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Abstract: In this review, we address computation of diatomic molecular spectra. An overview of the theory is discussed
based on symmetries of the diatomic molecule. The standard quantum theory of angular momentum fully accounts for
the rotational states of the diatomic molecule. Details are elaborated in view of standard versus anomalous commutators
for generation of a synthetic spectrum. Specific example spectra are presented for selected diatomic molecules in view
of diagnostic applications in laser-induced optical breakdown spectroscopy.
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1. INTRODUCTION

Although Van Vleck's reversed angular momentum
technique [1] is little used today, the anomalous angular
momentum commutators [2] upon which it was based
still appear in current texts [3–5]. In this review, we show
that the standard quantum theory of angular momentum
fully accounts for the rotational states of the diatomic
molecule. We find that the commutators which define
angular momentum are not changed in a transformation
from a laboratory coordinate system to one which rotates
with the molecule, and the seemingly anomalous behavior
of the rotated angular momentum operators J′± and N ′± is
simply the result of their operating on the complex
conjugate of rotation matrix elements.

A rotation is a unitary transformation and, therefore,
preserves the commutation relationships which define
angular momentum. Also, operation of the raising and
lowering operators on standard angular momentum states
is the same in all coordinate systems connected by proper
rotations. Two approaches are presented to show that
proper rotations preserve the angular momentum
commutators. The frequently applied nonstandard
behavior of the raising and lowering operators on
diatomic states is illustrated as a result of the operators
acting on elements of the rotation operator matrix instead

of standard angular momentum eigenfunctions. A specific
element of the rotation matrix cannot represent a standard
angular momentum state because the rotation matrix
element carries two magnetic quantum numbers. A
fundamental property of angular momentum is that the
square of the total angular momentum and only one of
its components are constants of motion. An equation
giving operation of the raising and lowering operators
on the rotation matrix is derived. Some matrix elements
of the rotational Hamiltonian are calculated to
demonstrate that standard results can be obtained without
resorting to Van Vleck's argument [1] that the unexpected
behavior of J′± and N ′± is the result of the anomalous
commutators. Specifically, we show below that:

J J′
± Ω = ( ) ( )1 1 , 1J J J+ − Ω Ω ± Ω ± ... (1)

( )*J
MJ D′

± Ω αβγ

= ( ) ( ) ( )*
, 11 1 J

MJ J D Ω+ − Ω Ω αβγ
... (2)

Notice the molecule-fixed operator J′± acts on the state
whose magnetic quantum number Ω is referenced to the
molecule-fixed z′ axis as expected, but that J+ lowers Ω
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when operating on the complex conjugate of the rotation

matrix element while J′– raises Ω of ( )*J
MD Ω αβγ .

The fully standard formalism of angular momentum
is applicable without modification to the theory of
diatomic spectra as will be demonstrated here: (i) An
exact equation for the total angular momentum states of
the diatomic molecule will be derived. (ii) The Hund's
cases (a) and (b) basis sets will be obtained from the
exact equation. (iii) The effects of J+ , J–, J′+, and J′– on

( )J
MD Ω αβγ  and its complex conjugate will be calculated.

(iv) Some case (a) matrix elements of the rotational
Hamiltonian will be evaluated to show that the standard
angular momentum formalism gives the accepted results.
Also, Hönl-London factors for all n-photon a ↔ a and
b ↔ b transitions obeying the ∆S = 0 selection rule will
be calculated. Applications will be illustrated in the study
of molecular spectra recorded following laser-induced
optical breakdown.

1.1 Review of Standard and Anomalous Angular
Momentum Commutators

The customary starting point for the quantum theory of
angular momentum is the commutation formula for
the cartesian components of the angular momentum
operator J,

JiJj – JjJi = iijkJk ... (3)

where

ijk =

1 , , in cyclic order

1 , , not in cyclic order

0 if any indices equal

i j k

i j k

+
−


.

The above commutator property usually defines the
angular momentum operator. Coordinate transformations
leave the angular momentum operator definition
invariant. The conservation law for angular momentum
is fundamental. The definition of angular momentum,
Eq. (3), is, of course, invariant under specifically spatial
translations and rotations. Furthermore, Eq. (3) is
invariant under coordinate inversion and time reversal.

Van Vleck's reversed angular momentum method
starts with Eq. (3) but then utilizes change of sign of i
for angular momentum when a transformation of
coordinates to a system attached to a rotating molecule
is made,

Ji′Jj′ – Jj′Ji′ = –i∈i′j′k′Jk′ ... (4)

Here, the primed index denotes a rotated coordinate.
This equation containing the reversed sign of i is known
as Klein's [2] anomalous commutation formula.

Two approaches are debated in this work, namely an
operator and an algebraic approach, without utilizing
Klein's anomalous commutation formula. Each approach
begins with the standard commutator formula, Eq. (3).
We point out that in principle, Eq. (4) can be utilized in
building angular momentum theory. However, in analogy
to distinction between right- and left- handed coordinate
systems, different signs occur. We only use the standard
sign as indicated in Eq. (3) in computation of a molecular
diatomic spectrum [6], i.e., without resorting to use of
Klein's anomaly and Van Vleck's reversed angular
momentum method.

Here, the reversal of the sign in Eq. (3) is briefly
investigated for an unitary and an anti-unitary
transformation. The Euler rotation matrix is a real, unitary
matrix (see Eq. (11) below). The determinate of the Euler
rotation matrix is +1 meaning that the sign of vectors is
preserved under rotations. A spatial rotation of
coordinates is a proper transformation.

Conversely, the inversion or parity operator
constitutes an improper rotation— this transformation
cannot be described exclusively in terms of the Euler
angles. However, angular momentum is a pseudo or axial
vector, preserving the sign of J under improper rotations.
The parity operator is also unitary and Eq. (3) is preserved
by the parity operator. Time reversal (time inversion or
reversal of motion) changes the sign of J and it complex-
conjugates the imaginary unit due to time reversal being
anti-unitary. Thus, Eq. (3) is invariant under time reversal.
As shown in texts (e.g. Messiah [7]), the time reversal
operator has been designed to be anti-unitary for the very
purpose of preserving the sign of i in commutation
formulae.

1.2 Effect of Unitary Transformation on Angular
Momentum Commutators

In a brief review we show that unitary transformations
preserve commutation formulae. Consider the operators
A, B, and C which satisfy the commutation formula

AB – BA = iC, ... (5)

and subject these operators to the unitary transformation
U. That is,

A′ = U AU
† ... (6)
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and

A = U
†
A′U, ... (7)

with similar equations holding for B′ and C′. The operator

U is unitary, i.e., U
†  = U – 1, so

U
†
A′UU

†
B′U – U

†
B′UU

†
A′U

= U
†
A′B′U – U

†
B′A′U = i U

†
C′U, ... (8)

or

A′B′ – B′A′ = iC′ ... (9)

The above textbook discussion (e.g. Davydov [8])
confirms that the angular momentum quantum
commutators, Eq. (3), are preserved under unitary
transformations. The Euler rotation matrix, Eq. (11)
below, is easily demonstrated to be unitary.

An algebraic approach is used in the following to
show that the commutator Eq. (3) remains invariant when
proper rotation of coordinates is applied. The laboratory
referenced J is transformed to the rotated coordinate
system by application of the rotation matrix D (αβγ),

J′ = D (αβγ) J, ... (10)

where α, β, and γ are the Euler angles and D (αβγ) is an
orthogonal matrix whose determinant is +1, Goldstein[9],

D (αβγ) =

cos cos cos sin sin sin cos cos cos sin sin cos

cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos

α β γ − α γ α β γ + α γ − β γ 
 − α β γ − α γ − α β γ + α γ β γ
 

α β α β β 

... (11)

The Euler angles and the matrix D (αβγ) used here
are those normally used in quantum mechanics,
Messiah [7], Davydov [8], Goldstein [9], Rose [10],
Brink and Satchler [11], Tinkham [12], Varshalovich et
al. [13], Gottfried [14], Baym [15], and Shore and
Menzel [16]. This same set of Euler angles is also used
by some authors of books on the theory of diatomic
spectra, Judd [17], Mizushima [18], Brown and
Carrington [3], and Lefebvre-Brion and Field [4].
Evaluation of the angular momentum commutation
formulae in the rotated system of coordinates gives

Ji′Jj′ – Jj′Ji′ = i∈i′j′k′Jk′ ... (12)

This result is obtained from Eqs (3), (10), and (11).
The calculation is simplified somewhat if one notes that
for an orthogonal matrix the cofactors, i.e., signed minor

determinants, are equal to the corresponding matrix
elements of D (αβγ) labeled mij, i.e., mij is its own
cofactor. For example,

Jx′ Jy′ – Jy′ Jx′

= i [(m12m23 – m13m22) (Jy Jz – Jz Jy) +

(m13m21 – m11m23) (Jx Jz – Jz Jx) +

(m11m22 – m12m21) (Jx Jy – Jy Jx)], ... (13)
and since

m12m23 – m13m22 = m31,

m13m21 – m11m23 = –m32,

m11m22 – m12m21 = m33, ... (14)

the right side of the Eq. (12) reduces to iJz ′.

Comparison with Van Vleck's [1] treatment of Klein's
anomalous formula, given between his Eqs (4) and (5),
shows that we do not require reversal of sign in our
approach. The anomalous sign in Eq. (4) does not reveal
a novel aspect of the nature of diatomic molecules.
Noteworthy is that the anomalous commutation formula
remains today a time honored tradition in the theory of
molecular spectra, e.g., see Refs. [2– 5, 14– 22]. Klein's
anomalous commutators are means by which matrix
elements of various operators in the molecular
Hamiltonian, in particular those expressed in terms of
angular momentum raising and lowering operators, are
obtained.

1.3 Effect of Raising and Lowering Operators on

Standard States JM  and on Elements of the

Rotation Matrix ( )*
Ω αβγJ

MD

The angular momentum raising and lowering operators

have the following effects on the standard JM  states,

J JM± = C± (J, M) , 1J M ± , ... (15)

where

C± (J, M) = ( ) ( )1 1J J M M+ − ±

= ( ) ( )1J M J M± − ... (16)

This general equation is of course applicable to the
diatomic molecule. However, as a result of approxi-
mation, one deals with approximate diatomic eigen-
functions. Contained in Van Vleck's method is his
discovery that the above standard results are not directly
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applicable to approximate diatomic eigenfunctions.
Typically two magnetic quantum numbers occur for
approximate diatomic eigenfunctions, M and Ω in Hund's
case (a) or MN and Λ in case (b).

In modern notation, approximate diatomic angular
momentum states are represented by elements of the

rotation matrix, ( )*J
MD Ω αβγ , which carry two magnetic

quantum numbers, one more than allowed by the nature
of angular momentum. Only J2 and one of its components,
by usual convention Jz, commute with the Hamiltonian.
It will be important in our approach to find the effects of
the raising and lowering operators on elements of the
rotation matrix while applying standard theory.

The rotated raising operator, J′+,

J′+ = Jx′ + iJy′ ... (17)

lowers the Ω quantum number on Hund's case (a) states.
See, for example, Van Vleck [1], Judd [17],
Mizushima [18], Freed [19], Kovacs [20], Hougen [21],
Carrington et al. [22], Zare et al. [23], Brown and Howard
[24], and Lefebvre-Brion and Field [4]. Similarly, the
rotated raising operator N ′+ lowers the Λ quantum number
on case (b) kets. Agreement between eigenvalues of
Hamiltonian matrices built using these results and
experimentally measured term values has firmly
established their correctness. Klein's anomalous
commutators are often referenced in debating the reason
why J′+ lowers Ω and why N ′+ lowers Λ. However, of
interest will be the following equation

( )*J
MJ D′

± Ω αβγ  = ( ) ( )*
,, Ω 1− Ω αβγ 

J
MC J D ... (18)

which will be derived below. Note that J′+ lowers Ω, that
J′– raises Ω, and that an unexpected minus sign occurs.

The nature of angular momentum does not allow M
and Ω both to be rigorously good quantum numbers. This
is equivalent to stating that Jz and Jz′ do not commute.
According to definition of angular momentum, Eq. (3),
Jz does not commute with Jx or Jy, but it is, perhaps, not
obvious that Jz and Jz′ fail to commute. One can easily
show, Gottfried [14],

that:

[Jz, Jz′] = i sin (β) Jβ ... (19)

= i sin (β) [– sin (α) Jx + cos (α) Jy] ... (20)

where Jβ = ∂/∂β is the angular momentum operator for
rotation about the first intermediate y-axis. In general, Jz

and Jz ′ do not commute. Thus, ( )*
,

J
MD Ω αβγ  cannot

represent a state of angular momentum of a molecule or
any other system. The rotation matrix connects two
different states of angular momentum.

2. ANGULAR MOMENTUM OPERATORS

Angular momentum operator representations in terms of
Euler angles are elaborated. A rotation provides a
particularly simple way of expressing a component of
angular momentum. The three Euler rotations give the
following three components,

Jα = – i
∂

∂α
 = Jz, ... (21)

Jβ = – i
∂

∂β
, ... (22)

Jγ = – i
∂

∂γ
 = Jz′. ... (23)

Each of these operators is referenced to a different
coordinate system. That is, Jα = Jz in the laboratory
system, Jβ = Jy1 in the first intermediate system, and Jγ =
Jz ′ in the fully rotated system. Applying the first Euler
rotation to the vector operator J results in

1

1

1

x

y

z

J

J

J

 
 
 
  

=

cos sin 0

sin cos
x

y

z

J

J

J

α α   
  − α α 0   

0 0 1   
... (24)

From this one finds

Jy1
= Jβ = – sin α Jx + cos α Jy, ... (25)

giving Jβ in terms of the laboratory coordinates of J.
Similarly, using the full rotation matrix, Eq. (11), one
can express Jγ in laboratory coordinate system,

J′ = D (αβγ) J, ... (26)

Jz′ = Jγ = cos α sin β Jx +
sin α sin β Jy + cos β Jα, ... (27)

where the substitution Jz = Jα has been made. Equations
(25) and (27) can be inverted for Jx and Jy:

Jx =
cos

cos cot sin ,
sin

i
 ∂ ∂ α ∂− − α β − α + ∂α ∂β β ∂γ 

... (28)
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Jy =
sin

sin cot cos ,
sin

i
 ∂ ∂ α ∂− − α β + α + ∂α ∂β β ∂γ 

... (29)

Jz = i
∂−

∂γ
. ... (30)

The method in obtaining these results included
evaluation of Jβ and Jγ in terms of the laboratory
components of J. Similarly, Jx′, Jy′, and Jz′ can be obtained
by expressing Jα and Jβ in terms of the components of J′.
The inverse of the full rotation matrix is applied to the
rotated vector J′,

J = D – 1 (αβγ) J′ = †D (αβγ) J′, ... (31)

to find Jα in terms of the rotated coordinates of J,

Jz = Jα = – sin β cos γ Jx′ +
sin β sin γ Jy′ + cos β Jγ. ... (32)

The Euler β-rotation is taken about the first
intermediate y-axis meaning that the first intermediate
and second intermediate y-axes coincide. Thus Jβ can be
evaluated in fully rotated coordinates by applying the
inverse of the γ rotation matrix to J′,

2

2

z

x

y

z

J

J

J

 
 
 
  

=

cos sin 0

sin cos
x

y

z

J

J

J

′

′

′

γ − γ   
  γ γ 0   

0 0 1   
... (33)

Jy2 = Jy1 = Jβ, therefore, we find

Jβ = sin γ Jx′ + cos γ Jy′. ... (34)

The two equations in two unknowns are inverted as
before. We find for Jx′ and Jy′

Jx′ =
cos

cos cot sin ,
sin

i
 ∂ ∂ γ ∂− γ β + γ − ∂γ ∂β β ∂α 

... (35)

Jy′ =
sin

sin cot cos ,
sin

i
 ∂ ∂ γ ∂− − γ β + γ + ∂γ ∂β β ∂α 

... (36)

Jz′ = i
∂−

∂γ
... (37)

The raising and lowering operators are then
constructed using the results above:

J+ =
1

cot ,
sin

iie iα  ∂ ∂ ∂− − β + + ∂α ∂β β ∂γ 
... (38)

J– =
1

cot ,
sin

iie i− α  ∂ ∂ ∂− − β − + ∂α ∂β β ∂γ 
... (39)

J+′ =
1

cot ,
sin

− γ  ∂ ∂ ∂− β + − ∂γ ∂β β ∂α 
iie i

... (40)

J–′ =
1

cot .
sin

γ  ∂ ∂ ∂− β − − ∂γ ∂β β ∂α 
iie i

... (41)

These general results also apply to systems composed
of any number of particles. A modification or better
simplification is required for a system consisting of a
single particle (or two particles, since the two-body
reduction can always be applied to a system of two
particles). The third Euler angle, γ, is superfiuous for a
single particle, i.e., ∂/∂γ = 0. Choosing the first Euler
angle to be azimuthal angle φ, and the second Euler angle
to be the polar angle θ, then Eqs (28– 30) reduce to the
familiar textbook equations for the angular momentum
operators of a single particle.

Comparison of Eqs (28–30) with Eqs (35–37) shows
the components of angular momentum are changed by a
coordinate transformation. However, Eq. (3) defines the
angular momentum in terms of its cartesian components.
This defining relationship among the components
remains invariant, although the individual components
differ. We note that Eqs (21), (38), and (39) agree with
Judd's [17] Eq .(1.22), but (23), (40), (41) differ in sign
from Judd's Eq. (1.23) presumingly due to the use of the
anomalous commutator formula. It appears that Judd
obtained his rotated operators in a manner which
guaranteed they would obey Klein's anomalous
commutation formula.

3. ANGULAR MOMENTUM STATES OF THE
DIATOMIC MOLECULE

Fundamental symmetries including special geometrical
symmetries of the diatomic molecule allow us to derive
a general equation for the angular momentum states of
the molecule. In the laboratory system of coordinates the
eigenfunction for the diatomic molecule can be written as

ΨnJM (R1, R2, ..., RN , Ra, Rb)

= 1 2, , ..., , ,N a b nJMR R R R R ... (42)

Here, R1, R2, ..., RN are the spatial coordinates of N
electrons, and Ra and Rb are nuclear coordinates. J is the
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quantum number for the total angular momentum that
includes spin, M is the quantum number for the
z-component of J, and n represents all other required

quantum numbers. The symbol n  reflects the
complexity of the system. Moreover, the angular
momentum quantum numbers J and M contain also
electronic and nuclear spins, thereby adding complexity.

In principle, the total eigenfunction for the system
consisting of the molecule and the radiation fields should
be constructed so that energy, linear and angular
momentum is formally conserved. However, the
probability of quantum transitions is controlled by matrix
elements connecting initial and final states. The
interaction occurs at some intermediate instant. One can
consider independent states of the molecule and the
radiation field for the initial and final states of the
complete system. The system state at these times is the
product of two independent states. Conservation laws
can be met by requiring that conserved quantities lost or
gained by the molecule are correspondingly gained or
lost by the radiation field.

3.1 Conservation of Energy

The first fundamental symmetry considered is conser-
vation of energy. Energy is the quantity conserved under
a translation of time. The evolution operator generates a
translation in time of the eigenfunction. Given an
eigenfunction at time t0, one can find the eigenfunction
at some later time t by applying the evolution operator,

( )1 2 0 0, , ..., , , | ,N a b U t t nJMtR R R R R

= 1 2, , ..., , ,N a b nJMtR R R R R ... (43)

The evolution operator is unitary. Also, U (t, t) = 1.
Conservation of energy and aspects of the evolution
operator are not further discussed here. They were
mentioned to demonstrate the common features they
share with the following conservation laws and their
associated unitary operators.

3.2 Conservation of Linear Momentum
The second fundamental symmetry considered is the
homogeneity of space, that is, conservation of linear
momentum. The total linear momentum is conserved
under a translation of coordinates. Again, an operator is
devised to produce the spatial translation. For homo-
geneous space, a translation of coordinates to some new
origin R0:

ri = Ri – R0, ... (44)

leave the state of the molecule unchanged. Translation
merely takes us to another vantage point from which to
view the molecule. As was the case of the time translation
operator, the spatial translation operator, T (R0), is defined
by its effect upon the eigenfunction:

( )1 2 0, , ..., , , |N a b T nJMR R R R R R

= 1 2r , r , ..., r , r , rN a b nJM . ... (45)

The translation operator is unitary like the unitary
evolution operator. The unitarity of T (R0) can be explored
by expanding into Taylor series the original eigenfunction
about R0. One finds:

1 2r , r , ..., r , r , rN a b nJM

= 0 /
1 2, , ..., , , | i

N a b e nJM− ⋅R PR R R R R 

... (46)

where P is the total linear momentum of the molecule. A
comparison of Eqs (45) and of (46) yields:

T (R0) ≡ 0 /ie− ⋅R P  ... (47)

The Schrödinger (or x –) representation of the adjoint
translation operator (in practice, its complex conjugate)
can be interpreted as the total linear momentum
eigenfunction. This can be elucidated by rewriting
Eq. (45) as:

ΨnJM (R1, R2, ..., RN , Ra, Rb)

= ( ) ( )†
0 1 2 br , r , ..., r , r , rψR nJM N aT ... (48)

An analogous situation occurs with the temporal
evolution of quantum states. One defines the unitary
evolution operator by its action on the eigenfunction. Yet
the evolution operator satisfies the time dependent
Schrödinger equation, again showing the interplay of
eigenfunction and operator. A similar connection arises
a when the rotation of coordinates is considered. A sum
over matrix elements of the rotation operator become
the angular momentum eigenfunctions of the system.

Before exploring conservation of angular momentum
we first find the optimal origin of coordinates about which
to make rotations. The geometrical symmetry of the
diatomic molecule guides us in finding this optimal
origin, that is, how to choose R0.

A geometrical symmetry is implied for a diatomic
molecule. There are precisely two nuclei and their motion
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can be reduced to that of a single, fictitious particle having
reduced mass µ,

µ = a b

a b

m m

m m+
. ... (49)

when we choose the location of R0 to be the center of
mass of the nuclei, Rcmn,

R0 = Rcmn =
a a b b

a b

m m

m m

+
+

R R
. ... (50)

This two-body reduction replaces the six coordinates
of Ra and Rb with the three coordinates of Rcmn and the
three coordinates of r,

r = Ra – Rb, ... (51)

the internuclear vector. Note that †T  (Rcmn) represents
the total linear momentum, not the linear momentum of
only the nuclei. The total eigenfunction can now be
written:

ΨnJM (R1, R2, ..., RN , Ra, Rb)

= ( ) ( )†
cmn 1 2r , r , ..., r , rψR nJM NT ... (52)

in which the internal eigenfunction, ( )1 2r , r , ..., r , rψ nJM N ,

is a function of 3N + 3 spatial coordinates, not the total
3N + 6. Because we are interested here in only the internal
states of the molecule, the total linear momentum P is

set equal to zero giving †T  (Rcmn) = 1.

The center of mass of the nuclei is the origin of the
internuclear vector, r, and this vector, which defines the
internuclear axis, is an axis of symmetry of the diatomic
molecule. Any axis about which a rotation is made is an
axis of symmetry because space is isotropic, but this
rotation does not necessarily induce a dynamical variable.
While it is true that the ratio of nuclear to electronic
masses is large, meaning that Rcmn nearly coincides with
the center of total mass and that nuclear motions are
approximately separable from electronic motions, the
motivation for choosing the origin to lie on the
internuclear axis is that the rotation about this axis can
be used as a dynamical variable of the molecule, not the
simplifying approximations which result from the large
ratio of nuclear to electronic masses.

In passing, it is noted that one who regards
conservation of linear momentum as a formal nicety
which can be skipped in practice will miss the mass

polarization term which appears in the Hamiltonian. This
term is comparable in magnitude to the terms dropped in
the Born-Oppenheimer approximation, see for example
Bunker [25] or Bransden and Joachain [26].

3.3 Conservation of Angular Momentum

The third fundamental symmetry considered is the
isotropy of space, that is, conservation of angular
momentum. As before, the operator associated with this
symmetry, the rotation operator (αβγ), is defined by
its effect on the eigenfunction:

( )1 2r , r , ..., r , rN nJMαβγ

= 1 2r , r , ..., r , rN nJM′ ′ ′ ′ ... (53)

where, for example:

r′ = D (αβγ) r, ... (54)

with similar equations holding for r1, r2, ..., rN . Below,
one will see examples showing that the rotation operator
produces translations of angular coordinates just like the
evolution operator translates time and the translation
operator translates Cartesian coordinates. The rotation
operator is unitary like the translation operator, but
angular momentum states are discrete whereas linear
momentum states are continuous. The effect of the
rotation operator can also be expressed as a unitary
transformation of the kets:

( )1 2r , r , ..., r , rN nJMαβγ

= ( )1 2r , r , ..., r , r

J

J
N

J

nJ DΩΜ

Ω = −

Ω αβγ∑ ... (55)

in which the matrix elements of the rotation operator are
defined by:

( )JDΩΜ αβγ  = ( )J JMΩ αβγ . ... (56)

The quantum number M represents the z-component
of J, and the quantum number Ω represents the
z′-component of J. Equation (53) is written in terms of

the eigenfunction 1 2r , r , ..., r , rN nJM′ ′ ′ ′  showing rotated

coordinates and the quantum number M which is
referenced to the laboratory coordinate system. Similarly,
Eq. (55) is written in terms of the eigenfunction

1 2r , r , ..., r , rN nJΩ  showing laboratory coordinates and
the quantum number Ω which is referenced to the rotated
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coordinate system. Equations (53) and (55) serve to
define the rotation operator and its matrix elements.
However, we seek an identity with transparent
interpretation as follows: Operate on the laboratory

eigenfunction with ( )† αβγ  (i.e., in Eq. (53) replace
the rotation operator with its adjoint) and follow this with

operation by ( )αβγ  to obtain:

1 2r , r , ..., r , rN nJΩ

= ( )*
1 2r , r , ..., r , r ,

J

J
N

J

nJ D′ ′ ′
ΩΜ

Ω = −

′ Ω αβγ∑  ... (57)

in which the eigenfunctions are now either referenced
purely to the laboratory coordinate system or rotated
coordinate system. This equation reveals the effect on
the eigenfunction from a rotation of coordinates. In
general, the rotation of coordinates changes the direction
of the z-axis and, therefore, a new magnetic quantum
number, Ω, appears. A general property of angular
momentum is that only one of its components is a constant
of the motion. If M is a good quantum number, Ω cannot
be. A version of Eq. (57) can be written in which Ω is a
good quantum number but then the equation contains a
summation over all M (see Eq. (71) below).

3.4 Inclusion of Special Symmetry for Diatomic
Molecules

An origin of coordinates lying on the internuclear axis
was chosen above. This choice allows us to take
advantage of the axial symmetry of the molecule.
Equation (57) is valid for arbitrary Euler rotations. Let
us choose specific Euler angles which simplify the
analysis.

First, we write the internuclear vector, r, in terms of
its spherical polar coordinates:

r = r (rθφ). ... (58)

The Euler angle α and the azimuthal angle φ both
represent counterclockwise rotations about the z-axis. If
φ is the azimuthal angle of the internuclear vector in the
laboratory coordinate system, after the Euler rotation α
the azimuthal angle has a new value φ′ = φ – α. We are at
liberty to choose the value of α which makes φ′ = 0 (i.e.,
α = φ). Similarly, we are at liberty to choose β = θ. These
choices force the z′-axis to coincide with the internuclear
axis. The Euler angles α and β now serve dual purposes.
They are parameters of the rotation of coordinates and
they are dynamical variables of the molecule.

Second, we model the two nuclei as point masses
lying on the internuclear axis. Hence, the third Euler
angle, γ, cannot represent motion of the nuclei. If it is to
be made a dynamical variable, γ must be made an
electronic coordinate. This is accomplished by letting
the third Euler angle γ describe rotation of one of the
electrons, say the N th electron, about the internuclear
axis [27]. The molecule-fixed cartesian coordinates x′N,
y′N, z′N of the N th electron are replaced by the cylindrical
coordinates ρ′, χ′, ξ′,

x′N = ρ′N cos (χ′N), ... (59)

y′N = ρ′N sin (χ′N), ... (60)

z′N = ζ′N , ... (61)

where, because the laboratory rotation χN and γ are both
counterclockwise rotations about the same axis,

χ′N = χN – γ, ... (62)

we may choose χN = γ, that is, choose χ′N = 0.
Equation (57) can now be rewritten to read

1 2r , r , ..., r , rN nJM

= ( )*
1 2 1r , r , ..., r , ,

J

J
N J M

J

r n D′ ′ ′
− Ω Ω

Ω = −

ρζ αβγ∑  ... (63)

where the scaler r is the internuclear distance. Primes on
ρ and ζ have been dropped for the same reason that the
internuclear distance r is not primed. Like r, ρ are ζ are
scalar invariants, distances whose value is the same in

all coordinate systems. The ket Jn Ω  is not an angular
momentum state but it is a function of J and Ω. This
behavior is analogous to the radial eigenfunction of the
hydrogen atom which is not an angular momentum
eigenfunction but does depend on the orbital angular
momentum quantum number l (see Eq. (64) below).

With the chosen Euler angles, the rotation matrix
element has replaced the angular momentum eigen-
function of the diatomic molecule. The eigenfunction

1 2 1r , r , ..., r ,N r nJ′ ′ ′
− ρζ Ω  is not a function of the Euler

angles. If one of the nuclei and all but one of the electrons
were removed from Eq. (42), then following the above
procedure one would find, separating off the electron's
spin:

1r nlm = 1r nl
2 1

4

l +
π ( )*

0 0l
mD αβ

= ( ) ( )1 ,ψ θ = β φ = αnl lmr Y . ... (64)
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The change of variables indicated in Eq. (58) is
familiar, and θ and φ are dynamical variables of the
problem. We demonstrated above that γ can be made a
dynamical variable of the diatomic molecule. The
difference between Eqs (64) and (63) is that γ is not
relevant to a spherically symmetric hydrogenic atom, but
γ is relevant to the axially symmetric diatomic molecule.

3.5 Inclusion of Spin

In accord with standard diatomic notation, Eq. (63) should
be written in terms of the quantum numbers F, MF and
ΩF that in the standard notation represent the total angular
momentum,

F = R + L + S + T, ... (65)

where R is the total orbital angular momentum of the
nuclei, L is the total orbital angular momentum of the
electron, S is the total spin of the electrons, and T is the
total spin of the nuclei. However, Eq. (63) follows the
usage of J in the literature of angular momentum where
J, and M, and Ω represent the total angular momentum.
Derivation of Eq. (63) was based on the isotropy of space,
and therefore holds only if J, M, and Ω represent the
total angular momentum including all orbital momenta
and all spins. The electronic and nuclear spin in Eq. (63)
can be revealed by application of the inverse Clebsch-
Gordan series to the rotation matrix element, Eq. (80)
below.

3.6 Rotated Diatomic Angular Momentum States

Equation (63) shows that the Euler angles are dynamical
variables of the diatomic:

1 2r r ... r rN nJM

= 1 2 1r r ... rN r nJM− ρζ αβγ ... (66)

If analysis of the molecule had begun with the
introduction of generalized Lagrangian coordinates, the
Euler angles φ, θ, and χ would have been introduced first
as dynamical variables and only later as parameters of
coordinate rotation. This route takes one to the equation:

1 2 1r r ... rN r nJM− ρζ φθ χ

= ( )*
1 2 1r , r , ..., r , ,J

N M

J

r nJ D′ ′ ′

Ω

− Ω

= − Ω

ρζ φ′θ′ χ′ Ω αβγ∑
... (67)

where

φ′ = φ – α, ... (68)

θ′ = θ – β, ... (69)

χ′ = χ – γ. ... (70)

Choosing φ = α, θ = β, and χ = γ makes φ′ = θ′ = χ′
= 0 thereby removing all angular dependence from

1 2 1r r ... r N Jr n− Ω′ ′ ′ ρζ  on the right side of Eq. (63).

Multiplication of Eq. (67) by DJ
MΩ (αβγ) and

summation over M yields:

1 2 1r r ... r N r nJ−′ ′ ′ ρζ φ′θ′ χ′ Ω

= ( )1 2 1r r ... r ,

J

J
N M

M J

r nJM D− Ω

= −

ρζ φ θ χ αβγ∑
... (71)

The appearance of ( )J
MD Ω αβγ  on the right side

indicates that it originated from application of the inverse
of the rotation operator to the left side:

1 2 1r r ... r N r nJ−′ ′ ′ ρζ φ′θ′χ′ Ω

= ( )1
1 2 1r r ... r |N r nJ−

−′ ′ ′ ρζ φθχ αβγ Ω

... (72)

= ( )1 2 1r r ... r | , , ,N r nJ−′ ′ ′ ρζ φθχ − γ −β − α Ω

... (73)

where

φ′ = φ + γ, ... (74)

θ′ = θ + β, ... (75)

γ′ = χ + α. ... (76)

As before, we choose α, β, and γ to remove all angular
dependence from the eigenfunction of the right side of
Eq. (71).

Placing the observer in the molecular coordinate
system is a reversal of motion. Because the order of Euler
rotations about different axes is significant (e.g. (αβγ)
≠  (βαγ)), reversal of motion also requires that the
order in which the rotations are taken be reversed, i.e.,
 (αβγ) – 1 =  (–γ, –β, –α). Because the signs of the
Euler angles are inverted, one might mistakenly believe
that the sign in front of i in Eqs (21– 23) would also be
inverted thus implying that the anomalous commutators
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hold in the molecule-fixed coordinate system, but reversal
of motion (also called time reversal) is anti-unitary. The
time reversal operator is normally written as the product
of a unitary operator and the complex conjugation
operator. Thus in reversal of motion, changes in the signs
of the Euler angles are canceled by complex conjugation
and the sign in front of i in Eqs (21 – 23) remains
unchanged.

3.7 Discussion of Angular Momentum States of the
Diatomic Molecule

The significance of Eq. (63) is that it shows the total
angular momentum is exactly separable in the diatomic
eigenfunction. The separation is independent of the Born-
Oppenheimer approximation and is possible for very few
simple systems such as the diatomic molecule and
hydrogen/hydrogenic atom (see Eq. (64) above).

The summation over Ω in Eq. (63) insures that only
one magnetic quantum number, M, is good. An element

of the D-matrix is a combination of the states JM  and

JΩ . No one term in the sum on the right side of Eq. (63)
contains a standard angular momentum eigenfunction.

The equation ( ) ,J J C J J′
± ±Ω = Ω Ω ± 1  indeed

holds, but this result is not directly applicable to Hund's
case (a) or (b) eigenfunctions. For the diatomic molecule
the angular momentum eigenfunction is replaced by a
sum over matrix elements of the rotation operator,
quantities which are obviously defined in terms of angular
momentum but which, nevertheless, are not angular
momentum eigenfunctions because Jz and Jz′

do not commute. Symbols such as ( )Ωψ αβγJM  and

JMαβγ Ω  (viz. symbols for Hunds case (a) basis
states) are best avoided due to difficulties of reconciling
these symbols with the formalism and physics of angular
momentum.

The α- and γ-dependence of the rotation matrix
element is clear,

( )J
MD Ω αβγ  = ( )iM J i

Me d e− α − Ωγ
Ω β , ... (77)

possibly tempting one to take the matrix element apart

and put the γ term with the eigenfunction 1 2r r ...rN r n′ ′ ′

calling the result the ‘electronic-vibrational’ eigen-
function. There is historical precedence for separating
the total eigenfunction into electronic, vibrational, and
rotational parts, but this scheme does not fit the present,
thus far exact, formulation. From a practical standpoint,

one who takes the rotation matrix element apart for
example to utilize formulae of the kind:

( ) ( )1 2

1 1 2 2

2 2

* sinj j
m mD D

π π π

ω ω
0 0 0

αβγ αβγ β∫ ∫ ∫
1 2 1 2 1 2

2

2 1 m m j jd d d
J ω ω
8πα β γ = δ δ δ

+ ... (78)

and the inverse Clebsch-Gordan series:

( )J
MD Ω αβγ =

1 2

1 1 2 2

1 1 2

1 1 2 2 1 1 2

j j

m j m j
j j

j m j m JM j j J

2

2

= − = −
ω = − ω = −

ω ω Ω∑ ∑
( ) ( )1 2

1 1 2
,

2ω ωαβγ αβγj j
m mD D ... (79)

may find that it is indeed best to not separate the D-matrix.

4. HUND'S CASE (a) AND (b) BASIS FUNCTIONS

The Hund's case (a) eigenfunction is constructed from
Eq. (63) by omitting the summation over Ω and re-
normalizing the result through use of Eq. (78):

1 2r , r , ..., r , rN nJM SΩ Σ

= 1 2 12

2 1
r r ...r

8 N

J
r n′ ′ ′

−
+ ρζ

π

( )*J
MS D ΩΣ αβγ ... (81)

It is noteworthy that the Hund case (a) basis identifies
both M and Ω as so-called good quantum numbers. The
value of a basis may be associated with the ease in
accurately constructing the eigenfunction. However, one
must realize that Hund's case (a) eigenfunction does not

contain standard JM  or JΩ  angular momentum
states. Application of the raising and lowering operators
to case (a) eigenfunction will reveal nonstandard results.

The Hund case (a) basis cannot rigorously represent
a physical state. However, let us investigate its
approximate physical significance of a model for a
diatomic molecule where nuclear spin effects are not
important. For this model, the total angular momentum
is the sum of L the electronic orbital, S the electronic
spin, and R the nuclear orbital angular momenta.

J = L + R + S, ... (82)
or

J = N + S, ... (83)
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where N is the total orbital angular momentum:

N = L + R. ... (84)

This last equation, a definition, is further debated:
According to the reversed angular momentum method,
N and R are examples of momenta which are expected
to obey Klein's anomalous commutation formulae but L
obeys the standard formulae. The operator which rotates
N when applied to the right side of the above equation
must treat L and R differently. Construction of such an
operator maybe difficult. In comparison, a formalism in
which all angular momentum operators obey the same
commutator formulae in all coordinate systems is
preferred and offers simplicity.

A Clebsch-Gordan expansion of the D-matrix of
Eq. (81) results in:

1 2r , r , ..., r , rN nJM SΩ Σ

= 1 2 12

2 1
r r ...r

8 N

J
r n S′ ′ ′

−
+ ρζ Σ ×

π

N S

N S

N S

M N M S

N M SM JM N S J

= − = −

Λ Σ Ω∑ ∑
( ) ( )* *

N S

N S
M MD DΛ Σαβγ αβγ ... (85)

Both N SN M SM JM  and N S JΛ Σ Ω  are Clebsch-
Gordon coefficients. The quantum numbers MN and MS

are referenced to laboratory coordinates, Λ and Σ to
rotating coordinates. The Clebsch-Gordan coefficients
vanish unless M = MN + MS and Ω = Λ + Σ. The two D-
matrices in this equation have the same set of Euler angles
meaning that N and S are perfectly coupled in accord
with the definition of Hund's case (a).

The Hund case (a) basis is a useful physical
approximation only when the coupling N and S is strong.
Conversely, for weak (or negligibly small) coupling
between N and S, construction of another basis set is
indicated.

In the absence of electronic and nuclear spin, Eq. (63)
reads:

1 2r r ...r rN NnNM

= ( )*
1 2 1r r ...r

N

N

N
N M

N

r n D′ ′ ′
− Λ

Λ = −

ρζ αβγ∑ ... (86)

Construction of the Hund case (b) basis begins by
omitting the summation over Λ and re-normalizing the
result. Subsequently, the spinless equation is multiplied

by the electronic spin states SSM  and the appropriate
Clebsch-Gordan coefficient. Finally the result is summed
over all laboratory magnetic quantum numbers:

1 2r r ... r rN n J M N SΛ

= 1 2 12

2 1
r r ...r

8 N

N
r n S′ ′ ′

−
+ ρζ Σ

π

( )* ,
N

S N

S N

N
N S M

M S M N

N M SM JM D Λ

= − = −

αβγ∑ ∑
... (87)

giving Hund's case (b) eigenfunction. States constructed
from Clebsch-Gordan coefficients give a diagonal
representation of the Hamiltonian only if the two angular
momenta that are combined do not interact. Such non-
interaction would perfectly match Hund's case (b) (viz.
weak or negligibly small electronic spin-orbit
interaction).

As one expresses the spin ket in the rotated system:

SSM = ( )* ,
S

S

S
M S S S

S

S D Σ

Σ = −

Σ α β γ∑ ... (88)

where αS , βS, and γS are the Euler angles for rotation of
the electronic spin, the following comparison between
cases (a) and (b) can be made: For Hund's case (a) the
spin Euler angles are equal to the Euler angles describing
the rotations of the molecule, but for Hund's case (b) the
spin angles are completely independent of α, β, and γ.

Consequently, in case (b), ( )*

N

N
MD Λ αβγ  and ( )*

S

S
M S S SD Σ α β γ

cannot be combined in a Clebsch-Gordan contraction to

build the JM  states as in case (a).

Transformations between cases (a) and (b) are
accomplished using:

a b =
2 1

,
2 1

N
N S J

J

+ Λ Σ Ω
+

... (89)

b a =
2 1

,
2 1

J
N S J

N

+ Λ Σ Ω
+

... (90)
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These coefficients can be obtained from Eqs (78),
(80), (81), and (87).

5. EFFECTS OF RAISING AND LOWERING
 OPERATORS ON DJ

M ()
Operation of the J+, J–, J′+, and J′– on the D-matrices will
be explored here. Substitution of Eq. (63) into Eq. (15)
gives:

( )*
1 2 1r r ... r

J

J
N M

J

J r n S D′ ′ ′
± − Ω

Ω = −

ρζ Σ αβγ∑

= ( ) 1 2 1, r r ... r

J

N

J

C J M r n′ ′ ′
± −

Ω = −

ρζ∑
( )*

1,
J
MS D ± ΩΣ αβγ ... (91)

We mentioned above that the eigenfunction

1 2r r ... rN r n′ ′ ′  has no angular dependence. Therefore, J±

acts only on the D-matrix elements. A term by term
comparison of the left and right sides of Eq. (91) gives:

( )*J
MJ D± Ω αβγ

= ( ) ( )*
1,, J

MC J M D± ± Ω αβγ ... (92)

One recognizes that operation by J± gives an expected
result when applied to the complex conjugate of the
D-matrix. The complex conjugate of the D-matrix is
given by:

( )*J
MD Ω αβγ  = ( ) ( ),

M J
MD

− Ω
− − Ω− αβγ , ... (93)

from which one finds:

( )J
MJ D+ Ω αβγ

= ( ) ( )*
,

M J
MJ D

− Ω
+ − − Ω− αβγ

= ( ) ( ) ( )*
1,,

M J
MC J M D

− Ω
+ − + − Ω− − αβγ

= ( ) ( )1,, J
MC J M D− − Ω− αβγ . ... (94)

In the last step, we used C+ (J, – M) = C– (J, M) as
can be inferred from Eq. (16). This result illustrates that
J+ lowers M-states when applied to the rotation matrix
elements.

Note also the minus sign which appears in front of
C– (J, M). Similarly:

( )J
MJ D− Ω αβγ

= ( ) ( )1,, J
MC J M D+ + Ω− αβγ ... (95)

Now we investigate action of J′+ and J′–. Rotation of
coordinates is a unitary transformation; therefore, if
Eq. (15) holds in the laboratory coordinate system then:

1 2r , r , ..., rk J nJ′ ′ ′ ′
± Ω

= ( ) 1 2, r , r , ..., r , ,kC J nJ′ ′ ′
± Ω Ω ± 1 ... (96)

must hold in the rotated coordinate system. Substituting
Eq. (71) into both sides of Eq. (96) and proceed as before
allows us to obtain Eq. (18) and

( )J
MJ D′

± Ω αβγ

= ( ) ( ), 1, J
MC J D± Ω ±Ω αβγ ... (97)

Equations (18), (94), (95), and (97) are found by
consistently applying standard commutator algebra. In
comparison, Van Vleck's reversed angular momentum
method would utilize different identities that are difficult
to reconcile with our standard formalism. Note the
unexpected signs and apparent anomalies in these
equations (e.g., in Eq. (95) one sees that J– raises M and
introduces a minus sign). These results lose their
mysterious appearance as one recalls that the D-matrix
elements cannot be treated as standard angular
momentum eigen-functions. Standard angular momentum
eigenfunctions show only one but not two magnetic

quantum numbers. Expressions like ( )*J
MJ D′

± Ω αβγ  show

several levels of complexity: First, complex conjugation
is in effect prompting considerations whether the roles
of the raising and lowering operator are reversed. Second,
and more importantly, there are two magnetic quantum
numbers present. The Appendix shows that evaluation

of commutators acting on ( )*J
MD Ω αβγ  matrix elements

rather than on physical eigenfunctions generates relations
that one might very well label “anomalous”.

6. THE BORN-OPPENHEIMER
APPROXIMATION

Electronic, 1 2 1r r ...rN n′ ′ ′
− ρζ , and vibrational, nr v ,

basis functions are defined, and Eq. (63) is rewritten to
read:
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1 2r r ...r rN nJM

= 1 2r r ... r

n

J

N n

J n

n r v′ ′ ′

Ω = − υ

′ ′∑∑ ∑
( )* ,J

MD Ω αβγ ... (98)

where a primed summation indicates summation over
discrete states and integration over continuum states. The
first order Born-Oppenheimer approximation (e.g., see
Ref. [26]) consists of omitting the summations over n
and vn. A different electronic eigenfunction is obtained
for each value of the internuclear distance. That is, the
electronic eigenfunction becomes a parametric function
of r, which is denoted by writing the electronic

eigenfunction as 1 2 1r r ... rN r n′ ′ ′
− ρζ; ,

1 2r r ...r rN nJM

= 1 2 1r r ...r ;

J

N n

J

r n r v′ ′ ′
−

Ω = −

ρζ∑
( )*J

MD Ω αβγ ... (99)

The physical justification for omitting the
summations from Eq. (99) is, of course, the smallness of
the electronic mass in comparison to the nuclear mass.
In the following the subscript on vn will be dropped.

7. HUND CASE (a) HAMILTONIAN MATRIX
 ELEMENTS

Some example matrix elements of the Hamiltonian are
calculated here. Standard results will be obtained by
application of standard methods. One of the many terms
in the Hamiltonian is the kinetic energy of rotation of
the nuclei, called the rotational Hamiltonian:

Hrot = 2
24 c rπ µ

R


= B (r) R2

= B (r) (J – L – S)2

= B (r)
2

2 z

L L L L
L

′ ′ ′ ′
2 2+ − − +

′

 +′ + + + ′ −

J S

( )2 z zJ L J L J L′ ′ ′ ′
+ − − + ′ ′+ +  –

( )2 z zJ S J S J S′ ′ ′ ′
+ − − + ′ ′+ +

( )2 z zL S L S L S′ ′ ′ ′
+ − − + ′ ′

+ + +  . ... (100)

The transformation of the operators from laboratory
to molecular coordinates is made because our
investigation of the fundamental and geometrical
symmetries has shown that the eigenfunction is partially
separable in the rotating coordinate system, Eq. (63). A
pragmatic comment is that calculation of matrix elements
is easier if the operators are expressed in the rotating
coordinate system. Reversal of motion is not an issue
here. The steps shown above merely take advantage of
invariance under proper rotations.

A familiar result from Van Vleck's reversed angular
momentum method would be that operation of J′+S′– on
Hund's case (a) eigenfunction lowers both Ω and Σ. One's
intuition might be that J′+ should be a raising operator, or
if J′+ indeed lowers Ω, why then is S′– not a raising
operator? The operator J′+ lowers Ω when applied to the
case (a) eigenfunction, Eq. (44), because the operator
acts on the complex conjugate of the D-matrix element,

not on the angular momentum ket JΩ . The operation
of S′– is completely standard, it lowers Σ because it acts

on the spin ket SΣ . Thus, the contribution of J′+ S′– to
the Hamiltonian matrix is BvC– (J, Ω) C– (S, Σ) δ (Ω,
Ω +1). The minus sign carried by J′+S ′– in Eq. (100) is
canceled by the minus sign in Eq. (18).

The phase conventions, i.e., sign conventions, which
are part of Van Vleck's method produce the same results
but for different reasons. Equation (18) is usually not
used in Van Vleck's method, leading to occurrence of
the opposite sign on the right. Usually a minus sign is

introduced for the action of S± on the standard ket SΣ .
The introduction of this particular sign leads, in turn, to
the same result as found with standard methods. In
passing we note that Eqs (12) and (13) of Zare et al. [23]
carry opposite signs, but these two opposite signs cancel
out in the matrix elements of the product J′+ S′–.

Lefebvre-Brion and Field [4] use the standard phase
convention for the spin kets, their Eq. (2.4.28). The spin-
rotation interaction:
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HSR = γ (r) N ⋅ S

= γ (r) (J – S) ⋅ S

= γ (r) (J ⋅ S – S2)

= γ (r)
2S

2 z Z

J S J S
J S

′ ′ ′ −
+ − − +

′ ′

 + + − 
 

,... (101)

contains terms having the same dependence on J and S
as terms in the rotational Hamiltonian above (γ (r) is the
spin-rotation parameter, not the third Euler angle). Here

J′+S′– contributes ( ) ( ) ( )1
, ,

2 vC J C S− −− γ Ω Σ δ Ω, Ω + 1 .

This result agrees with Zare et al. [23] but shows a
disparity in sign with Lefebvre-Brion and Field [4]. The
latter authors show the opposite sign on the right side of
Eq. (18), see their Eqs (1.3.23) and (1.3.25). When
combining the opposite sign with sign conventions for
the spin kets, it maybe difficult to find correct signs for
the spin-rotation matrix elements.

8. DIATOMIC LINE STRENGTHS

The probability of a quantum transition is controlled by
the absolute square of the transition moment of the
operator responsible for the transition. The line strength
is defined by:

S (n′J′, n″J″)

=
( )

J J

k
l

M J M J

n J M T

′ ″

′ = − ′ ″ = − ″

′ ′ ′∑ ∑
( ) 2

1 2r r ...r r ,N n J M″ ″ ″ ... (102)

in which Tl
(k) is the l-th component of the irreducible

tensor operator of degree k. A single prime denotes the
upper state, double primes the lower. As Eq. (63) holds
for the diatomic eigenfunction:

( ) ( )1 2r r ...r rk
l NT

= ( ) ( ) ( )*
1 2 1r r ...r ,

k

k k
N l

k

T r D′ ′ ′
λ − λ

λ = −

ρζ αβγ∑ ... (103)

must hold for any diatomic operator. Hund's case (a)
transition moments of the components of the operator
T(k) are therefore given by:

( ) ( )1 2r r ...r rk
l Nn J M T n J M′ ′ ′ ″ ″ ″ ≈

=
( ) ( )

2

2 1 2 1

8

J J′ + ″ +
π

( ) ( )1 2 1r r ...r

k

k
N

k

n v T r′ ′ ′
λ −

λ = −

′ ′ ρζ∑
( ) ( ),n v S S″ ″ δ ′ ″ δ Σ′, Σ″  ×

( ) ( )
2

* *J k J
M l MD D D

π π 2π
′ ″
′Ω′ λ ″Ω″

0 0 0

αβγ αβγ∫ ∫ ∫
( ) sin d d dαβγ β α β γ ... (104)

The integral over the Euler angles is the product of
two Clebsch-Gordan coefficients:

( ) ( )1 2r r ...r rk
k Nn J M T n J M′ ′ ′ ″ ″ ″ ≈

=
2 1

2 1

J

J

″ +
′ +

( ) ( )1 2 1r r ...r

k

k
N

k

n v T r′ ′ ′
λ −

λ = −

′ ′ ρζ∑
.n v J M kl J M J k J″ ″ ″ ″ ′ ′ ″Ω″ λ ′Ω′

... (105)

Forming the absolute square of the transition moment
followed by summation over all M ′ and M ″ gives the
diatomic line strength in Hund's case (a) basis,

S (n′v′J′, n″v″J″)
= Sev (n′v′, n″v″) S (J′, J″), ... (106)

where the electronic-vibrational strength is given by:

Sev (n′v′, n″v″)

= ( ) 2

n nv R r v′ ″′ ″ . ... (107)

The electronic transition moment is:

Rn′n″ (r) = ( ) ( )1 2r r ...r ; .k
Nn T r n′ ′ ′

λ′ ″ ... (108)

The remaining factor, S (J′, J″), is the Hund's case (a)
Hönl-London or rotational line strength factor:

S (J′, J″) = (2J″ + 1) 2
,J k J″Ω″ Ω′ − Ω″ ′Ω′

( ) ( ), .S Sδ ′, ″ δ Σ′ Σ″ ... (109)

With a Taylor's expansion of the electronic transition
moment,
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Rn′n″ (r) = a0 + a1r + a2r
2 + ..., ... (110)

and the Franck-Condon factor:

q (v′, v″) =
2
,v v′ ″ ... (111)

and the r-centroids:

( ),jr v v′ ″ = ,
jv r v

v v

′ ″
′ ″

... (112)

are defined, the electronic-vibrational strength can be
written as a product of two factors:

Sev (n′v′, n″v″)

= ( ) ( ) 2

0 1 1 2 2, , ...a a r v v a r v v+ ′ ″ + ′ ″ +

( ), .q v v′ ″ ... (113)

The electronic strength is defined:

Se (n′v′, n″v″)

= ( ) ( ) 2

0 1 1 2 2, , ... .a a r v v a r v v+ ′ ″ + ′ ″ + ... (114)

The overall diatomic line strength is:

S (n′v′J′, n″v″J″)
= Se (n′v′, n′v′) q (v′, v″) S (J′, J″). ... (115)

The diatomic line strength is the product of the
electronic strength, Se (n′v′, n″v″), and two unitless
strength factors, the Franck-Condon factor, q (v′, v″), and
the Hönl-London factor, S (J′, J″). In molecules with
small reduced mass µ and, therefore, large B (r), rotational
distortion of the vibrational states gives the Franck-
Condon factors and r-centroids J′ and J″ dependence.

Equation (115) still holds in the Hund's case (b) basis
but the Hönl-London factor is now given in terms of a
Wigner 6j-symbol rather than a Clebsch-Gordan
coefficient:

S (J′, J″) = (2J′ + 1) (2N″ + 1) (2J″ + 1)
2

,N k N″Λ″ Λ′ − Λ″ ′Λ′

( )
2

, .
S N J

S S
k J N

 
δ ′ ″ ′ ′ 

... (116)

Calculation of the total line strength requires,
obviously, knowledge of the irreducible tensor
responsible for the transition. However, the Hönl-London
factor depends only on the degree k of the tensor. For
k = 1, Eqs (109) and (116) give Hönl-London factors for

electric dipole transitions. For k = 2, they give the factors
for two-photon or Raman transitions, and so forth.

The Hund's cases (a) and (b) eigenfunctions will
rarely diagonalize the Hamiltonian to a satisfactory
degree of approximation. Since efficient numerical
algorithms exist for the diagonalization of symmetric
matrices, this is a not a serious impediment. Diagona-
lization of the Hamiltonian gives the terms values and
the orthogonal matrix U which diagonalized the
Hamiltonian. The equation for the line strength must be
modified to include the matrices U′ and U″ but this is
again a minor complication.

Of practical concern is the determination of term
combinations that will indeed lead to spectral lines from
the upper term values for a fixed J′ and lower term values
for a fixed J″. A well established procedure for finding
allowed and forbidden lines is based on invoking parity
selection rules. An algorithm which correctly gives the
parity of states for many different types of states is
difficult to devise. However, the parity selection rules
can, with no loss of rigor, be replaced by the angular
momentum selection rules. A transition for which the
Hönl-London factor vanishes is forbidden. One using the
parity selection rules must write a new computer program
each time he encounters a different type of transition.
One using the angular momentum selection rules can
write a single program which handles a wide variety of
transitions, see Hornkohl et al. [28].

9. APPLICATIONS IN STUDY OF MOLECULAR
SPECTRA FOLLOWING LASER-INDUCED
 OPTICAL BREAKDOWN

Selected diatomic molecular spectra are computed by use
of so-called line strength files. For isolated molecular
transitions, the Franck-Condon factors are found by
solving the radial Schrödinger equation numerically, and
the Hönl-London factors are obtained by numerical
diagonalization of the rotational and fine-structure
Hamiltonian, Hornkohl et al. [28]. For the computation
of a diatomic spectrum, typically the temperature and
spectral resolution is specified, and in turn, non-linear
fitting routines may be used to infer the spectroscopic
temperature. For a recent summary on laser-induced
breakdown spectroscopy see Miziolek et al. [29], Cremers
and Radziemski [30], and Singh and Thakur [31].

Of interest are diatomic molecules such as AlO, C2,
CH, CN, CrF, N+

2 1
st Neg, N2 1

st Pos, N2 2
nd Pos, NH,

NO, OH. Accurate line-strength files are in use for
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spectroscopic analysis with the so-called Boltzmann
Equilibrium Spectrum Program (BESP), Hornkohl and
Parigger [32]. The BESP is used, for example, in the
analysis of laser-induced optical breakdown and laser-
induced fluorescence.

Figures 1–7 show selected synthetic spectra for OH,
AlO, C2 Swan band overview (pro-gression) and selected
sequences ∆ν = 0, ± 1 of the C2 Swan Band, and CN,
respectively.

Fig. 1: Computed spectrum of the A2Σ → X2Π uv band of OH,
T = 4000 K, for spectral resolutions of ∆ν~ = 32 cm– 1 (top)

and ∆ν~ = 0.2 cm– 1 (bottom) of the ∆ν = 0 sequence

Fig. 2: Computet spectrum of the AlO B2Σ+ → X 2Σ+ band,
T = 4000 K, for a spectral resolution of ∆ν~ = 32 cm– 1. Indicated

are the ∆ν = 0, ± 1 Sequences of the AlO progression

Fig. 3: Computed spectrum of C2 swan d3Πg → a3Πu band
progression, T = 8000 K, for a spectral resolution of

∆ν~ = 12 cm– 1. Indicated are the ∆ν = 0, ± 1 sequences
of the C2 progression

Fig. 4: C2 swan d3Πg → a3Πu band ∆ν = + 1 sequence,
T = 8000 K, ∆ν~ = 6 cm– 1

Fig. 5: C2 swan d3Πg → a3Πu band ∆ν = 0 sequence, T = 8000 K,
∆ν~ = 6 cm– 1



Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators

International Review of Atomic and Molecular Physics, 1 (1), January-June 2010 41

Fig. 6: C2 swan d3Πg → a3Πu band ∆ν = – 1 sequence,
T = 8000 K, ∆ν~ = 6 cm– 1

Fig. 7: Computed spectrum of the CN violet B2Σ + → X2Σ+ band,
T = 8000 K, for a spectral resolution of ∆ν~ = 6 cm– 1 of the

∆ν = 0 sequence

These synthetic spectra have been instrumental in
the analysis of laser-induced optical break-down and in
general analysis of diatomic molecular spectra, see for
example Refs. [33 – 40].

10. CONCLUSIONS

The fully standard methods allow us to compute diatomic
spectra. A proper rotation of coordinates preserves the
commutation formulae which are customarily taken to
be the definition of angular momentum. We compared
and contrasted our approach with Klein's anomalous
angular momentum commutators and Van Vleck's
method. The fully standard method yields results
consistent with experimental data. An essential point is

that individual matrix elements of the rotation operator
are not standard angular momentum eigenfunctions. It is
then clear why the standard formulae for the raising and
lowering operators do not apply to Hund's cases a and b
diatomic eigenfunctions. The standard formulae must be
replaced by equations which give the effects of the raising
and lowering operators on the complex conjugate of
D-matrix elements. The rigorous treatment of diatomic
molecular spectra allows us to accurately compute
molecular spectra. Applications include diagnostics of
molecular recombination spectra following laser-induced
optical breakdown.

APPENDIX A
APPLYING ANGULAR MOMENTUM

COMMUTATORS TO ROTATION
MATRIX ELEMENTS

General relations for commutators are typically obtained
by applying the commutator to an abstract ket describing
a physical state. Alternatively, in the Schrödinger
representation the commutators are obtained by applying
differential operators to physical eigenfunctions. In this
appendix we demonstrate how two anomalous results
may occur. We apply [Jx′, Jy′] and [Jy, Jy′] to the rotation

matrix elements ( )*J
MD Ω αβγ .

The commutator [Jx′, Jy′] is evaluated using:

[Jx′, Jy′] = ( ) ( )1 1
,

2 2
J J J J

i
′ ′ − ′
+ − + −

 + −  

= , ,
2

i
J J′ ′

− + −   ... (A1)

and Eq. (18) which for convenience is repeated here

( )*J
MJ D′

± Ω αβγ

= ( ) ( )*
,, Ω 1− Ω αβγ 

J
MC J D ... (A2)

Successive application of the operators in the rotated
frame of reference yields the intermediate result:

( )*,
2

J
M

i
J J D′ ′

− + Ω − αβγ 

= ( ) ( )( , 1 ,
2

i
C J C J+ −− Ω − Ω −

( ) ( )) ( )*, 1 , J
MC J C J D− + ΩΩ + Ω αβγ ... (A3)

which after inserting (compare Eq. (16))
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C± (J, Ω) = ( ) ( ),J JΩ ± Ω + 1 ... (A4)

leads to:

( )*, J
x y MJ J D′ ′ Ω  αβγ 

= ( )*J
Mi D Ω− Ω αβγ . ... (A5)

It might be tempting to conclude the anomalous
commutator relations, Eq. (4), in the rotated molecular
frame from this identity (Eq. (A5)). However, the rotation
matrix elements contain two quantum numbers M and
Ω, one too many to represent a physical eigenfunction.
Similarly, [Jy, Jy′] is evaluated using:

[Jy, Jy′] =

1 1
, ,

4 4 ,
1 1

, ,
4 4

J J J J

J J J J

′ ′

′ ′

+ + − −

+ − − +

    − − +    
 
    +    

... (A6)

and applying it to the rotation matrix elements *
Ω

J
MD

( )αβγ . Note Jy′ acts on Ω (see Eq. (18)) while Jy acts on

M (see Eq. (92)). The intermediate step is given here:

( )*, J
y y MJ J D′ Ω  αβγ 

= ( ) ( )*
1

1
,

4
J
MC J J D− + Ω −+ Ω αβγ +

( ) ( )*
1

1
,

4
J
MC J M J D′

+ + + Ω αβγ

( ) ( )*
1

1
,

4
J
MC J J D+ − Ω ++ Ω αβγ +

( ) ( )*
1

1
,

4
J
MC J M J D′

− − − Ω αβγ

( ) ( )*
1

1
,

4
J
MC J J D+ + Ω +− Ω αβγ −

( ) ( )*
1

1
,

4
J
MC J M J D′

+ − + Ω αβγ

( ) ( )*
1

1
,

4
J
MC J J D− − Ω −− Ω αβγ −

( ) ( )*
1

1
,

4
J
MC J M J D′

− + − Ω αβγ ... (A7)

which reduces to

( )*, 0.J
y y MJ J D′ Ω  αβγ =  ... (A8)

Again, one might be tempted to falsely conclude that
Eq. (A8) is a general commutator relation that also applies
to angular momentum states.
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