlet states, as excited
“unnatural parity” electron-spin-triplet Ps-atom bound
states have been discovered recently for the hydrogen
and the alkalis (Mitroy and Bromley 2007, Mitroy et al.
2007).

The positron binding energy is highest in PsH. This
isaconsequence of the small size of the hydrogen atom,
and the small value of its electron affinity, which makes
for strong el ectron-positron correl ation effects. Beyond
PsH the binding energy decreases along the halogen
sequence, mostly due to a stronger positron repulsion
from the positively-charged atomic cores in heavier
systems.

Values of the normalization parameter a in Table 3
give some insight into the structure of these compounds.
PsH hasthe smallest value of aand its structuretherefore
has a large component that describes Ps bound to the
neutral atom (“Ps cluster”), the small electron affinity of
H playing arole in this. PsF has the largest value of a
andits structure can best be described asapositron bound
to F. Generally, al of the compounds considered have
large values of a. Thisindicatesthat a positron bound to
the negative ion is the dominant component of the
structure. Thisis aconsequence of the stable noble-gas-
like structure of the halogen negative ions. In contrast,
positron bound states with the weakly-bound alkali
negative ions have a distinct Ps-atom character (Mitroy
et al. 2002).

It is interesting to compare the positron wave-
functions obtained from the Dyson equation for H~ and
the halogen anions. In Fig. 13, the wavefunctions
obtained with the self-energy =?*" *3 are shown. The
shape of the positron wavefunction is determined by a
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bal ance between the Coulomb and correlation-potential
attraction at large separations, and the Coulomb repulsion
from the nucleus at smaller radii. The positron wave-
functionsfor PsH and PsF are quite similar. Thisfeature
reflects the high positron binding energy to the H- and
Fions, and the fact that the corresponding atoms have
the smallest radii. As the positron binding energy
decreases, the positron wavefunction relaxes outwards.
This feature is seen as one moves along the halogen
sequence. One can also observe the increasing
“expulsion” of the positron from the atomic core region,
caused by the Coulomb repulsion from the nucleus.

Table3
Positron binding energies, normalization constants and contact
densities for PsH and positronium halides

Compound €2 au a? P% gdau ab P2
PsH -0.27619 0.714 0.05231 -0.26338 0.748 0.05037
PsF  —-0.22778 0.950 0.04790 —0.22489 0.958 0.04913
PsCl -0.20718 0.875 0.04108 —0.19975 0.894 0.03929
PsBr -0.20373 0.834 0.03910-0.19523 0.868 0.03788
Psl  —-0.19805 0.794 0.03707 -0.18878 0.835 0.03582

#Dyson equation solved using Z@*"*9), density p,, = p) +p%)* p&.

> Dyson equation solved using ), density p,, from Eq. (23).
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Fig. 13: Comparison of the radial Dyson orbitals obtained with
$@+T+3): golid, PsH; dashed, PsF; long-dashed, PsCl; dot-dashed,
PsBr; dot-double-dashed, Psl. For the purpose of comparison, al

orbitals are normalized to unity.

5.3 Comparison with other Theoretical Results

The positron binding energies can be converted to Ps
binding energies viathe simple relation,

BE (PsA) = EA (A) + PA (A) + E, (P9),

/

.. (26)
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where BE (PsA) is the binding energy of a Ps atom to a
generic atom denoted by A, EA (A) isthe electron affinity
of theatom, PA (A") isthe positron affinity of the negative
ionand E,( (Ps) =—6.8028 eV isthe spin-averaged energy
of Ps. For the electron affinities needed, the values of
0.7542 eV for H, 3.4012 eV for F, 3.6127 eV for Cl,
3.3636 eV for Br and 3.0590 eV for I, have been used
(Andersen et al. 1999).

Annihilation rates I"_ in units of ns~! are obtained
by dividing the contact density p_. by the conversion
factor 10°s/(Tr3c) = 0.0198 ns x au. Thefinal Psbinding
energies and positron annihilation rates are shown in
Table 4, and compared with other calculations and
experiment.

Table4
Ps binding energies and positron annihilation rates for
PsH and positronium halides compared with other
calculations and experiment

Other Results
PsBE (eV) I,(ns™h)

Present Results
PsBE(eV) [,(ns™h)

Compound

PsH 1118 2.544 1.0661262

1.1+0.2

2.806°
2.70°¢
2.24¢
1.98+0.179
2.838
29+05

2.350°
1.91 + 0.16®
1.62d
20+ 05

2.061°
1.14+0.119
1.25"

1.714°
0.56"

2.43617

2.019°
1.98¢

PsF 2.718 2.482

PsCl 2.245 1.984 1.504°

PsBr 1.873 1.913 1.371°

Psl 1.393 1.809 1.254°

Theory: @Frolov et al. 1997, ®Saito 2005, “Miuraand Saito 2003,
dSaito 1995, €Schrader et al. 1992a, fBressanini et al. 1998,
9Schrader et al. 1993, "Saito et al. 1998.

Experiment: ' Schrader et al. 1992b, 1 Tap et al. 1969.

For PsH very accurate variational calculations are
available (Frolov et al. 1997). Our many-body theory
calculations are in good agreement with these results,
and both the Psbinding energy and positron annihilation
rate are accurate to within 5%. Because of the small
electron affinity of hydrogen, PsH is more difficult for
many-body theory to treat than larger, moretightly bound

2 \

5 SaLID

systemswith many valence electrons. Theresultsfor the
heavier systems should therefore be of similar or possibly
even of greater accuracy than the results for PsH.

For PsF afew theoretical calculations are available,
the present Ps binding energy and positron annihilation
rate agreeing most closely with multi-reference configu-
ration-interaction calculations (Miura and Saito 2003,
Saito 2005). The Ps binding energy is also close to a
diffusion Monte-Carlo calculation by Bressanini et al.
(1998).

The present Ps binding energies for PsCl, PsBr and
Psl are greater than those obtained using a second-order
variational perturbation method (Saito et al. 1995, 1998)
and Monte-Carlo calculations (Schrader et a. 1992a,
1993). Our values arein better agreement with, although
consistently smaller than, multi-reference configuration-
interaction calculations by Saito (2005). The positron
annihilation rates from the present calculation and that
of Saito (2005) are in reasonable agreement, although
our values are consistently higher.

5.4 Comparison with Experiment

For PsH, a direct experimental measurement of the Ps
binding energy (Schrader et al. 1992b) is available. In
this experiment, the reaction e + CH, - CH7 + PsH
was studied by detecting the CH3 ions. From the
experimentally determined threshold energy for CH}
production and the various bond energies, a value of
1.1+ 0.2eV wasfound for the PsH binding energy. This
valueisin excellent agreement with theory, though much
less precise.

So far, there have been no direct experimental
measurements of the Ps binding energy for the halogens,
however estimates of the Ps binding energy for PsF and
PsCl have been made (Tao et al. 1969), see Table 4. The
PsCI binding energy was estimated by studying positron
annihilation in Cl, and Ar-Cl, gas mixtures. The
appearance of a shoulder in the positron annihilation
lifetime spectrum was attributed to thereaction, Ps+ Cl,
— PsCl + CI. From aknowledge of the energy at which
this shoulder begins and the Cl, dissociation energy, a
binding energy of about 2.0 eV was estimated for PsCI.
The estimate of the PsF binding energy was obtained
from the observation that when a hydrogen atom in
benzeneisreplaced by fluorine, the fraction of positrons
annihilating with the longest lifetime, as ortho-
positronium, was reduced from 40to 27%. Thisreduction
was assumed to be due to the reaction, CH.F + Ps —
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PsF + C4H,. From a knowledge of the threshold energy
and the relevant dissociation energies, abinding energy
of about 2.9 eV was estimated for PsF. The present results
support these early estimates. This can bein part dueto
underestimation of the contribution of high orbital
angular momenta by the extrapolation procedure used
by Saito (Mitroy and Bromley 2005).
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