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Abstract: Inthisreview, we address computation of diatomic molecular spectra. An overview of thetheory is discussed
based on symmetries of the diatomic molecule. The standard quantum theory of angular momentum fully accounts for
therotational states of the diatomic molecule. Details are elaborated in view of standard versus anomal ous commutators
for generation of asynthetic spectrum. Specific example spectra are presented for selected diatomic moleculesin view
of diagnostic applications in laser-induced optical breakdown spectroscopy.
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1. INTRODUCTION

Although Van Vleck's reversed angular momentum
technique[1] islittle used today, the anomal ous angular
momentum commutators [2] upon which it was based
still appear in current texts[3—5]. Inthisreview, we show
that the standard quantum theory of angular momentum
fully accounts for the rotational states of the diatomic
molecule. We find that the commutators which define
angular momentum are not changed in atransformation
fromalaboratory coordinate systemto onewhich rotates
with the molecul e, and the seemingly anomal ous behavior
of the rotated angular momentum operators J; and N, is
simply the result of their operating on the complex
conjugate of rotation matrix elements.

A rotationisaunitary transformation and, therefore,
preserves the commutation relationships which define
angular momentum. Also, operation of the raising and
lowering operators on standard angular momentum states
isthesameinall coordinate systems connected by proper
rotations. Two approaches are presented to show that
proper rotations preserve the angular momentum
commutators. The frequently applied nonstandard
behavior of the raising and lowering operators on
diatomic statesisillustrated as a result of the operators
acting on elements of therotation operator matrix instead
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of standard angular momentum eigenfunctions. A specific
element of the rotation matrix cannot represent astandard
angular momentum state because the rotation matrix
element carries two magnetic quantum numbers. A
fundamental property of angular momentum is that the
square of the total angular momentum and only one of
its components are constants of motion. An equation
giving operation of the raising and lowering operators
on the rotation matrix is derived. Some matrix elements
of the rotational Hamiltonian are calculated to
demonstrate that standard results can be obtained without
resortingto Van Vleck'sargument [ 1] that the unexpected
behavior of J; and N, is the result of the anomalous
commutators. Specifically, we show below that:

J,

30) = JI(3+1)-Q(Q+1)[3.Q+1) ..()

3. Dy (aBy)

= JI(3+)-a(Q71) D} .. (aBY)
e

Noti ce the molecul e-fixed operator J; actson the state
whose magnetic quantum number Q isreferenced to the
molecule-fixed Z axis as expected, but that J, lowers Q

/ s
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when operating on the complex conjugate of therotation
matrix element while J' raises Q of Dy, (apy).

Thefully standard formalism of angular momentum
is applicable without modification to the theory of
diatomic spectra as will be demonstrated here: (i) An
exact equation for the total angular momentum states of
the diatomic molecule will be derived. (ii) The Hund's
cases (a) and (b) basis sets will be obtained from the
exact equation. (iii) The effectsof J,, J_, J,, and J_ on

Dy ((x By) and itscomplex conjugate will be cal cul ated.

(iv) Some case (a) matrix elements of the rotational
Hamiltonian will be evaluated to show that the standard
angular momentum formalism givesthe accepted resullts.
Also, Honl-London factors for al n-photon a ~ a and
b - btransitions obeying the AS= 0 selection rule will
be calculated. Applicationswill beillustrated in the study
of molecular spectra recorded following laser-induced
optical breakdown.

1.1 Review of Standard and Anomalous Angular
Momentum Commutators

The customary starting point for the quantum theory of
angular momentum is the commutation formula for
the cartesian components of the angular momentum
operator J,
NN (S

where

-3

0 +1i, j, kincyclic order
SIS E—li, i,k notincyclic order .
Oif any indicesequa

The above commutator property usually definesthe
angular momentum operator. Coordinate transformations
leave the angular momentum operator definition
invariant. The conservation law for angular momentum
is fundamental. The definition of angular momentum,
Eq. (3), is, of course, invariant under specifically spatial
translations and rotations. Furthermore, Eq. (3) is
invariant under coordinate inversion and time reversal.

Van Vleck's reversed angular momentum method
starts with Eq. (3) but then utilizes change of sign of i
for angular momentum when a transformation of
coordinates to a system attached to a rotating molecule
is made,

” \
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3.3, = 3.3, = -0, . (4)

Here, the primed index denotes arotated coordinate.
Thisequation containing the reversed sign of i isknown
as Klein's [2] anomal ous commutation formula.

Two approaches are debated in thiswork, namely an
operator and an algebraic approach, without utilizing
Klein'sanomal ous commutation formula. Each approach
begins with the standard commutator formula, Eq. (3).
We point out that in principle, Eq. (4) can be utilized in
building angular momentum theory. However, in ana ogy
to distinction between right- and | eft- handed coordinate
systems, different signs occur. We only use the standard
sign asindicated in Eq. (3) in computation of amolecular
diatomic spectrum [6], i.e., without resorting to use of
Klein's anomaly and Van Vleck's reversed angular
momentum method.

Here, the reversal of the sign in Eq. (3) is briefly
investigated for an unitary and an anti-unitary
transformation. The Euler rotationmatrix isareal, unitary
meatrix (see Eqg. (11) below). The determinate of the Euler
rotation matrix is+1 meaning that the sign of vectorsis
preserved under rotations. A spatial rotation of
coordinatesis a proper transformation.

Conversely, the inversion or parity operator
constitutes an improper rotation—this transformation
cannot be described exclusively in terms of the Euler
angles. However, angular momentumisapseudo or axial
vector, preserving the sign of J under improper rotations.
The parity operator isalso unitary and Eq. (3) ispreserved
by the parity operator. Time reversal (time inversion or
reversal of motion) changesthe sign of J and it complex-
conjugatestheimaginary unit dueto timereversal being
anti-unitary. Thus, Eq. (3) isinvariant under timereversal.
As shown in texts (e.g. Messiah [7]), the time reversal
operator has been designed to be anti-unitary for thevery
purpose of preserving the sign of i in commutation
formulae.

1.2 Effect of Unitary Transformation on Angular
Momentum Commutators

In abrief review we show that unitary transformations
preserve commutation formulae. Consider the operators
A, B, and C which satisfy the commutation formula

AB-BA=iC, .. (5)

and subject these operatorsto the unitary transformation
U.Thatis,

A =UAU’ .. (6)
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A=U"AU, .. (7)

with similar equationsholding for B' and C'. The operator

U isunitary,i.e, U =U"?, so

U'AuU'BU-U'BUU'AU
=U'ABU-U'BAU=iU'CU, ..(8

or

AB -BA =iC .. (9)

The above textbook discussion (e.g. Davydov [8])
confirms that the angular momentum quantum
commutators, Eq. (3), are preserved under unitary
transformations. The Euler rotation matrix, Eq. (11)
below, is easily demonstrated to be unitary.

An algebraic approach is used in the following to
show that the commutator Eg. (3) remainsinvariant when
proper rotation of coordinatesisapplied. Thelaboratory
referenced J is transformed to the rotated coordinate
system by application of the rotation matrix D (ay),

J =D (afy) J, ... (10)

whereq, 3, and y arethe Euler anglesand D (afy) isan
orthogonal matrix whose determinantis+1, Goldstein[9],

D (apy) =

dcosa cosfcosy —sinasiny  sinacosfcosy +cosasiny —sinf3cosyd
E—cosa cospsiny —sinacosy -sinacospsiny+cosacosy snfsiny E
O cosa sinf3 sinasnf cosB O

.. (1)

The Euler angles and the matrix D (afy) used here
are those normally used in quantum mechanics,
Messiah [7], Davydov [8], Goldstein [9], Rose [10],
Brink and Satchler [11], Tinkham [12], Varshalovich et
al. [13], Gottfried [14], Baym [15], and Shore and
Menzel [16]. This same set of Euler anglesis also used
by some authors of books on the theory of diatomic
spectra, Judd [17], Mizushima [18], Brown and
Carrington [3], and Lefebvre-Brion and Field [4].
Evaluation of the angular momentum commutation
formulae in the rotated system of coordinates gives

33, 3.3, = 10,3 . (12)

Thisresult is obtained from Egs (3), (10), and (11).
Thecalculation issimplified somewhat if one notesthat
for an orthogonal matrix the cofactors, i.e., signed minor

determinants, are equal to the corresponding matrix
elements of D (afy) labeled my, i.e., m, isits own
cofactor. For example,

Ny Jy - Jy Jy
=i [(mmy, — m;m,,) (3,J,-J,3) +
(m13n121 - mllmzs) (‘Jx ‘Jz - ‘Jz ‘]x +

(mymy, —mpm,) (3,3,-J,3)1, ... (13)
and since
MMy = MMy, = My,
My3Myy = My My = =My,
My My, = MMy = My, .. (14)

the right side of the Eq. (12) reducesto iJ,.

Comparisonwith VanVleck's[1] treatment of Klein's
anomalous formula, given between his Eqgs (4) and (5),
shows that we do not require reversal of sign in our
approach. The anomalous signin Eq. (4) does not reveal
a novel aspect of the nature of diatomic molecules.
Noteworthy is that the anomal ous commutation formula
remains today atime honored tradition in the theory of
molecular spectra, e.g., see Refs. [2-5, 14-22]. Klein's
anomalous commutators are means by which matrix
elements of various operators in the molecular
Hamiltonian, in particular those expressed in terms of
angular momentum raising and lowering operators, are
obtained.

1.3 Effect of Raising and Lowering Operators on
Standard States |JM ) and on Elements of the
Rotation Matrix Dj,, (aBy)

The angular momentum raising and lowering operators
have the following effects on the standard |JM ) states,

J.|IM) =C, (I, M) [, M £1), .. (15)
where
C.A.M=3(3+1)-M (M +2)
= JaFm)(at™M -1 .. (16)

This genera eguation is of course applicable to the
diatomic molecule. However, as a result of approxi-
mation, one deals with approximate diatomic eigen-
functions. Contained in Van Vleck's method is his
discovery that the above standard results are not directly
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applicable to approximate diatomic eigenfunctions.
Typically two magnetic quantum numbers occur for
approximate diatomic eigenfunctions, M and Q inHund's
case (a) or M and A in case (b).

In modern notation, approximate diatomic angular
momentum states are represented by elements of the
rotation matrix, Dy, (aBy), which carry two magnetic
guantum numbers, one more than allowed by the nature
of angular momentum. Only J? and one of its components,
by usual convention J,, commute with the Hamiltonian.
It will beimportant in our approach to find the effects of
the raising and lowering operators on elements of the
rotation matrix while applying standard theory.

The rotated raising operator, J,,
J =3, +1d, .. (17)

lowersthe Q quantum number on Hund's case (a) states.
See, for example, Van Vleck [1], Judd [17],
Mizushima[18], Freed [19], Kovacs[20], Hougen [21],
Carrington et al.[22], Zareet al. [23], Brown and Howard
[24], and Lefebvre-Brion and Field [4]. Similarly, the
rotated raising operator N, lowersthe /A quantum number
on case (b) kets. Agreement between eigenvalues of
Hamiltonian matrices built using these results and
experimentally measured term values has firmly
established their correctness. Klein's anomalous
commutators are often referenced in debating the reason
why J, lowers Q and why N', lowers A. However, of
interest will be the following equation

J, Do (aBy) = =C. (3.Q) D)) 4=, (aBy)

which will be derived below. Note that J, lowers Q, that
J' raises Q, and that an unexpected minus sign occurs.

.. (18)

The nature of angular momentum does not allow M
and Q both to berigorously good quantum numbers. This
is equivalent to stating that J, and J, do not commute.
According to definition of angular momentum, Eq. (3),
J, does not commute with J, or J, but it is, perhaps, not
obvious that J, and J, fail to commute. One can easily
show, Gottfried [14],

that:
[, 3,1 =isin(B)J, ... (19)
=isin () [-sin(a) J, +cos(a) J] ... (20)

where Jp= 0/0B is the angular momentum operator for
rotation about thefirst intermediate y-axis. Ingeneral, J,

2 \
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and J, do not commute. Thus, Dy , (aBy) cannot
represent a state of angular momentum of amolecule or
any other system. The rotation matrix connects two
different states of angular momentum.

2. ANGULAR MOMENTUM OPERATORS

Angular momentum operator representationsin terms of
Euler angles are elaborated. A rotation provides a
particularly simple way of expressing a component of
angular momentum. The three Euler rotations give the
following three components,

.0
J=—-i— =17, .. (21
. doa (1)
9]
Jy=—-1—, .. (22
=i (22)
.0
Jy:—la =J,. .. (23)

Each of these operators is referenced to a different
coordinate system. That is, J, = J, in the laboratory
system, J, =J,; inthefirst intermediate system, and J,=
J, in the fully rotated system. Applying the first Euler
rotation to the vector operator J resultsin

éjxlg g_cosa sina Ogg]xg
Ebjﬁ_ E sgw( co(s)a 2%%125 . (24)
From this one finds

Jylstz—sinchX+coso( J,, ... (25)

giving Js in terms of the laboratory coordinates of J.
Similarly, using the full rotation matrix, Eq. (11), one
can express J, in laboratory coordinate system,

J' =D (ay) J, ... (26)
J,=J,=cosasinfJ, +
sinasinBJy+cosB N .. (27)

where the substitution J, = J, has been made. Equations
(25) and (27) can be inverted for J, and Jy:

0 cosa o0
o—+ —0

B snp ayH
.. (28)

J ——iIj cosa cot 3 0 -sn
x= ' H da
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J——iDsinacotBi+cos 9 ,sna 0
y™ ' H a0 ap snp oyH
.. (29)

.0
J,=-1—. ... (30
kv (30)

The method in obtaining these results included
evaluation of J, and J, in terms of the laboratory
componentsof J. Similarly, J,., J,,, and J, can be obtained
by expressing J, and J, in terms of the components of J'.
The inverse of the full rotation matrix is applied to the
rotated vector J',

J=D"1(aBy) J = D' (apy) J', .. (31
to find J, in terms of the rotated coordinates of J,
J,=J,=-sinfcosyJ, +
sinBsinny+cosB J, ... (32)

The Euler B-rotation is taken about the first
intermediate y-axis meaning that the first intermediate
and second intermediate y-axes coincide. Thus J, can be
evaluated in fully rotated coordinates by applying the
inverse of the y rotation matrix to J',

EUXZD osy -siny 000300

D]yz Bsmv cosy 05, o (3

H.H o 0 190,80

Jyp =, = Jg, therefore, wefind
JstinyJX,+cosny,. ... (34)

Thetwo equations in two unknowns are inverted as
before. We find for J, and J,,

J, = —i cos cotB—+5| 0 _cosy 00
%C Y Y38 snp oaH
... (35)
J ——|H—smycot[3—+cosyaaB ::;;{E
... (36)

. 0
JZ'= _IW ...(37)

The raising and lowering operators are then

3 =i o cot|3i—ii+—l 90
- H " Faa op snpoyd
. (39)
.0 9 1 a0
= - v t3—+i
Jo= e Hcoﬁay %8 snp ool
... (40)
01 a0
= —ja? t
J e Q:OB y 6[3 smBacxﬁ

.. (41)

Thesegenera resultsalso apply to systems composed
of any number of particles. A modification or better
simplification is required for a system consisting of a
single particle (or two particles, since the two-body
reduction can always be applied to a system of two
particles). The third Euler angle, v, is superfiuous for a
single particle, i.e., d/dy = 0. Choosing the first Euler
angleto be azimuthal angle ¢, and the second Euler angle
to be the polar angle 8, then Egs (28— 30) reduce to the
familiar textbook equations for the angular momentum
operators of asingle particle.

Comparison of Egs (28— 30) with Eqs (35—37) shows
the components of angular momentum are changed by a
coordinate transformation. However, Eq. (3) definesthe
angular momentum in terms of its cartesian components.
This defining relationship among the components
remains invariant, although the individual components
differ. We note that Egs (21), (38), and (39) agree with
Judd's[17] Eq.(1.22), but (23), (40), (41) differ in sign
from Judd's Eq. (1.23) presumingly dueto the use of the
anomalous commutator formula. It appears that Judd
obtained his rotated operators in a manner which
guaranteed they would obey Klein's anomalous
commutation formula.

3. ANGULAR MOMENTUM STATESOFTHE
DIATOMIC MOLECULE

Fundamental symmetriesincluding special geometrical
symmetries of the diatomic molecule allow us to derive
a general equation for the angular momentum states of
the molecule. Inthelaboratory system of coordinatesthe
eigenfunction for the diatomic molecule can bewritten as

constructed using the results above: W ou(RL Ry R RLRY)
.0 o 8 1 a0 = (R, R, .. Ry, R, Ry [NIM) L (42)
J, = —ie E—cotB—+ —t— B . .

da 0B snpdy Here, R, R,, ..., R arethe spatial coordinates of N

...(38) electrons, and R, and Ry, are nuclear coordinates. Jisthe
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guantum number for the total angular momentum that
includes spin, M is the quantum number for the
z-component of J, and n represents all other required
quantum numbers. The symbol |n) reflects the
complexity of the system. Moreover, the angular
momentum quantum numbers J and M contain also
el ectronic and nuclear spins, thereby adding compl exity.

In principle, the total eigenfunction for the system
consisting of the moleculeand theradiation fields should
be constructed so that energy, linear and angular
momentum is formally conserved. However, the
probability of quantum transitionsiscontrolled by matrix
elements connecting initial and final states. The
interaction occurs at someintermediate instant. One can
consider independent states of the molecule and the
radiation field for the initial and final states of the
complete system. The system state at these times is the
product of two independent states. Conservation laws
can be met by requiring that conserved quantities|ost or
gained by the molecule are correspondingly gained or
lost by the radiation field.

3.1 Conservation of Energy

The first fundamental symmetry considered is conser-
vation of energy. Energy isthe quantity conserved under
atrandlation of time. The evolution operator generates a
translation in time of the eigenfunction. Given an
eigenfunction at time t,, one can find the eigenfunction
at some later timet by applying the evolution operator,

(Riy Ry Ryy Ry, Ry U (1, 1,) [nIML)

= (Ry, Ry, Ry, R, Ry [MIME) . (43)

The evolution operator is unitary. Also, U (t, t) = 1.
Conservation of energy and aspects of the evolution
operator are not further discussed here. They were
mentioned to demonstrate the common features they
share with the following conservation laws and their
associated unitary operators.

3.2 Conservation of Linear Momentum

The second fundamental symmetry considered is the
homogeneity of space, that is, conservation of linear
momentum. The total linear momentum is conserved
under atranslation of coordinates. Again, an operator is
devised to produce the spatia translation. For homo-
geneous space, atranslation of coordinatesto some new
origin Ry,

. (44)

30 \
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leave the state of the molecule unchanged. Translation
merely takes us to another vantage point from which to
view the molecule. Aswasthe case of thetimetrandation
operator, the spatial trand ation operator, T (R ), isdefined
by its effect upon the eigenfunction:

(RiyRy o Ry, Ry, R, | T (R,) [nIM)

= (0 e Ty T Ty [NIM), ... (45)

The translation operator is unitary like the unitary
evolution operator. Theunitarity of T (R,) can be explored
by expanding into Taylor seriesthe original eigenfunction
about R,. One finds:

<rl, Ly eeer Tys T Ty [NIM)

= (R, Ry, Ry, Ry, Ry [€7%%/ [0IM)
... (46)

where P isthetotal linear momentum of the molecule. A
comparison of Egs (45) and of (46) yields:

T(Ry) = gRoP/n .. (47)

The Schrodinger (or x-) representation of the adjoint
trandlation operator (in practice, its complex conjugate)
can be interpreted as the total linear momentum
eigenfunction. This can be elucidated by rewriting
Eq. (45) as:

W (R, Ry .y Ry, R, Rb)
1 R (1)

An analogous situation occurs with the temporal
evolution of quantum states. One defines the unitary
evol ution operator by itsaction onthe eigenfunction. Yet
the evolution operator satisfies the time dependent
Schrédinger equation, again showing the interplay of
eigenfunction and operator. A similar connection arises
awhen the rotation of coordinates is considered. A sum
over matrix elements of the rotation operator become
the angular momentum eigenfunctions of the system.

... (48)

Before exploring conservation of angular momentum
wefirst find the optimal origin of coordinates about which
to make rotations. The geometrical symmetry of the
diatomic molecule guides us in finding this optimal
origin, that is, how to choose R,

A geometrical symmetry isimplied for a diatomic
molecule. Thereare precisely two nuclei and their motion

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010

P D F To remove this message, purchase the
product at www.SolidDocuments.com



Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators

can bereduced to that of asingle, fictitious particle having
reduced mass |,

__mm,_
m, +m,

when we choose the location of R, to be the center of
mass of the nuclei, R

V1 ... (49)

cmn?
_ MR, +mR,

Com+m
Thistwo-body reduction replacesthe six coordinates

of R, and R, with the three coordinates of R, and the
three coordinates of r,

r=R,-R,,

cmn

... (51)

the internuclear vector. Note that T' (R.mn) represents
the total linear momentum, not the linear momentum of
only the nuclei. The total eigenfunction can now be
written:

WYWovRLR, Ry, RLRY)

= T" (Ram) W (1 T wons Ty T) .. (52

inwhichtheinterna eigenfunction, g, (rl, Fyyeens Iy r),

isafunction of 3N + 3 spatial coordinates, not the total
3N + 6. Becausewe areinterested herein only theinternal
states of the molecule, the total linear momentum P is

set equal to zero giving T' (R,,,) = 1.

The center of mass of the nuclei isthe origin of the
internuclear vector, r, and this vector, which definesthe
internuclear axis, isan axis of symmetry of the diatomic
molecule. Any axis about which arotationismadeis an
axis of symmetry because space is isotropic, but this
rotation does not necessarily induce adynamical variable.
While it is true that the ratio of nuclear to electronic
massesislarge, meaning that R . nearly coincideswith
the center of total mass and that nuclear motions are
approximately separable from electronic motions, the
motivation for choosing the origin to lie on the
internuclear axis is that the rotation about this axis can
be used as a dynamical variable of the molecule, not the
simplifying approximations which result from the large
ratio of nuclear to electronic masses.

In passing, it is noted that one who regards
conservation of linear momentum as a formal nicety
which can be skipped in practice will miss the mass
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pol arization term which appearsin the Hamiltonian. This
termiscomparable in magnitudeto thetermsdropped in
the Born-Oppenheimer approximation, see for example
Bunker [25] or Bransden and Joachain [26].

3.3 Conservation of Angular Momentum

The third fundamental symmetry considered is the
isotropy of space, that is, conservation of angular
momentum. As before, the operator associated with this
symmetry, the rotation operator R (apy), is defined by
its effect on the eigenfunction:

(1 Ty oo Ty, 1| R (0BY) [NIM)

= (10, T, 1 [NIM) .. (53)

where, for example:
r'=D (aBy) r, .. (54)
with similar equations holding for r,, r,, ..., r . Below,

one will see exampl es showing that the rotation operator
produces translations of angular coordinatesjust likethe
evolution operator translates time and the translation
operator translates Cartesian coordinates. The rotation
operator is unitary like the translation operator, but
angular momentum states are discrete whereas linear
momentum states are continuous. The effect of the
rotation operator can also be expressed as a unitary
transformation of the kets:

(0 Ty ooy Ty, 1| R (0BY) [nIM )
J

= Z <I’1, Fyyews Ty T |n‘]Q> Dau (QBV) (55)

inwhichthe matrix elements of the rotation operator are
defined by:

Doy (aBy) = (IQ|R (aBy)|IM).

The quantum number M represents the z-component
of J, and the quantum number Q represents the
Z-component of J. Equation (53) iswritten in terms of
the eigenfunction <r1', (SO A |nJM > showing rotated
coordinates and the quantum number M which is
referenced to the laboratory coordinate system. Similarly,
Eq. (55) is written in terms of the eigenfunction
(1, 10 ..oy Ty, 1| NJIQ) showing laboratory coordinatesand
the quantum number Q whichisreferenced to therotated

/ =

... (56)
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coordinate system. Equations (53) and (55) serve to
define the rotation operator and its matrix elements.
However, we seek an identity with transparent
interpretation as follows: Operate on the laboratory
eigenfunction with R' (O(By) (i.e., in EQ. (53) replace
therotation operator withitsadjoint) and follow thiswith
operation by R (apy) to obtain:

(1 Ty Ty, 1| NIQ)
= (Z<rl‘, [y, eens Too 1'[NIQ) D3y (OBY) ... (57)

in which the eigenfunctions are now either referenced
purely to the laboratory coordinate system or rotated
coordinate system. This equation reveals the effect on
the eigenfunction from a rotation of coordinates. In
general, therotation of coordinates changesthedirection
of the z-axis and, therefore, a new magnetic quantum
number, Q, appears. A general property of angular
momentumisthat only one of its componentsisaconstant
of themotion. If M isagood quantum number, Q cannot
be. A version of Eq. (57) can bewrittenin which Q isa
good quantum number but then the equation contains a
summation over all M (see EqQ. (71) below).

3.4 Inclusion of Special Symmetry for Diatomic
Molecules

An origin of coordinates lying on the internuclear axis
was chosen above. This choice allows us to take
advantage of the axial symmetry of the molecule.
Equation (57) isvalid for arbitrary Euler rotations. Let
us choose specific Euler angles which simplify the
analysis.

First, wewritetheinternuclear vector, r, in terms of
its spherical polar coordinates:

r=r(roq). ... (68)

The Euler angle a and the azimuthal angle @ both
represent counterclockwise rotations about the z-axis. If
@isthe azimuthal angle of theinternuclear vector in the
laboratory coordinate system, after the Euler rotation a
theazimuthal anglehasanew value ¢ = ¢—a. Weare at
liberty to choosethe value of a whichmakes@ =0 (i.e.,
o =¢). Similarly, weareat liberty to choose 3 = 6. These
choicesforcethe Z-axisto coincide with theinternucl ear
axis. The Euler anglesa and 3 now serve dual purposes.
They are parameters of the rotation of coordinates and
they are dynamical variables of the molecule.

= \
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Second, we model the two nuclel as point masses
lying on the internuclear axis. Hence, the third Euler
angle, y, cannot represent motion of the nuclei. If itisto
be made a dynamical variable, y must be made an
electronic coordinate. This is accomplished by letting
the third Euler angle y describe rotation of one of the
electrons, say the Nth electron, about the internuclear
axis [27]. The molecule-fixed cartesian coordinates x,
Yy 2, of the Nth electron are replaced by the cylindrical
coordinates o', X', &',

XN = Py €0S (X), ... (59)
Yn = Py SN (X ... (60)
Zy =y, ... (61)

where, because the laboratory rotation x,, and y are both
counterclockwise rotations about the same axis,

Xn=Xn— Vs .. (62)

we may choose x, =V, that is, choose X' = 0.
Equation (57) can now be rewritten to read

(1, by, ey Ty, 1| NIM)

J

- Z<rl' Iy Tog 10 PLT [Ny ) Dy (OUBY) ... (63)

wherethe scaler r istheinternuclear distance. Primeson
p and { have been dropped for the same reason that the
internuclear distancer is not primed. Liker, p are { are
scalar invariants, distances whose value is the same in
all coordinate systems. The ket |nm> is not an angular
momentum state but it is a function of J and Q. This
behavior is analogous to the radial eigenfunction of the
hydrogen atom which is not an angular momentum
eigenfunction but does depend on the orbital angular
momentum quantum number | (see Eq. (64) below).

With the chosen Euler angles, the rotation matrix
element has replaced the angular momentum eigen-
function of the diatomic molecule. The eigenfunction
<r1' Ty T _1, PCT [NIQ) is 0t afunction of the Euler

angles. If oneof thenuclei and all but one of the electrons
were removed from Eq. (42), then following the above
procedure one would find, separating off the electron's

spin:
(rnim) = (r|nl)
= qu (rl)YIm (GZB,(p=C().

2+1 .
~2c Dro(aBO)

... (64)
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The change of variables indicated in Eq. (58) is
familiar, and 6 and ¢ are dynamical variables of the
problem. We demonstrated above that y can be made a
dynamical variable of the diatomic molecule. The
difference between Egs (64) and (63) is that y is not
relevant to aspherically symmetric hydrogenic atom, but
yisrelevant tothe axially symmetric diatomic molecule.

3.5 Inclusion of Spin

In accord with standard diatomic notation, Eg. (63) should
be written in terms of the quantum numbers F, M. and
Q_ that inthe standard notation represent thetotal angular
momentum,

F=R+L+S+T, ... (65)

where R is the total orbital angular momentum of the
nuclel, L isthe total orbital angular momentum of the
electron, Sisthetota spin of the electrons, and T isthe
total spin of the nuclei. However, Eq. (63) follows the
usage of Jinthe literature of angular momentum where
J, and M, and Q represent the total angular momentum.
Derivation of Eq. (63) was based on theisotropy of space,
and therefore holds only if J, M, and Q represent the
total angular momentum including all orbital momenta
and all spins. The electronic and nuclear spinin Eq. (63)
can be revealed by application of the inverse Clebsch-
Gordan series to the rotation matrix element, Eq. (80)
bel ow.

3.6 Rotated Diatomic Angular Momentum States

Equation (63) showsthat the Euler angles are dynamical
variables of the diatomic:

(nry .. ryr[nIM)

= <rlr2 Ty _1 PLraBy [nIM) ... (66)

If analysis of the molecule had begun with the
introduction of generalized L agrangian coordinates, the
Euler angles @, 6, and x would have been introduced first
as dynamical variables and only later as parameters of
coordinaterotation. Thisroute takes oneto the equation:

<rlr2 Ty PLT @BX [NIM )

Q

= zﬂ<r1' yFyyen I, PCr @ O'X

nJQ) Dy, (aBy),

... (67)

where
¢ =0-aq, ... (68)
0 =0-4, ... (69)
X =X-V. ... (70)

Choosingo=a,0=p,andx =ymakes@ =0 =¥’
= 0 thereby removing all angular dependence from

(F'y, ¥y, PCT |y on theright side of Eq. (63)

Multiplication of Eq. (67) by D3,, (apy) and
summation over M yields:

<r’lr’2 M PLr @ e [nIQ)
J

= 2 <r1r2 e Ty_1 LT @OX|nIM) D, (aBy).
-

- (71)

The appearance of Dj,, (aBy) on the right side

indicatesthat it originated from application of theinverse
of the rotation operator to the | eft side:

<r’lr’2 Iy PLr @O [NIQ)

= <I"1I"2 Py PLr @B | R (aBy)|nJQ>

- (72)
= (1,1, 12y P21 Q8K | R (-y, =B, —a)[nIQ),
.. (73)
where
d=0+y, . (74)
6 =0+, ... (75)
v =x+a. .. (76)

Asbefore, wechoosea, 3, and yto removeall angular
dependence from the eigenfunction of the right side of
Eq. (71).

Placing the observer in the molecular coordinate
systemisareversal of motion. Becausethe order of Euler
rotationsabout different axesissignificant (e.g. R (ay)
z R (Bay)), reversal of motion also requires that the
order in which the rotations are taken be reversed, i.e,,
R (aBy)~t =R (-v, B, —a). Because the signs of the
Euler angles are inverted, one might mistakenly believe
that the sign in front of i in Eqgs (21-23) would also be
inverted thusimplying that the anomal ous commutators

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010 / 33

5 SaLID

P D F To remove this message, purchase the
product at www.SolidDocuments.com



Christian G. Parigger and James O. Hornkohl

hold in the molecule-fixed coordinate system, but reversal
of motion (also called timereversal) is anti-unitary. The
timereversal operator isnormally written asthe product
of a unitary operator and the complex conjugation
operator. Thusin reversal of motion, changesinthesigns
of the Euler anglesare canceled by complex conjugation
and the sign in front of i in Eqs (21-23) remains
unchanged.

3.7 Discussion of Angular Momentum States of the
Diatomic Molecule

The significance of Eq. (63) is that it shows the total
angular momentum is exactly separable in the diatomic
eigenfunction. The separation isindependent of the Born-
Oppenheimer approximation andispossiblefor very few
simple systems such as the diatomic molecule and
hydrogen/hydrogenic atom (see Eq. (64) above).

The summation over Q in Eq. (63) insuresthat only
one magnetic quantum number, M, is good. An element

of the D-matrix isacombination of the states |IM ) and

|3Q) . Nooneterminthesum ontheright side of Eq. (63)
contains a standard angular momentum eigenfunction.
.[3Q)=c, (3Q)|3,Q+1) indeed
holds, but thisresult isnot directly applicable to Hund's
case (a) or (b) eigenfunctions. For the diatomic molecule
the angular momentum eigenfunction is replaced by a
sum over matrix elements of the rotation operator,
guantitieswhich are obvioudy definedin terms of angular
momentum but which, nevertheless, are not angular
momentum eigenfunctions because J, and J,

do not commute. Symbols such as Y, (aBy) and

(aBy|IMQ) (viz. symbols for Hunds case (a) basis

states) are best avoided due to difficulties of reconciling
these symbol swith theformalism and physics of angular
momentum.

The a- and y-dependence of the rotation matrix
element is clear,

Do (BY)
possibly tempting one to take the matrix element apart

=e™dy, (B)e™™, - (77)

and put the y term with the eigenfunction <rl' My ..ryr ‘ n>
calling the result the “electronic-vibrational’ eigen-
function. There is historical precedence for separating
the total eigenfunction into electronic, vibrational, and
rotational parts, but this scheme does not fit the present,
thusfar exact, formulation. From a practical standpoint,

” \
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one who takes the rotation matrix element apart for
example to utilize formulae of the kind:

J- II D, (aBy) Dk, (aBy)sinp

daddezzi—Tié

1 mm, 6‘*’1‘*’26]1]2

.. (78)

and the inverse Clebsch-Gordan series:
jl j2
Dy, (aBy)= Z Z (limjomy | M) (,00,1,00, 3Q)
—h M="]
W="]1 W=7,
Dy, (aBY) Dy, (aBy),
may find that it isindeed best to not separate the D-matrix.

.. (79)

4. HUND'SCASE (a) AND (b) BASISFUNCTIONS

The Hund's case (a) eigenfunction is constructed from
Eg. (63) by omitting the summation over Q and re-
normalizing the result through use of Eq. (78):

(L, Ty Ty, T[NIM QS

2 +1
o (k-

|S=) Dy, (aBY)

It isnoteworthy that the Hund case (@) basisidentifies
both M and Q as so-called good quantum numbers. The
value of a basis may be associated with the ease in
accurately constructing the eigenfunction. However, one
must realize that Hund's case (a) eigenfunction does not

contain standard |JM) or [JQ) angular momentum

states. Application of theraising and lowering operators
to case (@) eigenfunction will reveal nonstandard results.

Koo PLr|n)

.. (81)

TheHund case (a) basis cannot rigorously represent
a physical state. However, let us investigate its
approximate physical significance of a model for a
diatomic molecule where nuclear spin effects are not
important. For this model, the total angular momentum
is the sum of L the electronic orbital, S the electronic
spin, and R the nuclear orbital angular momenta.

J=L+R+S ... (82)

or

J=N+S, .. (83)
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where N isthetotal orbital angular momentum:
N=L +R. ... (84)

This last equation, a definition, is further debated:
According to the reversed angular momentum method,
N and R are examples of momenta which are expected
to obey Klein's anomal ous commutation formulae but L
obeysthe standard formulae. The operator which rotates
N when applied to the right side of the above equation
must treat L and R differently. Construction of such an
operator maybe difficult. In comparison, aformalismin
which al angular momentum operators obey the same
commutator formulae in all coordinate systems is
preferred and offers simplicity.

A Clebsch-Gordan expansion of the D-matrix of
Eq. (81) resultsin:

(1 Ty, Ty, T[NIMQSE)

2] +1
= /W <r1'r2'...r,'q_lpZ r‘n>|SZ> x

N S

Z NZ (NM SM4|IM) (NASE|IQ)
Mi==n ME==s

Dy » (aBy) Dy; (aBy)

Both (N M SM|IM ) and (NASZ|JQ) are Clebsch-
Gordon coefficients. The quantum numbers M and Mg
are referenced to laboratory coordinates, A and  to
rotating coordinates. The Clebsch-Gordan coefficients
vanish unlessM = M + Mgand Q = A + X. The two D-
matricesin thisequation havethe same set of Euler angles
meaning that N and S are perfectly coupled in accord
with the definition of Hund's case (a).

.. (85)

The Hund case (a) basis is a useful physical
approximation only when the coupling N and Sis strong.
Conversely, for weak (or negligibly small) coupling
between N and S, construction of another basis set is
indicated.

In the absence of e ectronic and nuclear spin, Eq. (63)
reads:

Construction of the Hund case (b) basis begins by
omitting the summation over A and re-normalizing the
result. Subsequently, the spinless equation is multiplied
by the electronic spin states |SMs) and the appropriate
Clebsch-Gordan coefficient. Finally the result is summed
over all laboratory magnetic quantum numbers:

(rr, ..1,r|nIM NA'S)

= /%ﬂjl <r1'r2' Ty, pC r‘n) |S%)

S N

NZ Z (NM SM¢|aM) DY, (aBy),

.. (87)

giving Hund's case (b) eigenfunction. States constructed
from Clebsch-Gordan coefficients give a diagonal
representation of the Hamiltonian only if thetwo angular
momenta that are combined do not interact. Such non-
interaction would perfectly match Hund's case (b) (viz.
weak or negligibly small electronic spin-orbit
interaction).

As one expresses the spin ket in the rotated system:

S

|swg) = Z|sz> DS, (asBsys).

... (89)

where ag, B4, and y are the Euler angles for rotation of
the electronic spin, the following comparison between
cases (a) and (b) can be made: For Hund's case (a) the
spin Euler angles are equal to the Euler angles describing
the rotati ons of the molecule, but for Hund's case (b) the
spin angles are completely independent of a, 3, and y.

Consequently, incase (b), Dy, (aBy)and Dy, (a Bsys)
cannot be combined in a Clebsch-Gordan contraction to
build the |JM ) states asin case (a).

Transformations between cases (a) and (b) are
accomplished using:

2N +1

(10T [ANM ) (ab) = |55 (NASZ[IQ), .. (89)
N
= i SR N* 2J +1
- ;(n ry..Ty, LT ) DY, (aBy)... (86) (bla) = \[5x 77 (NASZ|IQ), . (90)
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These coefficients can be obtained from Eqgs (78),
(80), (81), and (87).

5. EFFECTS OF RAISING AND LOWERING
OPERATORS ON D}, , (aBY)

Operation of theJ,, J , J,, and J’ on the D-matrices will
be explored here. Substitution of Eq. (63) into Eq. (15)
gives:

J

J, Z(rl'rz' Ty PC 1 |n)|ST) DY, (aBy)

J

=C, (J, M)‘Z<rl'r2' N S Y4 r‘n)

|SZ) D10 (4BY)

We mentioned above that the eigenfunction

.. (92)

<rl' PR N § ‘ n> has no angular dependence. Therefore, J,

acts only on the D-matrix elements. A term by term
comparison of the left and right sides of Eq. (91) gives:

J, DY, (aBy)
=C, (3, M) Dy, (aBy)

One recognizesthat operation by J, gives an expected
result when applied to the complex conjugate of the
D-matrix. The complex conjugate of the D-matrix is
given by:

.. (92)

Dy, (apy) = (-)" D2, o (aBy), .. (93)
from which one finds:
J.Djq (aBy)

=3,(-)" "D -a (aBy)

= (-)""7C. (3, -M) D2,.. g (aBy)

= -C_(3,M) D}, o (aBy). .. (94)

In the last step, we used C, (J, - M) = C_(J, M) as
can beinferred from Eq. (16). Thisresult illustrates that
J, lowers M-states when applied to the rotation matrix
elements.

Note also the minus sign which appearsin front of
C_(J, M). Similarly:
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J.D;q (aBy)
= —C. (3,M)D}..0 (aBY)

Now we investigate action of J, and J'. Rotation of
coordinates is a unitary transformation; therefore, if
Eq. (15) holdsin the laboratory coordinate system then:

... (95)

J;

<r1',r2‘,...,rk' nJQ)

=C, (J,Q)<rl', S rk"nJ,Qil>, ... (96)

must hold in the rotated coordinate system. Substituting
Eq. (71) into both sides of Eq. (96) and proceed as before
allows usto obtain Eq. (18) and

J; Djyq (aBy)
=C, (3,Q) Dy q.: (aBY) . (97)

Equations (18), (94), (95), and (97) are found by
consistently applying standard commutator algebra. In
comparison, Van Vleck's reversed angular momentum
method would utilize different identitiesthat are difficult
to reconcile with our standard formalism. Note the
unexpected signs and apparent anomalies in these
equations (e.g., in Eq. (95) one seesthat J_raises M and
introduces a minus sign). These results lose their
mysterious appearance as one recalls that the D-matrix
elements cannot be treated as standard angular
momentum el gen-functions. Standard angular momentum
eigenfunctions show only one but not two magnetic

quantum numbers. Expressionslike J; Dy, (aBy) show

several levelsof complexity: First, complex conjugation
isin effect prompting considerations whether the roles
of theraising and lowering operator are reversed. Second,
and more importantly, there are two magnetic quantum
numbers present. The Appendix shows that evaluation
of commutators acting on Dy, (apy) matrix elements
rather than on physical eigenfunctions generatesrelations
that one might very well label “anomalous”.

6. THE BORN-OPPENHEIMER
APPROXIMATION
Electronic, <riré...rN_lpZ|n>, and vibrational, (r|v,),

basis functions are defined, and Eq. (63) isrewritten to
read:
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Do (0BY), .. (98)
where a primed summation indicates summation over
discrete states and integration over continuum states. The
first order Born-Oppenheimer approximation (e.g., see
Ref. [26]) consists of omitting the summations over n
and v,. A different electronic eigenfunction is obtained
for each value of the internuclear distance. That is, the
€l ectronic eigenfunction becomes a parametric function
of r, which is denoted by writing the electronic

eigenfunction as <rl' Iy . Ty_y PG T|NY,

(11,1 1| nIM)

J

_ {Z<rl'r2‘...r,'q_1pz; rny(r|v,)

Dino (aBy) ... (99)

The physical justification for omitting the
summations from Eq. (99) is, of course, the smallness of
the electronic mass in comparison to the nuclear mass.
In the following the subscript on v, will be dropped.

7. HUND CASE (a) HAMILTONIAN MATRIX
ELEMENTS

Some example matrix elements of the Hamiltonian are
calculated here. Standard results will be obtained by
application of standard methods. One of the many terms
in the Hamiltonian is the kinetic energy of rotation of
the nuclei, called the rotational Hamiltonian:

h

_ 2
ot = 4tepr? R

=B(r) R?

=B(r)(J-L -9

+ L+L— + L—L+ + Liv +Sl2 —

D:Z
=B(r)%]

(L +oL +20,L,) -
(5 +3:5 +23,8,)

r(Ls+Ls+2,8)E . (100

Thetransformation of the operatorsfrom laboratory
to molecular coordinates is made because our
investigation of the fundamental and geometrical
symmetries has shown that the eigenfunctionispartially
separable in the rotating coordinate system, Eq. (63). A
pragmatic comment isthat cal culation of matrix elements
is easier if the operators are expressed in the rotating
coordinate system. Reversal of motion is not an issue
here. The steps shown above merely take advantage of
invariance under proper rotations.

A familiar result from Van Vleck's reversed angular
momentum method would be that operation of J,.S on
Hund's case (a) eigenfunction lowersboth Q and . One's
intuition might be that J, should be araising operator, or
if J, indeed lowers Q, why then is S not a raising
operator? The operator J, lowers Q when applied to the
case (a) eigenfunction, Eq. (44), because the operator
acts on the complex conjugate of the D-matrix element,
not on the angular momentum ket |JQ) . The operation
of S iscompletely standard, it lowers 3 because it acts

on the spin ket | SZ) . Thus, the contribution of J, S to
the Hamiltonian matrix is B,C_(J, Q) C_(S %) d (Q,
Q +1). The minus sign carried by J.S' in Eq. (100) is
canceled by the minus sign in Eq. (18).

The phase conventions, i.e., sign conventions, which
are part of Van Vleck's method produce the same results
but for different reasons. Equation (18) is usualy not
used in Van Vleck's method, leading to occurrence of
the opposite sign on the right. Usually a minus sign is
introduced for the action of S, on the standard ket | ST.) .
The introduction of this particular sign leads, in turn, to
the same result as found with standard methods. In
passing we note that Eqs (12) and (13) of Zareet al. [23]
carry opposite signs, but these two opposite signs cancel
out in the matrix elements of the product J, S .

Lefebvre-Brion and Field [4] use the standard phase
convention for the spin kets, their Eq. (2.4.28). The spin-
rotation interaction:
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Hig=Y() NLB
=y(n(@-9 5
=y(r) (I B-9)

[0,S +J.S; C
) e SZE (101)
contains terms having the same dependenceon Jand S
astermsin the rotational Hamiltonian above (y (r) isthe
spin-rotation parameter, not the third Euler angle). Here

J'S contributes —%yvc_ (J.9)c (s z)s(Q+1).

This result agrees with Zare et al. [23] but shows a
disparity in sign with Lefebvre-Brion and Field [4]. The
latter authors show the opposite sign on the right side of
Eqg. (18), see their Egs (1.3.23) and (1.3.25). When
combining the oppasite sign with sign conventions for
the spin kets, it maybe difficult to find correct signs for
the spin-rotation matrix elements.

8. DIATOMIC LINE STRENGTHS

The probability of a quantum transition is controlled by
the absolute square of the transition moment of the
operator responsible for the transition. The line strength
is defined by:

S(n"]l’ n"JH)

J a
DIPR UL
==y mF==y

(hry..ryr)[n" 3" M )‘2 .. (102)
in which T® is the I-th component of the irreducible
tensor operator of degree k. A single prime denotes the
upper state, double primes the lower. As Eg. (63) holds

for the diatomic eigenfunction:

T, (rry...ryr)

k

= ZTA(” (55 r-.pZr) D (aBy). ... (103)

must hold for any diatomic operator. Hund's case (a)
transition moments of the components of the operator
T® are therefore given by:
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J2r+1 (207 +7)
- 81

k

Z(n’v’ T (rl’ ..ty PC r)

In"v)8(s,8")8(s,5") x

2n m 2m
I II D;/ o (aBy) Dy (aBy) Diy'o
0 0 Jo

(aBy)sinB do dp dy ... (104)
The integral over the Euler anglesis the product of
two Clebsch-Gordan coefficients:

(nam T (hry...ryr)[n"3"M ") =

k
Z{n’v’m(k) (rl' r ..ty pC r)

V") (3" MK "M ) (37 QKA| '),
... (105)

Forming the absol ute square of the transition moment
followed by summation over all M' and M" gives the
diatomic line strength in Hund's case (a) basis,

S (nlvl\]11 n"\/"J")
=5, (NV, n"v") S(J, I, ... (106)

where the electronic-vibrational strength is given by:
S, (n'v, n"v")

2" +1
2)'+1

= [(v[Rye (r)v)[ ... (107)
The €electronic transition moment is:
Ry (1) = (n’|TA(k) (rl’ I ...r,'q;r)|n">. ... (108)

Theremaining factor, S(J', J"), istheHund'scase (a)
Honl-London or rotational line strength factor:

S(I,J) =21 +1) (3"Q"k,Q -Q"|IQ)
5(s,s")8(z',2"). .. (109)

With aTaylor's expansion of the electronic transition
moment,
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Ry (N =a,+ar+ar’+..,
and the Franck-Condon factor:
I 2
q (v, v = (vV|v),
and the r-centroids:

vt

r(v,v") = <
)= ey

are defined, the electronic-vibrational strength can be
written as a product of two factors:

s, (v, n"v)

.. (112)

= |ay +a (v, v') +af; (v, v') + |2
q(v,v").
The electronic strength is defined:
S(n'v, n"Vv")

.. (113)

= [a, +af; (v, v") +af (v, v) + .. ..(119)
The overall diatomic line strengthiis:
S(n,\,’\],, n"V"JH)
=S (v, nv)q(,Vv')S(J,J). ..(115)
The diatomic line strength is the product of the
electronic strength, S, (n'v', n"v"), and two unitless
strength factors, the Franck-Condon factor, q (v, V'), and
the Honl-London factor, S (J', J"). In molecules with
small reduced mass and, therefore, large B (), rotational
distortion of the vibrational states gives the Franck-
Condon factors and r-centroids J' and J” dependence.

Equation (115) still holdsinthe Hund's case (b) basis
but the Ho6nl-London factor is now given in terms of a
Wigner 6j-symbol rather than a Clebsch-Gordan
coefficient:

S, )= (27 +1) (2N" + 1) (27" + 1)
<N"/\"k, N — /\"|NI/\I>2

BNI O e, o
%J'N'B 5(s,s").

Calculation of the total line strength requires,
obviously, knowledge of the irreducible tensor
responsiblefor thetransition. However, the Honl-L ondon
factor depends only on the degree k of the tensor. For
k=1, Eqs(109) and (116) give Honl-London factorsfor

.. (116)

electric dipoletransitions. For k=2, they givethefactors
for two-photon or Raman transitions, and so forth.

The Hund's cases (a) and (b) eigenfunctions will
rarely diagonalize the Hamiltonian to a satisfactory
degree of approximation. Since efficient numerical
algorithms exist for the diagonalization of symmetric
matrices, thisis a not a serious impediment. Diagona-
lization of the Hamiltonian gives the terms values and
the orthogonal matrix U which diagonalized the
Hamiltonian. The equation for the line strength must be
modified to include the matrices U’ and U"” but thisis
again aminor complication.

Of practical concern is the determination of term
combinationsthat will indeed |ead to spectral linesfrom
the upper termvaluesfor afixed J and lower term values
for afixed J'. A well established procedure for finding
allowed and forbidden lines is based on invoking parity
selection rules. An algorithm which correctly gives the
parity of states for many different types of states is
difficult to devise. However, the parity selection rules
can, with no loss of rigor, be replaced by the angular
momentum selection rules. A transition for which the
Honl-London factor vanishesisforbidden. One usingthe
parity selection rules must write anew computer program
each time he encounters a different type of transition.
One using the angular momentum selection rules can
write a single program which handles a wide variety of
transitions, see Hornkohl et al. [28].

9. APPLICATIONSIN STUDY OF MOLECULAR
SPECTRA FOLLOWING LASER-INDUCED
OPTICAL BREAKDOWN

Sel ected diatomic molecular spectraare computed by use
of so-called line strength files. For isolated molecular
transitions, the Franck-Condon factors are found by
solving theradia Schrddinger equation numerically, and
the Honl-London factors are obtained by numerical
diagonalization of the rotational and fine-structure
Hamiltonian, Hornkohl et a. [28]. For the computation
of a diatomic spectrum, typically the temperature and
spectral resolution is specified, and in turn, non-linear
fitting routines may be used to infer the spectroscopic
temperature. For a recent summary on laser-induced
breakdown spectroscopy seeMiziolek et al. [29], Cremers
and Radziemski [30], and Singh and Thakur [31].

Of interest are diatomic molecules such asAlO, C,,
CH, CN, CrF, N} 1% Neg, N, 1% Pos, N, 2" Pos, NH,
NO, OH. Accurate line-strength files are in use for
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spectroscopic analysis with the so-called Boltzmann S i
Equilibrium Spectrum Program (BESP), Hornkohl and
Parigger [32]. The BESP is used, for example, in the T i
analysis of laser-induced optical breakdown and laser- £ 075
induced fluorescence. 2
, : 2
Figures 1-7 show selected synthetic spectrafor OH, =
AlO, C, Swan band overview (pro-gression) and selected 4
sequences Av = 0, = 1 of the C, Swan Band, and CN, E
respectively. & 0.25
1r b ' |
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_é" 0.75 |- Fig. 3: Computed spectrum of C, swan & — &M, band
g progression, T = 8000 K, for a spectral resolution of
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£ 05 L of the C, progression
)
= 1
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Fig. 1. Computed spectrum of the A2Z . X2 uv band of OH, o
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- M | - T - R
— Wavelength [nm]
gEacs Fig. 4: C,swan oM — &M, band Av = +1 sequence,
T=8000K, AV =6 cm?
i |
2 075 | - ir
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Fig. 2. Computet spectrum of the AIO B2Z* - X 2%+ band, Wavelength [nm]

T = 4000 K, for aspectral resolution of AV = 32 cmr . Indicated  Fig. 5: C, swan d® - &M band Av = 0 sequence, T = 8000 K,
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Fig. 7: Computed spectrum of the CN violet B2Z* . X23* band,
T = 8000 K, for a spectra resolution of AV = 6 cm* of the
Av = 0 sequence

These synthetic spectra have been instrumental in
the analysis of laser-induced optical break-down and in
general analysis of diatomic molecular spectra, see for
example Refs. [33 - 40].

10. CONCLUSIONS

Thefully standard methods allow usto compute diatomic
spectra. A proper rotation of coordinates preserves the
commutation formulae which are customarily taken to
be the definition of angular momentum. We compared
and contrasted our approach with Klein's anomalous
angular momentum commutators and Van Vleck's
method. The fully standard method yields results
consistent with experimental data. An essential point is

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010

5 SaLID

that individual matrix elements of the rotation operator
are not standard angular momentum eigenfunctions. Itis
then clear why the standard formulae for the raising and
lowering operators do not apply to Hund'scasesaand b
diatomic eigenfunctions. The standard formulae must be
replaced by equationswhich givethe effects of theraising
and lowering operators on the complex conjugate of
D-matrix elements. The rigorous treatment of diatomic
molecular spectra allows us to accurately compute
molecular spectra. Applications include diagnostics of
mol ecul ar recombination spectrafollowing laser-induced
optical breakdown.

APPENDIX A
APPLYING ANGULAR MOMENTUM
COMMUTATORSTO ROTATION
MATRIX ELEMENTS

General relationsfor commutators are typically obtained
by applying the commutator to an abstract ket describing
a physical state. Alternatively, in the Schrédinger
representati on the commutators are obtained by applying
differential operatorsto physical eigenfunctions. Inthis
appendix we demonstrate how two anomalous results
may occur. We apply [J,, Jy] and [Jy, Jy] to the rotation
matrix elements Dj,, (apy).

The commutator [J,., Jy] is evaluated using:

[3e 3,1 = %(J; +3), (9 - J'_)E

=-—4d,J;
SHLH
and Eq. (18) which for convenience is repeated here

J. Dy, (aBy)

- (AD)

= _Ci (‘]’ Q) DI\J/I*,Qﬂ (GBY)

Successive application of the operatorsintherotated
frame of reference yields the intermediate result:

. (A2)

—% 9, 3. EDy, (aBy)
= —i—Z(Q (3,2-1C (3,0)-

C_(3,Q+1)C, (3,9)) Dy, (aBy) ... (A3)
which after inserting (compare Eq. (16))
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C.(3 Q)= 359Q)(3xQ+1), . (A4) 9,. 3, ED;y, (aBy) =0. .. (A8)
leads to Again, one might be tempted to fal sely concludethat
b Eq. (A8) isageneral commutator relation that also applies
B 3, HDir (aBy) to angular momentum states.
= —iQD}, (apy). .. (A5)

It might be tempting to conclude the anomalous
commutator relations, Eq. (4), in the rotated molecular
framefromthisidentity (Eq. (A5)). However, therotation
matrix elements contain two quantum numbers M and
Q, one too many to represent a physical eigenfunction.
Similarly, [Jy, Jy] isevaluated using:

(1]
(2]
(3]
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