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MANY-BODY THEORY CALCULATIONS OF POSITRON BINDING TO NEGATIVE IONS
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Abstract: A many-body theory approach developed by the authors [Phys. Rev. A 70 032720 (2004)] is applied to
positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium
(Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all
important many-body correlation effects in the positron problem. Numerical calculations have been performed for
positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps
binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and
1.809 ns–1, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively.

PACS Numbers: 36.10.Dr, 71.60.+z, 78.70.Bj, 82.30.Gg.

1. INTRODUCTION

A many-body theory approach developed by the authors
(Gribakin and Ludlow 2004) takes into account all main
correlation effects in positron-atom interactions. These
are: polarization of the atomic system by the positron,
virtual positronium formation and enhancement of the
electron-positron contact density due to their Coulomb
attraction. The first two effects are crucial for an accurate
description of positron-atom scattering and the third one
is very important for calculating positron annihilation
rates. In this paper we apply our method to calculate the
energies and annihilation rates for positron bound states
with the hydrogen and halogen negative ions.

Positron bound states can have a strong effect on
positron annihilation with matter. For example, positron
bound states with molecules give rise to vibrational
Feshbach resonances, which leads to a strong enhance-
ment of the positron annihilation rates in many polya-
tomic molecular gases (Gribakin 2000, 2001, Gilbert et
al. 2002, Gribakin et al. 2010). Nevertheless, the question
of positron binding with neutral atoms or molecules has
been answered in the affirmative only recently, and the

ubiquity of such states is only becoming clear now (Dzuba
et al. 1995, Ryzhikh and Mitroy 1997, Mitroy et al. 2001,
2002, Danielson 2009). On the other hand, it has been
known for many decades that positrons bind to negative
ions. Beyond the electron-positron bound state, or
positronium (Ps), the simplest atomic system capable of
binding the positron is the negative hydrogen ion (Ore
1951). The binding energy, annihilation rate and structure
of the resulting compound, positronium hydride (PsH)
have now been calculated to very high precision, e.g., by
variational methods (Frolov et al. 1997). The information
available for heavier negative ions with many valence
electrons is not nearly as accurate (see Schrader and
Moxom 2001 for a useful review). Positronium halides
have received most of the attention, with some calcula-
tions dating back fifty years; see, e.g., the Hartree-Fock
calculations of Simons (1953) and Cade and Farazdel
(1977), quantum Monte-Carlo work by Schrader et al
(1992a, 1993), and more recent configuration interaction
results (Saito 1995, 2005, Saito and Hidao 1998, Miura
and Saito 2003).

At first glance, the physics of positron binding to
negative ions is much simpler than that of positron
binding to neutrals. The driving force here is the Coulomb
attraction between the particles. However, in contrast with
atoms, the electron binding energy in a negative ion (i.e.,
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the electron affinity, EA) is always smaller than the
binding energy of Ps, |E1s | ≈ 6.8 eV. This means that the
lowest dissociation threshold in the positron-anion system
is that of the neutral atom and Ps, so that the positron
bound to a negative ion may still escape by Ps emission.
Hence, for the system to be truly bound, its energy should
lie below the Ps-atom threshold, and the positron energy
in the bound state, ε0, must satisfy:

|ε0 | > |E1s | – EA. ... (1)

This situation is similar to positron binding to atoms
with ionization potentials smaller than 6.8 eV. The
structure of these bound states is characterized by a large
“Ps cluster” component (Mitroy et al. 2002).

The proximity of the Ps threshold in anions means
that to yield accurate binding energies, the method used
must account for virtual Ps formation. The positron also
polarizes the electron cloud, inducing an attractive
polarization potential. It has the form –αe2/2r4 at large
positron-target separations r, where α is the dipole
polarizability of the target The method should thus be
capable of describing many-electron correlation effects.
The halogen negative ions have np6 valence confi-
gurations, and are similar to noble-gas atoms. Here many-
body theory may have an advantage over few-body
methods (Dzuba et al. 1996).

The many-body theory approach developed by the
authors (Gribakin and Ludlow 2004), employs B-spline
basis sets. This enables the sum of the electron-positron
ladder diagram sequence, or vertex function, to be found
exactly. This vertex function accounts for virtual Ps
formation. It is incorporated into the diagrams for the
positron correlation potential and correlation corrections
to the electron-positron annihilation vertex. To ensure
convergence with respect to the maximum orbital angular
momentum of the intermediate electron and positron
states in the diagrams, lmax, we use extrapolation. It is
based on the known asymptotic behaviour of the energies
and annihilation rates as functions of lmax (Gribakin and
Ludlow 2002).

In Gribakin and Ludlow (2004) the theory has been
successfully applied to positron scattering and annihi-
lation on hydrogen below the Ps formation threshold,
where the present formalism is exact. This theory is now
extended to treat the more difficult problem of positron
interaction with multielectron atomic negative ions. We
test the method for H–, and consider the halogen negative
ions F–, Cl–, Br– and I–. Note that a conventional notation

for the positron bound with a negative ion A– is PsA,
rather than e+A–, hence one has PsH, PsF, etc. (Schrader
1998).

2. CALCULATION OF POSITRON BINDING
 USING DYSON’S EQUATION

The many-body theory method for positron bound states
is similar to that developed for electron-atom binding in
negative ions (Chernysheva et al. 1988, Johnson et al.
1989, Gribakin et al. 1990, Dzuba et al. 1994), and used
for positron-atom bound states by Dzuba et al. (1995).

The Green function of the positron interacting with
a many-electron system (“target”) satisfies the Dyson
equation (see, e.g., Migdal 1967),

( ) ( ) ( ) ( )0
ˆ , , dE E EE H G G− ′ − ∫ Σ ″ ″, ′ ″r r r r r r r

= ( ),δ − ′r r ... (2)

where 0Ĥ  is the zeroth-order positron Hamiltonian, and

ΣE is the self-energy. A convenient choice of
0Ĥ  is that

of the positron moving in the field of the Hartree-Fock
(HF) target ground state. The self-energy then describes
the correlation interaction between the positron and the
target beyond the static-field HF approximation (Bell and
Squires 1959). It can be calculated by means of the many-
body diagrammatic expansion in powers of the electron-
positron and electron-electron Coulomb interactions (see
below).

If the positron is capable of binding to the system, i.e.,
the target has a positive positron affinity PA, the positron
Green function GE (r, r′) has a pole at E = ε0 ≡ –PA,

GE (r, r′)
0E →ε

 ( ) ( )*
0

0E

ψ ψ ′
− ε

r r
. ... (3)

Here ( )ψ r  is the quasiparticle wavefunction which

describes the bound-state positron. It is equal to the
projection of the total ground-state wavefunction of the
positron and N electrons, Ψ0 (r1, ..., rN , r), onto the target
ground-state wavefunction, Φ0 (r1, ..., rN),

( )ψ r = ( ) ( )*
0 1 0 1 1, ..., , ..., , ... d .N N Nd∫ Φ Ψr r r r r r r

... (4)

The normalization integral for ( )ψ r ,

a = ( ) 2

0 d < 1,ψ∫ r r ... (5)



Many-body Theory Calculations of Positron Binding to Negative Ions

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010 75

can be interpreted as the probability that the electronic
subsystem of the positron-target complex remains in its
ground state.

The magnitude of a quantifies the extent to which
the structure of the complex is that of the positron bound
to the anion, e+A–, as opposed to that of the Ps atom
orbiting the neutral atom. Such separation is a feature of
the “heuristic wavefunction model” (Mitroy et al. 2002).
If the former component dominates the wavefunction,
the value of a is expected to be close to unity. If, on the
other hand, the wavefunction contains a large “Ps cluster”
component, the value of a will be notably smaller.

By taking the limit E → ε0 in Eq. (2), one obtains the
Dyson equation for the quasiparticle wavefunction

( )ψ r  (“Dyson orbital”) and the bound-state energy ε0,

( ) ( ) ( ) ( )0 0 0 0 0
ˆ , d .

0εψ + Σ ′ ψ ′ ′ = ε ψ∫r r r r r rH ...(6)

This equation is analogous to the standard
Schrödinger eigenvalue problem, except that the
correlation potential Σ depends on the energy.

The eigenstates ϕε (r) of the Hamiltonian 0Ĥ ,

( )0Ĥ εϕ r = εϕε (r), ... (7)

are characterized by their energies ε and the orbital
angular momentum l, implicit in this notation. They form
a complete single-particle positron basis set. For negative

ions the spectrum of 0Ĥ consists of both discrete
(Rydberg) and continuum states. This set can be used to
expand the quasiparticle bound-state wavefunction:

( )ψ r = ( ),Cε εε
Σ ϕ r ... (8)

and cast the Dyson equation, Eq. (6) in the matrix form:

0 0 ,C C Cε ε ε′ εε′
ε + Σ ε Σ ε′ = ε ... (9)

where the sums in Eqs (8) and (9) include the positive-
energy continuum, as well as the discrete negative-energy
states, and

Eε Σ ε′ = ( ) ( ) ( ), d d .E
∗
ε ε′ϕ Σ ′ ϕ ′ ′∫ r r r r r r ... (10)

In practice the continuum is discretized by using a
B-spline basis set (see below), and Eq. (9) becomes a
matrix eigenvalue problem. Therefore, to find ε0 and Cε
one simply needs to diagonalize the matrix:

.Eεε′ε δ + ε Σ ε′ ... (11)

Its lowest eigenvalue ε0 (E) depends on the energy E
at which ΣE is calculated, and the diagonalization must
be repeated several times until self-consistency is
achieved: ε0 (E) = E. Knowing the dependence of the
eigenvalue on E allows one to determine the
normalization integral, Eq. (5), via the relation (Migdal
1967),

a =
( )

0

1

01 .
E

E

E

−

= ε

 ∂ε
−  ∂ 

... (12)

Note that owing to the spherical symmetry of the
target, the states ϕε and 0ψ  have definite orbital angular
momenta. To find the bound positron ground state it is
sufficient to calculate the self-energy matrix (10) for the
s-wave positron only.

The accuracy of the binding energy obtained from
the Dyson equation depends upon the accuracy to which
the self-energy has been determined. As mentioned in
the Introduction, polarization of the target and virtual Ps
formation are the two most important effects that need
to be accounted for. The effect of target polarization is
described in the leading order by the 2nd-order diagram
Σ(2), Fig. 1 (a). Following Gribakin and Ludlow (2004),
the Ps formation contribution Σ(Γ) shown in Fig. 1 (b), is
obtained by summing the electron-positron ladder
diagram series to all orders, Fig. 2. This procedure
amounts to calculation of the electron-positron vertex
function Γ shown by the shaded block. Analytical
expressions for the diagrams can be found in Gribakin
and Ludlow (2004).

For hydrogen, the self-energy is given exactly by the
two diagrams in Fig. 1, Σ = Σ(2) + Σ(Γ), provided the
intermediate electron and positron states are calculated
in the field of the bare nucleus (Gribakin and Ludlow
2004). For multi-electron targets one may also consider
higher-order corrections not included in the virtual Ps
contribution, Fig. 1 (b). In the present calculation a set
of 3rd-order diagrams shown in Fig. 3 will be included.
Diagrams (a), (b), (c) and (d) represent corrections to
the 2nd-order polarization diagram, of the type described
by the random-phase approximation with exchange
(RPAE, Amusia et al. 1975). They account for the
electron-hole interaction and screening of the positron
Coulomb field, and correct the value of the dipole
polarizability α of the target. Diagram (e) accounts for
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the positron-hole repulsion. The contribution of the
diagrams in Fig. 3 is denoted collectively by Σ(3).
Calculation of these diagrams will allow us to gauge the
importance of these corrections, and even to include
effectively higher-order diagrams (see below).

Fig. 1: Main contributions to the positron self-energy. Diagram
(a) describes the effect of polarization in the lowest, second order,
Σ(2); diagram (b) accounts for virtual Ps formation, Σ(Γ). Top lines
in the diagrams describe the positron. Other lines with the arrows
to the right are excited electron states, and to the left – holes, i.e.

electron states occupied in the target ground state. Wavy lines are
the Coulomb interactions. Summation over the intermediate

positron, electron and hole states is carried out.

Fig. 2: Electron-positron ladder diagram series and its sum, the
vertex function Γ (shaded block). Comparison between the left-
and right-hand sides of the diagrammatic equation shows that Γ

can be found by solving a linear matrix equation.

Fig. 3: Third-order contributions to the positron self-energy, Σ(3).
Mirror images of the diagrams (c) and (d) are also included. The

top line describes the positron.

Of course, any many-body theory calculation can at
best include only dominant classes of diagrams, leaving
out an infinite number of other higher-order diagrams.
For example, the diagram in Fig. 4 has the effect of
screening the positron-electron interaction accompanying
virtual Ps formation in Σ(Γ), Fig. 1 (b).

Fig. 4: Screening correction to the virtual Ps contribution Σ(Γ).

The number of diagrams increases rapidly as one
moves to higher orders. The effort required to evaluate
these diagrams becomes prohibitive relative to their small
contribution. It would therefore be useful to find a simple
method to estimate the contribution of the higher-order
diagrams. This will allow us to take into account the effect
of electron screening beyond the corrections shown in
Fig. 3.

A useful quantity for estimating the size of a
contribution to the self-energy Σ is a dimensionless
measure of its “strength” (Dzuba et al. 1994),

gE (Σ) = ( ) ( ) ( )0 , d dEG ′, Σ ′ ′∫ r r r r r r

=
Eν ν

νν

ε Σ ε
−

ε∑ ... (14)

where G(0) is the 0th-order positron Green function
calculated at E = 0. Let:

SE =

( )( )
( )( )
3

E

E

g

g 2

Σ

Σ
... (15)

be the ratio of the strength of the sum of the 3rd-order
polarization diagrams (Fig. 3) to the strength of the 2nd-
order polarization diagram. This quantity SE can then be
used to estimate higher-order contributions to Σ(Γ).
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As a check, we test that the binding energy obtained
using Σ(2 + 3) = Σ(2) + Σ(3) is close to that obtained with
Σ(2) multiplied by 1 + SE, i.e., using

(1 + SE) Σ(2) ≡ Σ(2 + 3′). ... (16)

An estimate of the total self-energy corrected for
the screening effects in the lowest order can then be
obtained as:

( ) ( ) ( )1 .ES 2 Γ + Σ + Σ  ... (17)

As we will see in Section 4, the relative effect of
screening is negative, SE < 0, which means that screening
reduces the magnitude of the self-energy. Similar higher-
order terms in the self-energy expansion will alternate in
sign. Thus, for example, a diagram such as that shown in
Fig. 5, will tend to compensate the lowest-order screening
correction in Fig. 4.

Fig. 5: Higher-order screening correction to the virtual Ps
contribution Σ(Γ), cf. Fig. 4.

Assuming that the sequence of screening corrections
behaves like a geometric series, its effect can approxi-
mately be taken into account by using the screened self-
energy, which we denote Σ(scr):

Σ(scr) = ( ) ( )21

1 ES
Γ Σ + Σ −

.  ... (18)

We expect that this approximation should yield our
best prediction for the binding energy.

3. CALCULATION OF THE POSITRON
ANNIHILATION RATE IN THE BOUND
 STATE

The spin-averaged positron annihilation rate Γa in the
bound state can be expressed in terms of the average
contact electron-positron density ρep (see, e.g., Bereste-
tskii et al. 1982)

Γa = πr2
0cρep, ... (19)

where r0 is the classical radius of the electron, c is the
speed of light, and ρep is given by the integral,

ρep = ( ) 2

0 1 2

1

, , ..., ,

N

N

i =

Ψ∑∫ r r r r

× ( ) 1d ... d di Nδ −r r r r r ... (20)

where Ψ0 (r1, r2, ..., rN , r) is the full (N + 1)-particle
bound-state wavefunction of the N electron coordinates
ri and positron coordinate r.

Figure 6 shows a series of diagrams that would
constitute a complete set of annihilation diagrams for a
one-electron system (Gribakin and Ludlow 2004). Here
ε represents the positron bound-state Dyson orbital

( )0ψ r  normalized as per Eq. (5).

Fig. 6: Many-body theory expansion for the contact electron-
positron density. The solid circle in the diagrams is the delta-

function annihilation vertex, cf. Eq. (20). Diagrams (b), (d) and (e)
are multiplied by two to account for their mirror images.

Diagram (a) in Fig. 6 is the overlap of the positron
and HF electron densities. It represents the independent-
particle approximation to the annihilation vertex with
the contact density:

( )0
epρ = ( ) ( )2 2

0

1

d

N

n

n =

φ ψ∑∫ r r r ... (21)

where φn (r) is the HF orbital of hole n. The first-order
correction, diagram (b), can be thought of as the analogue

of Σ(2), and will be denoted by ( )1
epρ . The diagrams with

the vertex function Γ, e.g., (d) in Fig. 6, are particularly
important in the calculation of ρep, as the annihilation
takes place at a point, and is strongly enhanced by the
Coulomb attraction in the annihilating electron-positron
pair.

The diagrams shown in Fig. 6, represent a basic set
of contributions with a single hole line, which one needs
to consider to obtain a reliable answer. We will denote
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the corresponding density as ( ) ( ) ( )0 ,ep ep ep
∆ ∆ρ + ρ ρ  representing

a correction to the zeroth-order contact density. Similar
to the self-energy diagrams in Fig. 1, they represent the
exact answer for the positron-hydrogen system, provided
the electron and positron intermediate states are calculated
in the field of the bare nucleus (Gribakin and Ludlow
2004). For complex many-electron systems it may be
necessary to account for the effects of electron screening
when calculating ρep. A series of RPA-type annihilation
diagrams is therefore also calculated, see Fig. 7.

Fig. 7: Annihilation diagrams with two Coulomb interactions,

including those of RPA-type,
( )2
epρ . The top line describes the

positron. All the diagrams have equal mirror images.

Similarly, screening corrections to the annihilation
diagrams containing the Γ block can also be considered,
as shown in Fig. 8.

Fig. 8: Screening correction to the annihilation diagram
containing the vertex function Γ.

The diagrams shown in Fig. 7, ( )2
epρ , can be thought

of as next-order corrections to ( )1
epρ , diagram (b) in Fig. 6.

By evaluating the ratio:

C = ( ) ( )2 1/ ,ρ ρep ep ... (22)

an estimate can be made of the total contact density ρep
that includes higher-order corrections in a manner similar
to the self-energy [cf. Eq. (18)],

ρep = ( ) ( )0 1
.

1ep epC
∆ρ + ρ

−
... (23)

4. NUMERICAL IMPLEMENTATION

The Hartree-Fock ground state of the negative ions is
first found. The frozen-core HF Hamiltonian for an
electron or a positron (with and without exchange,
respectively) is then diagonalized in a B-spline basis
(Sapirstein et al. 1996). The corresponding eigenvectors
provide bases of single-particle electron and positron
states, cf. Eq. (7). The spectrum of these states for the
electron includes the negative-energy ground-state
orbitals (hole states) and positive-energy excited states
spanning the electron continuum, see, e.g., Fig. 6 in
Gribakin and Ludlow (2004). The positron basis contains
a number of negative-energy Rydberg states augmented
by the discretized positive energy positron “continuum”.

The effective spanning of the continuum is achieved
by using an exponential radial knot sequence for the
B-splines. For H–, the first 23 eigenstates generated from
a set of 60 splines of order 9 were used, with a box size
of R = 30 au. For the other systems, namely F–, Cl–, Br–

and I–, the first 20 states from a set of 40 splines of order
6 were used with R = 30 au. Only the outermost s and p
subshells were included when calculating the self-energy
and annihilation diagrams. More strongly bound inner-
shell electrons are only weakly perturbed by the positron.
Their contribution to the correlation potential and annihi-
lation vertex is relatively small, and has been neglected.

The diagrammatic contributions to the self-energy and
contact density described in Sections 2 and 3, are calculated
by direct summation over the intermediate electron and
positron states, and the vertex function is found by solving
a linear matrix equation. The use of B-spline bases ensures
quick convergence with respect to the number of states
with a particular angular momentum l included in the
calculation. In addition, the convergence with respect to
the maximum orbital angular momentum included in the
calculation, lmax, also needs to be considered. This is done
by extrapolation through the use of the asymptotic
formulae (Gribakin and Ludlow 2002),

ε0 =
( )

( )
max

0 3

max

,
1/ 2

l A

l
ε −

+
... (24)

and

ρep =
( )

( )
max

max

,
1/ 2

l
ep

B

l
ρ +

+ ... (25)

where ( )max

0
lε  and ( )maxl

epρ  are the bound-state energy and

contact density obtained in a calculation for a given lmax,
and A and B are constants. While the derivation of
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Eqs (24) and (25) is based on perturbation theory
(Gribakin and Ludlow 2002), this asymptotic behaviour
is confirmed by nonperturbative many-body-theory
calculations (Gribakin and Ludlow 2004), and by
configuration-interaction calculations of positron binding
and annihilation in atoms (Mitroy and Bromley 2006).
The constants A and B are found numerically and have
different values for each system studied.

5. RESULTS

5.1. Details of Calculations for PsCl

In this section, a detailed examination of the results for
PsCl will be presented. This should illustrate how the
final results for the other systems were arrived at.

The positron radial wavefunctions for PsCl obtained
by solving the Dyson equation using the ab initio self-
energy Σ(2 + Γ + 3) and the screened self-energy Σ(scr) are
compared to the HF positron wavefunction in Fig. 9. The
inclusion of the attractive correlation potential results in
lower energies of the positron bound states, and hence,
more compact wavefunctions. Otherwise the two Dyson
orbitals are very similar to each other.

Fig. 9: Radial positron wavefunction in PsCl: ---, Hartree– Fock;
— ⋅ —, Dyson orbital calculated using the self-energy Σ(2 + Γ + 3);

—, Dyson orbital obtained with Σ(scr). The HF and Dyson orbitals
on the graph are normalized to unity.

When solving the Dyson equation, the self-energy
and the bound-state energy ε0 were calculated for
a number of maximum orbital angular momenta, e.g.,
lmax = 7 – 10, and then the asymptotic behaviour (24)
was used to find the result for lmax → ∞. This procedure
is illustrated for PsCl in Fig. 10. Extrapolation from
lmax = 10 to infinity increases the binding energy by about
0.5%.

Before the contact density ρep can be determined,
the positron Dyson orbital must be correctly normalized
via Eq. (12). This is achieved by calculating the self-
energy for a number of energies E and finding the lowest
eigenvalue of the matrix (11) at these energies, giving
ε0 (E). This is repeated to self-consistency, E = ε0 (E),
and the gradient ∂ε0 (E)/∂E is found at this point. This is
illustrated for PsCl in Fig. 11.

Fig. 10: Convergence of the binding energy for PsCl as a function
of lmax. Open circles connected by a solid line to guide the eye,

show the energies ε0 calculated using Σ(2 + Γ + 3) at
E = – 0.207 au for lmax = 7 – 10; dashed line shows extrapolation.

Fig. 11: Open circles connected by the solid line show the
positron energy ε0 (E) for PsCl obtained from the Dyson equation
with Σ(2 + Γ + 3), as a function of the energy at which the self-energy
was calculated; dashed line is ε0 = E. The intersection of the two

lines, ε0 (E) = E, gives the binding energy. The gradient of ε0 (E) at
this point is used to calculate the normalization constant a from

Eq. (5).

According to Eq. (25), the electron-positron contact
density ρep converges much more slowly than the energy,
and extrapolation with respect to lmax is much more



J.A. Ludlow and G.F. Gribakin

80 International Review of Atomic and Molecular Physics, 1 (1), January-June 2010

important here. This is illustrated for PsCl in Fig. 12.
Extrapolation beyond lmax = 10 increases the contact
density, and hence, the annihilation rate, by about 30%.

The calculations are performed for a number of
approximations to the self-energy. This enables us to
determine the relative magnitude of various diagrams,
and helps to clarify which physical effects are important
to include so as to obtain an accurate binding energy.
The positron energies obtained for PsCl using different
approximations are given in Table 1.

Fig. 12: Convergence of the electron-positron contact density ρep
for PsCl as a function of lmax. Open circles connected by a solid

line to guide the eye, show values of
( ) ( ) ( )0 2
ep ep ep

∆ρ + ρ + ρ  obtained

for lmax = 7 – 10 in the calculation using ( );2 + Γ + 3Σ  dashed line
shows extrapolation.

Table 1
Positron bound-state energies 0 (in au) for Cl– obtained using

various approximations to the correlation potential

HF Σ(2) Σ(2 + Γ) Σ(2 + 3) Σ(2 + Γ + 3) Σ(2 + 3′) Σ(scr)

– 0.1419 – 0.1855 – 0.2276 – 0.1663 – 0.2072 – 0.1641 – 0.1998

In the HF approximation, the energy of the lowest s
wave positron state is –0.1419 au. The Ps binding energy
(BE) is determined from the positron affinity PA = |ε0|
using Eq. (26), which gives BE = 0.672 eV. This value is
in agreement with the HF results of Cade et al. (1977).
Therefore, PsCl is bound even in the static HF
approximation. However, the self-energy is essential in
determining an accurate binding energy. The second-
order polarization diagram Σ(2) increases the binding
energy, and the inclusion of the virtual Ps formation
contribution Σ(Γ) increases it even further. When we add
the 3rd-order corrections Σ(3) to Σ(2), the binding reduces

noticeably. This means that screening of the Coulomb
interaction is important. In particular, the positron binding
energy of 0.2276 au, obtained with Σ(2 + Γ), becomes equal
to 0.2072 au when the total self-energy Σ(2 + Σ + 3) is used.

However, this calculation neglects the effect of
screening on the virtual Ps-formation contribution Σ(Γ).
Evaluating the magnitude of screening via Eq. (15) we
obtain SE = –0.45. When the effect of screening on Σ(2)

is included via the factor 1 + SE, as per Eq. (16), add
closing parenthesis the corresponding result (labelled
Σ(2 + 3′) is very close to that obtained with Σ(2 + 3) (see
Table 1). The application of approximation (18), denoted
Σ(scr), gives our best estimate of the positron binding
energy, 0.1998 au, corresponding to a Ps binding energy
of 2.245 eV. This value is only slightly below the
completely ab initio value of 2.437 eV obtained using
Σ(2 + Γ + 3).

The contact densities calculated using the Dyson
orbitals obtained with Σ(2 + Γ + 3) and Σ(scr) are quite close,
as are the energies and wavefunctions. We show the
breakdown of the contributions to ρep in Table 2. To
appreciate the scale of densities involved, it is useful to
remember that the contact density of ground state Ps is
ρep (Ps) = 1/8π ≈ 0.0398 au. Note that although Σ(2+Γ+ 3)

gives a slightly larger binding energy and a more compact
positron wavefunction than Σ(scr), the densities obtained
in the former approximation are lower. This is due to a
smaller normalization constant a, which results from a
somewhat stronger energy dependence of Σ(2 + Γ + 3).

Table 2
Breakdown of contributions to the electron-positron

contact density in PsCl (in au)

Approx. ( )0
epρ ( )1

epρ ( )0
epρ  + ( )

ep
∆ρ ( )0

epρ total ρep,

Eq. (23)

Σ(2 + Γ + 3) 0.00841 0.00931 0.04263 – 0.00155 0.04108 –

Σ(scr) 0.00872 0.00964 0.04444 – 0.00162 0.04281 0.03929

The zeroth-order diagram, ( )0
epρ  gives only about 20%

of the total density, with ( )1
epρ  giving another 20% and the

rest coming from higher order diagrams in ( )
ep
∆ρ  (Fig. 6).

As with the self-energy, the inclusion of screening effects

( ( )2
epρ , Fig. 7) reduces the total. However, the effect of

screening on the annihilation vertex is much smaller than
that on the correlation potential, as indicated by the value
of C = –0.17, Eq. (22). Physically, this is related to the
fact that in the annihilation vertex corrections, small
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electron-positron separations dominate. Finally, using
Eq. (23) to account for the effect of screening on the

diagrams in ( )
ep
∆ρ  we obtain our best prediction for the

contact density (last column in Table 2).This corresponds
to the PsCl decay rate of 1.984 ns – 1, which is close to the
spin-averaged decay rate of Ps, 2.01 ns – 1.

5.2 Results for PsH, PsF, PsCl, PsBr and PsI

The final results for PsH, PsF, PsCl, PsBr and PsI obtained
with the correlation potential Σ(2 + Γ + 3) and density

( ) ( ) ( )0 2 ,ep ep ep
∆ρ + ρ + ρ  and Σ(scr) and screened densities from

Eq. (23), are shown in Table 3. In all cases the positron
is bound in the s-wave, all higher lying quasi-bound states
being unstable against Ps emission. Note that the latter
is true for the electron-spin-singlet states, as excited
“unnatural parity” electron-spin-triplet Ps-atom bound
states have been discovered recently for the hydrogen
and the alkalis (Mitroy and Bromley 2007, Mitroy et al.
2007).

The positron binding energy is highest in PsH. This
is a consequence of the small size of the hydrogen atom,
and the small value of its electron affinity, which makes
for strong electron-positron correlation effects. Beyond
PsH the binding energy decreases along the halogen
sequence, mostly due to a stronger positron repulsion
from the positively-charged atomic cores in heavier
systems.

Values of the normalization parameter a in Table 3
give some insight into the structure of these compounds.
PsH has the smallest value of a and its structure therefore
has a large component that describes Ps bound to the
neutral atom (“Ps cluster”), the small electron affinity of
H playing a role in this. PsF has the largest value of a
and its structure can best be described as a positron bound
to F–. Generally, all of the compounds considered have
large values of a. This indicates that a positron bound to
the negative ion is the dominant component of the
structure. This is a consequence of the stable noble-gas-
like structure of the halogen negative ions. In contrast,
positron bound states with the weakly-bound alkali
negative ions have a distinct Ps-atom character (Mitroy
et al. 2002).

It is interesting to compare the positron wave-
functions obtained from the Dyson equation for H– and
the halogen anions. In Fig. 13, the wavefunctions
obtained with the self-energy Σ(2 + Γ + 3) are shown. The
shape of the positron wavefunction is determined by a

balance between the Coulomb and correlation-potential
attraction at large separations, and the Coulomb repulsion
from the nucleus at smaller radii. The positron wave-
functions for PsH and PsF are quite similar. This feature
reflects the high positron binding energy to the H– and
F– ions, and the fact that the corresponding atoms have
the smallest radii. As the positron binding energy
decreases, the positron wavefunction relaxes outwards.
This feature is seen as one moves along the halogen
sequence. One can also observe the increasing
“expulsion” of the positron from the atomic core region,
caused by the Coulomb repulsion from the nucleus.

Table 3
Positron binding energies, normalization constants and contact

densities for PsH and positronium halides

Compound ε0
a au aa ρa

ep ε0
b au ab ρb

ep

PsH – 0.27619 0.714 0.05231 – 0.26338 0.748 0.05037

PsF – 0.22778 0.950 0.04790 – 0.22489 0.958 0.04913

PsCl – 0.20718 0.875 0.04108 – 0.19975 0.894 0.03929

PsBr – 0.20373 0.834 0.03910 – 0.19523 0.868 0.03788

PsI – 0.19805 0.794 0.03707 – 0.18878 0.835 0.03582

a Dyson equation solved using Σ(2 + Γ + 3), density ρep = ρep
(0) + ρep

(∆) + ρep
(2).

b Dyson equation solved using Σ(scr), density ρep from Eq. (23).

Fig. 13: Comparison of the radial Dyson orbitals obtained with
Σ(2 + Γ + 3): solid, PsH; dashed, PsF; long-dashed, PsCl; dot-dashed,
PsBr; dot-double-dashed, PsI. For the purpose of comparison, all

orbitals are normalized to unity.

5.3 Comparison with other Theoretical Results

The positron binding energies can be converted to Ps
binding energies via the simple relation,

BE (PsA) = EA (A) + PA (A–) + E1s (Ps), ... (26)
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where BE (PsA) is the binding energy of a Ps atom to a
generic atom denoted by A, EA (A) is the electron affinity
of the atom, PA (A–) is the positron affinity of the negative
ion and E1s (Ps) = –6.8028 eV is the spin-averaged energy
of Ps. For the electron affinities needed, the values of
0.7542 eV for H, 3.4012 eV for F, 3.6127 eV for Cl,
3.3636 eV for Br and 3.0590 eV for I, have been used
(Andersen et al. 1999).

Annihilation rates Γa in units of ns – 1 are obtained
by dividing the contact density ρep by the conversion
factor 109 s/(πr2

0c) = 0.0198 ns × au. The final Ps binding
energies and positron annihilation rates are shown in
Table 4, and compared with other calculations and
experiment.

Table 4
Ps binding energies and positron annihilation rates for

PsH and positronium halides compared with other
calculations and experiment

Compound Present Results Other Results

Ps BE (eV) Γa (ns – 1) Ps BE (eV) Γa (ns – 1)

PsH 1.118 2.544 1.066126a 2.4361a

1.1 ± 0.2i

PsF 2.718 2.482 2.806b 2.019b

2.70c 1.98c

2.24d

1.98 ± 0.17g

2.838f

2.9 ± 0.5j

PsCl 2.245 1.984 2.350b 1.504b

1.91 ± 0.16e

1.62d

2.0 ± 0.5j

PsBr 1.873 1.913 2.061b 1.371b

1.14 ± 0.11g

1.25h

PsI 1.393 1.809 1.714b 1.254b

0.56h

Theory: aFrolov et al. 1997, bSaito 2005, cMiura and Saito 2003,
dSaito 1995, eSchrader et al. 1992a, fBressanini et al. 1998,
gSchrader et al. 1993, hSaito et al. 1998.

Experiment: iSchrader et al. 1992b, jTao et al. 1969.

For PsH very accurate variational calculations are
available (Frolov et al. 1997). Our many-body theory
calculations are in good agreement with these results,
and both the Ps binding energy and positron annihilation
rate are accurate to within 5%. Because of the small
electron affinity of hydrogen, PsH is more difficult for
many-body theory to treat than larger, more tightly bound

systems with many valence electrons. The results for the
heavier systems should therefore be of similar or possibly
even of greater accuracy than the results for PsH.

For PsF a few theoretical calculations are available,
the present Ps binding energy and positron annihilation
rate agreeing most closely with multi-reference configu-
ration-interaction calculations (Miura and Saito 2003,
Saito 2005). The Ps binding energy is also close to a
diffusion Monte-Carlo calculation by Bressanini et al.
(1998).

The present Ps binding energies for PsCl, PsBr and
PsI are greater than those obtained using a second-order
variational perturbation method (Saito et al. 1995, 1998)
and Monte-Carlo calculations (Schrader et al. 1992a,
1993). Our values are in better agreement with, although
consistently smaller than, multi-reference configuration-
interaction calculations by Saito (2005). The positron
annihilation rates from the present calculation and that
of Saito (2005) are in reasonable agreement, although
our values are consistently higher.

5.4 Comparison with Experiment

For PsH, a direct experimental measurement of the Ps
binding energy (Schrader et al. 1992b) is available. In
this experiment, the reaction e+ + CH4 → CH +

3 + PsH
was studied by detecting the CH+

3 ions. From the
experimentally determined threshold energy for CH+

3
production and the various bond energies, a value of
1.1 ± 0.2 eV was found for the PsH binding energy. This
value is in excellent agreement with theory, though much
less precise.

So far, there have been no direct experimental
measurements of the Ps binding energy for the halogens,
however estimates of the Ps binding energy for PsF and
PsCl have been made (Tao et al. 1969), see Table 4. The
PsCl binding energy was estimated by studying positron
annihilation in Cl2 and Ar-Cl2 gas mixtures. The
appearance of a shoulder in the positron annihilation
lifetime spectrum was attributed to the reaction, Ps + Cl2
→ PsCl + Cl. From a knowledge of the energy at which
this shoulder begins and the Cl2 dissociation energy, a
binding energy of about 2.0 eV was estimated for PsCl.
The estimate of the PsF binding energy was obtained
from the observation that when a hydrogen atom in
benzene is replaced by fluorine, the fraction of positrons
annihilating with the longest lifetime, as ortho-
positronium, was reduced from 40 to 27%. This reduction
was assumed to be due to the reaction, C6H5F + Ps →
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PsF + C6H5. From a knowledge of the threshold energy
and the relevant dissociation energies, a binding energy
of about 2.9 eV was estimated for PsF. The present results
support these early estimates. This can be in part due to
underestimation of the contribution of high orbital
angular momenta by the extrapolation procedure used
by Saito (Mitroy and Bromley 2005).

6. CONCLUDING REMARKS

Traditionally, many-body theory has had more success
in treating purely electronic systems (Chernysheva et al.
1988, Dzuba and Gribakin 1994), than systems that
contain a positron. In particular, earlier many-body theory
calculations relied on very simple (Amusia et al. 1976)
or approximate (Dzuba et al. 1995, 1996) treatments of
the virtual Ps formation contribution to the correlation
potential. However, it is now clear that many-body theory
is capable of giving positron and Ps binding energies and
positron annihilation rates that are accurate to within a
few percent for many-electron systems.

The calculated binding energies and annihilation
rates for positronium halides should serve as a useful
reference for other theoretical calculations and future
experiments. We have also performed an extended
analysis of various contributions to the correlation
potential and contact density, especially of the role of
screening. This will be helpful for the problem of positron
scattering and annihilation on noble-gas atoms. In the
future it will be important to calculate explicitly the
contribution of the RPA-type screening diagrams and also
to move to a fully relativistic framework, particularly
for heavy atoms and ions.
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