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1. INTRODUCTION

The time-dependent close-coupling method was
developed to study few-body dynamics in atomic and
molecular collision processes [1]. Applications include
photon, electron, and proton collisions with atoms,
molecules, and their ions. In this paper we review the
application of the time-dependent close-coupling method
to calculate energy and angle differential cross sections
for the electron-impact ionization of atoms and
molecules.

The time-dependent close-coupling (TDCC) method
was first used used to calculate energy and angle
differential cross sections for the electron-impact single
ionization of the hydrogen [2, 3] and helium [4, 5] atoms.
For the electron-impact single ionization of the hydrogen
or helium atoms, collision probabilities are found by the
projection of a fully time evolved six-dimensional
coordinate space wavefunction onto simple products of
spatial functions representing two outgoing electrons in
the field of H+ or He+. The six-dimensional wavefunction
for two continuum electrons moving in a stationary
spherical Coulomb field is represented by an expansion
of two-dimensional (2D) radial functions in coupled
spherical harmonics. The TDCC-2D method, along with
the converged close-coupling [6] and the exterior
complex scaling [7] methods, provide a non-perturbative

solution of this fully differential three-body spherical
quantal problem.

The time-dependent close-coupling method was
recently used to calculate energy and angle differential
cross sections for the electron-impact double ionization
of the helium atom [8].

For the electron-impact double ionization of the
helium atom, collision probabilities are found by the
projection of a fully time evolved nine-dimensional
coordinate space wavefunction onto antisymmetric
products of spatial and spin functions representing three
outgoing electrons in the field of He2+. The nine-
dimensional wavefunction for three continuum electrons
moving in a stationary spherical Coulomb field is
represented by an expansion of three-dimensional (3D)
radial functions in coupled spherical harmonics. The
TDCC-3D method provides a non-perturbative solution
of this fully differential four-body spherical quantal
problem.

The time-dependent close-coupling method was also
recently used to calculate energy and angle differential
cross sections for the electron-impact single ionization
of the hydrogen molecule [9, 10]. For the electron-impact
single ionization of the hydrogen molecule, collision
probabilities are found by the projection of a fully time
evolved six-dimensional coordinate space wavefunction
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onto simple products of spatial functions representing
two outgoing electrons in the field of H+

2. The six
dimensional wavefunction for two continuum electrons
moving in a stationary non-spherical Coulomb field is
represented by an expansion of four-dimensional (4D)
radial and angular functions in rotation functions. The
TDCC-4D method provides a non-perturbative solution
of this fully differential three-body non-spherical quantal
problem.

The remainder of this paper is organized as follows.
The close-coupled equations and various total and
differential ionization cross section expressions are
presented for the TDCC-2D method in Section 2, the
TDCC-3D method in Section 3, and the TDCC-4D
method in Section 4. Selected total and differential cross
section results for the electron-impact ionization of H,
He, H+

2 and H2 are presented in Section 5. In Section 6,
we conclude with a summary and an outlook for future
work. Unless otherwise stated, all quantities are given in
atomic units.

2. TIME-DEPENDENT CLOSE-COUPLING 2D
METHOD

The time-dependent Schrodinger equation for electron
scattering from an atom with one active electron is
given by:

( )1 2, ,r r t
i

t

∂ψ
∂

 
= ( ) ( )1 2 1 2, , ,H r r r r tψ   

, ... (1)

where the non-relativistic Hamiltonian is given by:

( )1 2,H r r
 

= ( )2 2
1 1 2

1 1

2 2
V r− ∇ + − ∇

( )2
1 2

1
V r

r r
+ +

−  ... (2)

For the hydrogen atom:

V (r) =
1

r
− , ... (3)

while for the helium atom:

V (r) = ( ) ( )
1

3242
,H

r
V r a

r

 ρ
− + −  π 

... (4)

where VH (r) is the direct Hartree potential, a is an
adjustable parameter, and ρ (r) is the probability density
of the core electron.

The total six-dimensional electronic wavefunction
is expanded in coupled spherical harmonics for each LS
total orbital and spin angular momentum symmetry:

( )1 2, ,r r tψ  
=

( )
( ) ( )1 2

1 2

1 2

1 2
1 2,

, 1 2

, ,
ˆ ˆ, ,

LS
l l

l l L
l l

P r r t
Y r r

r r∑ ... (5)

where

( ) ( )
1 2 1 2,

ˆ ˆ,
l l L

Y r r = ( ) ( )1 2

1 2 1 1 2 2

1 2

0 1 2
,

ˆ ˆ ,l l L
m m l m l m

m m

C Y r Y r∑ ... (6)

1 2 3

1 2 3

l l l
m m mC  is a Clebsch-Gordan coefficient, and ( )ˆlmY r

is a spherical harmonic. Upon substitution of ( )1 2, ,r r tψ  

of Eq. (5) into the time-dependent Schrodinger equation
and projection onto the coupled spherical harmonics, we
obtain the time-dependent close-coupled partial
differential equations for each LS symmetry:

( )
1 2 1 2, ,LS
l lP r r t

i
t

∂
∂

= ( ) ( )
1 2 1 21 2 1 2, , ,LS
l l l lT r r P r r t

( ) ( )
1 2 1 2 1 2

1 2

1 2 1 2,
,

, , , ,L LS

l l l l l l
l l

W r r P r r t′ ′ ′ ′
′ ′

+ ∑ ... (7)

where

Tl1l2
(r1, r2) =

( ) ( )
22

2 2

11

2 2
i i

i
i i i

l l
V r

r r

 +∂− + + ∂ 
∑ ... (8)

and the coupling operator is given in terms of standard
3j and 6j symbols by:

( )
1 2 1 2

2 2,
,L

l l l l
W r r′ ′  = ( ) ( ) ( ) ( ) ( )1 1

1 2 21 2 1 2 1 2 1 2 1
l l L

l l l l
′+ + ′ ′

1− + + + +

( )
( )

1 2 1 21 1 2 2
1

2 11 2

,

0 0 0 0 0 0,

r r l l Ll l l l

l lr r

λ ′ ′
<

λ + ′ ′
λ >

     λ λ
×      λ     

∑

... (9)

An initial condition for the solution of the time-
dependent close-coupling equations for electron
scattering from an atom with one active electron is given
by:

( )
1 2 1 2, , 0LS
l lP r r t =

= ( ) ( )

( ) ( ) ( )
0 1 2

0 1 2

1 1 2 , 0 ,

1 1 2 , , 0

1
[

2

1 ],

s k L l l L

S

k L s l L l

P r F r

F r P r

δ δ

+ − δ δ

... (10)
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where k0 is the initial linear momentum, Fkl (r) is a radial
wavepacket, and P1s (r) is a bound radial orbital for the
ground state of the hydrogen or helium atoms.

Following time evolution of the time-dependent
close-coupled partial differential equations into the
asymptotic region for each LS symmetry, the total cross
section is given by:

σ = 1 22 0 0
04

dk dk
k

∞ ∞π ∫ ∫

( ) ( ) ( )
1 2

1 2

2

1 2
, ,

2 1 2 1 , ,LS
l l

L S l l

L S P k k× + +∑ ∑
... (11)

the energy differential cross section is given by:

d

d

σ
α = ( )( )1

1 2 2 12 0 0
0

tan /
4

dk dk k k
k

∞ ∞ −π δ α −∫ ∫

( ) ( ) ( )
1 2

1 2

2

1 2
, ,

2 1 2 1 , ,LS
l l

L S l l

L S P k k× + +∑ ∑
... (12)

and the energy and angle differential cross section is
given by:

1 2

d

d d d

σ
α Ω Ω = ( )( )1

1 2 2 12 0
0

tan /
4

dk dk k k
k

∞ ∞ −

0

π δ α −∫ ∫

( ) ( ) 1 2

1 2,

2 1 2 1
l lL

s L l l

S i L i
+× + + −∑ ∑ ∑

( ) ( ) ( ) ( )1 2

1 2 1 2

2

1 2 1 2,
ˆ ˆ, , .l li LS

l l l l L
e P k k Y k k

δ + δ×

... (13)

In the cross section expressions of Eqs (11) – (13), α
is the angle in the hyperspherical (k1, k2) plane, k1 and k2
are the final linear momentum, and δ1 and δ2 are scattering
phase shifts. The momentum space projection
wavefunction for each LS symmetry and l1l2 coupled
channel is given by:

( )
1 2 1 2,LS
l lP k k = ( ) ( )

1 1 2 21 2 1 20 0 k l k ldr dr P r P r
∞ ∞

∫ ∫

( )
1 2 1 2, , ,LS
l lP r r t× → ∞ ... (14)

where Pkl (r) is a box normalized continuum radial orbital
calculated in the potentials of Eq. (3) for H+ or Eq. (4)
for He+.

3. TIME-DEPENDENT CLOSE-COUPLING 3D
 METHOD

The time-dependent Schrodinger equation for electron
scattering from an atom with two active electrons is
given by:

( )1 2 3, , ,r r r t
i

t

∂ψ
∂

  
 = ( ) ( )1 2 3 1 2 3, , , , , ,H r r r r r r tψ     

... (15)

where the non-relativistic Hamiltonian is given by:

( )1 2 3, ,H r r r
  

= ( ) ( )2 2 2
1 1 2 2 3

1 1 1

2 2 2
V r V r− ∇ + − ∇ + − ∇

( )3
1 2 1 3 2 3

1 1 1
V r

r r r r r r
+ + + +

− − −     

... (16)
For the helium atom:

V (r) =
2

r
− . ... (17)

The total nine-dimensional electronic wavefunction
is expanded in coupled spherical harmonics for each 
total orbital and spin angular momentum symmetry:

( )1 2 3, , ,r r r tψ   
=

( )
1 2 3

1 2 3

1 2 3

, , , 1 2 3

, , ,S
l l Ll

l l L l

P r r r t

r r r∑


( )( ) ( )
1 2 3

1 2 3, ,
ˆ ˆ ˆ, ,

l l L l
Y r r r×

 , ... (18)

where

( )( ) ( )
1 2 3

1 2 3, ,
ˆ ˆ ˆ, ,

l l L l
Y r r r



= ( )31 2

1 2 3 1 1

1 2 3

0 1
, , ,

ˆL ll l L
m m M M m l m

m m M m

C C Y r∑ 

( ) ( )
2 2 3 32 3ˆ ˆ .l m l mY r Y r× ... (19)

Upon substitution of ( )1 2 3, , ,r r r tψ   
 of Eq. (18) into

the time-dependent Schrodinger equation and projection
onto the coupled spherical harmonics, we obtain the time-
dependent close-coupled partial differential equations for
each  symmetry:
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( )
1 2 3 1 2 3, , ,S
l l L lP r r r t

i
t

∂
∂



= ( ) ( )
1 2 3 1 2 31 2 3 1 2 3, , , , ,S
l l l l l L lT r r r P r r r t

( )
1 2 3 1 2 3

1 2 3

3

,
, , ,

,L
i jl l L l l l L l

i jl l L l

W r r′ ′ ′
� ′ ′ ′

′
<′

+ ∑ ∑

( )
1 2 3

1 2 3, , , ,S

l l L l
P r r r t′ ′ ′′

× 
... (20)

where

( )
1 2 3 1 2 3, ,l l lT r r r  =

( ) ( )
23

2 2

11
,

2 2
i i

i
i i i

l l
V r

r r

 +∂− + + ∂ 
∑

... (21)

( )
1 2 3 1 2 3

1 2,
,

l l L l l l L l
W r r′ ′ ′′


= ( ) 1 1

3 3
,,

1
l l L

L Ll l

′

′

+ +
′− δ δ

( ) ( ) ( ) ( )1 1 2 22 1 2 1 2 1 2 1l l l l′ ′× + + + +

( )
( )

1 2 1 1
1

1 2

,

0 0 0,

r r l l

r r

λ ′
<

λ +
λ >

 λ
×   ∑

1 22 2

2 1

,
0 0 0

l l Ll l

l l

′

′ ′

   λ
×    λ   

... (22)

( )
1 2 3 1 2 3

1 3,
,

l l L l l l L l
W r r′ ′ ′′


= ( ) 2

2 2,
1

l

l l ′

+− δ

( ) ( ) ( ) ( )
( ) ( )

1 1 3 32 1 2 1 2 1 2 1

2 1 2 1

l l l l

L L

′ ′+ + + +
×

+ ′ +

( )
( )

1 3 1 1 3 3
1

1 3

,

0 0 0 0 0 0,

r r l l l l

r r

λ ′ ′
<

λ +
λ >

   λ λ
×       ∑

3 1 2

3 1

,
L l l l L

l L L l′ ′

   
×    ′ λ ′ λ  


... (23)

and

( )
1 2 3 1 2 3

2 3,
,

l l L l l l L l
W r r′ ′ ′′


= ( ) 1 2 2

1 1,
1

l l l L L

l l

′ ′

′

+ + + + ′ +− δ

( ) ( ) ( ) ( )
( ) ( )

2 2 3 32 1 2 1 2 1 2 1

2 1 2 1

l l l l

L L

′ ′+ + + +
×

+ ′ +

( )
( )

2 3 2 2 3 3
1

2 3

,

0 0 0 0 0 0,

r r l l l l

r r

λ ′ ′
<

λ +
λ >

   λ λ
×       ∑

3 1 2

3 2

.
L l l l L

l L L l′ ′

   
×    ′ λ λ ′  


... (24)

An initial condition for the solution of the time-
dependent close-coupling equations for electron
scattering from an atom with two active electrons is
given by:

( )
1 2 3 1 2 3, , , 0S
l l L lP r r r t =

= ( ) ( )
0

00
1 2 3, k

l

P r r F ru∑ 

1 2 3, , , 0 , 0 , ,l l l l L S l× δ δ δ δ δ  ... (25)

where ( )00
1 2,

l
P r ru∑  is a correlated radial wavefunction

for the two target electrons of the ground state of helium.

Following time evolution of the time-dependent
close-coupled partial differential equations into the
asymptotic region for each  symmetry, the total cross
section for single ionization is given by:

σ = 2 32 0 0
02

dk dk
k

∞ ∞π ∫ ∫

( ) ( )
,

2 1 2 1
S

S× + +∑




( )
2 32 3

2

2 3, ,
1 , ,S S

sl LlL S l l
P s k k× ∑ ∑ ... (26)

the energy differential cross section for single ionization
is given by:

d

d

σ
β

= ( )( )1
2 3 3 22 0 0

0

tan /
2

dk dk k k
k

∞ ∞ −π δ β −∫ ∫

( ) ( )
,

2 1 2 1
S

S× + +∑




( )
2 3

2 3

2

2 3
, ,

1 , , ,S
sl Ll

L S l l

P s k k× ∑∑ 
... (27)
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and the energy and angle differential cross section for
single ionization is given by:

2 3

d

d d d

σ
β Ω Ω

= ( )( )1
2 3 3 22 0 0

0

tan /
2

dk dk k k
k

∞ ∞ −π δ β −∫ ∫

( )2 1 | 2 1
S S

S i× + × +∑ ∑ ∑ 





( ) ( )2 3 2 3

2 3,

l ll l i

L l l

i e
δ + δ+× −∑∑

( ) ( )( ) ( )2 3 2 3

2
2 3 1 2, ,

ˆ ˆ1 , , , |S
sl Ll s l L l

P s k k Y k k×  .

... (28)

In the cross section expressions of Eqs (26) – (28), β
is the angle in the hyperspherical (k2, k3) plane, k2 and k3
are the final linear momentum, and δl2

 and δl3
 are

scattering phase shifts. The momentum space projection
wave-function for each symmetry and sl2Ll3 coupled
channel is given by:

( )
2 3 2 31 , ,S

sl LlP s k k

= ( )
1 2 3

6

1 20 0
,

l l LSl L S
L S ijk

Q ijk dr dr
∞ ∞

′ ′
′ ′

×∑ ∑ ∫ ∫

( ) ( ) ( )
2 2 3 33 1 1 2 3s k l k ldr P r P r P r

∞

0
× ∫

( )
2 3 1 2 3, , , ,S

sl LlP r r r t× → ∞ ... (29)

where Pkl (r) is a box normalized continuum radial orbital
calculated in the potential of Eq. (4) for He+ and ijk is
summed over the six permutations of 123. The probability
expansion coefficients, Q (ijk), are obtained using
standard algebraic reduction methods.

Similarly, the total cross section for double ionization
is given by:

σ = 1 2 32 0 0 0
02

dk dk dk
k

∞ ∞ ∞π ∫ ∫ ∫

( ) ( )
,

2 1 2 1
S

S× + +∑




( )
1 2 3

1 2 3

2

1 2 3
, , ,

, , ,S
l l Ll

L S l l l

P k k k× ∑ ∑ 
... (30)

the energy differential cross section for double ionization
is given by:

d

d d

σ
α β

= 1 2 32 0 0 0
02

dk dk dk
k

∞ ∞ ∞π ∫ ∫ ∫

( )( )1
2 1tan /k k−× δ α −

( )( )1 2 2
3 1 2tan /k k k−× δ β − +

( ) ( )
,

2 1 2 1
S

S× + +∑




( )
1 2 3

1 2 3

2

1 2 3
, , ,

, , ,S
l l Ll

L S l l l

P k k k× ∑ ∑ 
... (31)

and the energy and angle differential cross section for
double ionization is given by:

1 2 3

d

d d d d d

σ
α β Ω Ω Ω

= 1 2 32 0 0 0
02

dk dk dk
k

∞ ∞ ∞π ∫ ∫ ∫

( )( )1
2 1tan /k k−× δ α −

( )( )1 2 2
3 1 2tan /k k k−× δ β − +

( )
1 2 3, ,

2 1 2 1
S

S L l l l

S i× + × +∑ ∑ ∑ ∑ ∑





( ) ( )1 2 3 1 2 3l l lil l l
i e

δ + δ + δ+ +× −

( ) ( )( ) ( )1 2 3 1 2 3

2

1 2 3 1 2 3, ,
ˆ ˆ ˆ, , , ,S

l l L l l l L l
P k k k Y k k k× 

... (32)

In the cross section expressions of Eqs (30) – (32), α
is the angle in the hyperspherical (k1, k2) plane, β is the

angle in the hyperspherical ( )2 2
1 2 3,k k k+  plane, k1, k2,

and k3 are the final linear momentum, and δl1
, δl2

, and δl3
are scattering phase shifts. The momentum space
projection wavefunction for each  symmetry and
l1l2Ll3 coupled channel is given by:

( )
1 2 3 1 2 3, ,S
l l LlP k k k

= ( )
1 2 3

6

1 20 0l l L Sl L S
L S ijk

Q ijk dr dr
∞ ∞

′ ′
′, ′
∑ ∑ ∫ ∫

( ) ( ) ( )
1 1 2 2 3 33 1 2 30 k l k l k ldr P r P r P r

∞
× ∫
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( )
1 2 3 1 2 3, , , ,S
l l LlP r r r t× → ∞ ... (33)

w h e r e Pkl (r) is a box normalized continuum radial orbital
calculated in the potential of Eq. (17) for He2+.

4. TIME-DEPENDENT CLOSE-COUPLING 4D
 METHOD

The time-dependent Schrodinger equation for electron
scattering from a homonuclear diatomic molecule with
one active electron is given by:

( )1 2, ,r r t
i

t

∂ψ
∂

 
= ( ) ( )1 2 1 2, , ,H r r r r tψ   

, ... (34)

where the non-relativistic Hamiltonian is given by:

( )1 2,H r r
 

= ( )2 2
1 1 1 2

1 1
,

2 2
V r− ∇ + θ − ∇

( )2 2
1 2

1
, .V r

r r
+ θ +

−  ... (35)

For the hydrogen molecular ion:

V (r, θ) =
2 2

1

1
cos

4
r R r R

−
+ − θ

2 2

1
,

1
cos

4
r R r R

−
+ + θ

... (36)

while for the hydrogen molecule:

V (r, θ) =
2 2

1

1
cos

4
r R r R

−
+ − θ

( )
2 2

1
,

1
cos

4

HV r

r R r R

− + θ
+ + θ

( )
1

324 ,
,

r
a

 ρ θ
−  π 

... (37)

where R is the internuclear distance, VH (r, θ) is the direct
Hartree potential, a is an adjustable parameter,

and ρ (r, θ) is the probability density of the core
electron.

The total six-dimensional electronic wavefunction
is expanded in simple products of rotational functions
for each MS total projection onto the internuclear axis
and spin angular momentum symmetry:

( )1 2, ,r r tΨ  
=

( )0

1 2

1 2

1 1 2 2

, 1 1 2 2

, , , ,

sin sin

l MS
m m

m m

P r r t

r r

θ θ
θ θ∑

( ) ( )
1 21 2 ,m m× Φ φ Φ φ ... (38)

where

( )mΦ φ =
2

ime φ

π
, ... (39)

and M = m1 + m2. Upon substitution of ( )1 2, ,r r tψ  
 of

Eq. (38) into the time-dependent Schrodinger equation
and projection onto the simple products of rotational
functions, we obtain the time-dependent close-coupled
partial differential equations for each MS symmetry:

( )0

1 2 1 1 2 2, , , ,l M S
m mP r r t

i
t

∂ θ θ
∂

= ( ) ( )0

1 2 1 21 1 2 2 1 1 2 2, , , , , , ,l MS
m m m mT r r P r r tθ θ θ θ

( )
1 2 1 2

1 2

1 1 2 2,
,

, , ,M

m m m m
m m

W r r′ ′
′ ′

+ θ θ∑

( )0

1 2
1 1 2 2, , , , ,l MS

m m
P r r t′ ′× θ θ ... (40)

where

( )
1 2 1 1 2 2, , ,m mT r rθ θ

= ( ) ( ) ( )
22

2 2( , , ),
2 sin

i
i i i i i

i i i

m
K r K r V r

r
+ θ + + θ

θ∑
... (41)

and K (r), ( ),K r θ  are kinetic energy operators. The

coupling operator is given by:

( )
1 2 1 2
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, , ,M
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=
( )
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λ

<
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λ >

λ −
θ
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( ) ( )
1

2 2

2 1 2 10 0
cosq

mP d d
π π

λ× θ × φ φ Φ φ∫ ∫
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( ) ( ) ( ) ( )2 1

2 1 2
2 1 2 ,iq

m m m
e ′ ′

φ − φ× Φ φ Φ φ Φ φ

... (42)

where ( )cosqPλ θ  is an associated Legendre function.

An initial condition for the solution of the time-
dependent close-coupling equations for electron
scattering from a homonuclear diatomic molecule with
one active electron is given by:

( )0

1 2 1 1 2 2, , , , 0l MS
m mP r r tθ θ =

= ( ) ( )
0 0 11 0 1 1 2 2 ,0

1
, ,

2 s k l M mP r F r θ θ δ

( ) ( )
2 0 0, 1 11 ,

S

m M k l MF r× δ + − θ

( )
1 21 0 2 2 , , 0,s m M mP r × θ δ δ  ... (43)

where ( )1 0 ,sP r θ  is a bound orbital for the ground state

of the H+
2 or H2 molecules.

Following time evolution of the time-dependent
close-coupled partial differential equations into the
asymptotic region for each MS symmetry, the total cross
section is given by:

σ = ( )
0

1 22 0 0
, ,0

2 1
4 l M S

dk dk S
k

∞ ∞π +∑∫ ∫

( )0

1 1 2 2

1 1 2 2

2

1 2
, ,

, ,l M S
l m l m

l m l m

P k k× ∑ ∑ ... (44)

the energy differential cross section is given by:

d

d

σ
α = ( )( )1

1 2 2 12 0 0
0

tan /
4

dk dk k k
k

∞ ∞ −π δ α −∫ ∫
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0 1 1 2 2

2

1 2
, , , ,

2 1 , ,l MS
l m l m

l M S l m l m

S P k k× +∑ ∑ ∑
... (45)

and the energy and angle differential cross section is
given by:

1 2

d

d d d

σ
α Ω Ω = ( )( )1
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0

tan /
4

dk dk k k
k

∞ ∞ −π δ α −∫ ∫
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S l M
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, ,

,l lil l l MS
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i e P k k
δ + δ+× − ×∑ ∑
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2

1 2 ,
ˆ ˆ .l m l m m m MY k Y k +× δ ... (46)

I n  t h e  c r o s s  s e c t i o n  e x p r e s s i o n s  o f  E q s  ( 4 4 ) – ( 4 6 ) , α
is the angle in the hyperspherical (k1, k2) plane, k1 and k2
are the final linear momentum, θk and φk are angles the
incoming electron makes with the internuclear (z) axis,
and δl1

 and δl2
 are scattering phase shifts. The momentum

space projection wavefunction for each MS symmetry
and m1m2 coupled channel is given by:

( )0

1 1 2 2 1 2,l M S
l m l mP k k = ( )

1 1 1

*
1 1 2 2 1 10 0 0

,k l mdr d dr d P r
∞ π ∞ π

0
θ θ θ∫ ∫ ∫ ∫

( )
2 2 2

*
2 2,k l mP r× θ

( )0

1 2 1 1 2 2, , , , ,l MS
m mP r r t× θ θ → ∞ ... (47)

where Pklm (r, θ) is a box normalized continuum orbital
calculated in the potentials of Eq. (36) for H2

2+ or Eq. (37)
for H+

2.

5. SELECTED RESULTS

The TDCC-2D method was first applied to the electron-
impact single ionization of the hydrogen atom. The total
cross section calculated [11] using Eq. (11) is compared
with experiment [12] in Fig. 1. Previous converged close-
coupling calculations [13] had also achieved excellent
agreement with experiment.

Fig. 1: Total electron-impact single ionization cross section for
hydrogen, square boxes: TDCC-2D calculations [11], solid circles:

experiment [12] (1.0 Mb = 1.0 × 10 – 18 cm2)

The TDCC-2D method was then applied to the
electron-impact single ionization of the helium atom. The
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total cross section calculated [14] using Eq. (11) is
compared with experiment [15] in Fig. 2. Previous
c o n v e r g e d  c l o s e - c o u p l i n g  [ 1 6 ]  a n d R-matrix with pseudo-
states [17] calculations had also achieved excellent
agreement with experiment.

The energy and differential cross section calculated
[4] using Eq. (13) is compared with experiment [18] in
Fig. 3. The differential cross section is at an incident
energy of E0 = 44.6 eV, equal energy sharing with
E1 = E2 = 10.0 eV, co-planar with φ1 = φ2 = 0°, and with
θ1 = 147° Good agreement is found between theory and
experiment.

The TDCC-3D method was first applied to the
electron-impact double ionization of the helium atom.
The total cross section calculated [19, 20] using Eq. (30)
is compared with experiment [21] in Fig. 4. Excellent
agreement is found between theory and experiment.

Fig. 2: Total electron-impact single ionization cross section for
helium. Square boxes: TDCC-2D calculations [14], solid circles:

experiment [15] (1.0 Mb = 1.0 × 10 – 18 cm2)

The energy and differential cross section calculated
[8] using Eq. (32) is compared with experiment [22] in
Fig. 5. The differential cross section is at an incident energy
of E0 = 109 eV, equal energy sharing with E1 = E2 = E3 =
9.0 eV, co-planar with φ1 = φ2 = φ3 = 0°, and with θ1 = 45°
and θ2 = 315°. Good relative agreement is found between
theory and experiment, although the measurement
magnitudes have been divided by a factor of 25.

The TDCC-4D method was first applied to the
e l e c t r o n - i m p a c t  s i n g l e  i o n i z a t i o n  o f  H

+
2. The total cross

section calculated [23] using Eq. (44) is compared with
experiment [24] in Fig. 6. Excellent agreement is found
between theory and experiment.

Fig. 3: Energy and angle differential electron-impact single
ionization cross section for helium. Solid line: TDCC-2D

calculations [4], solid circles: Experiment [18]
(1.0 Kb = 1.0 × 10 – 21 cm2).

Fig. 4: Total electron-impact double ionization cross section for
helium. Square boxes: TDCC-3D calculations [20], solid circles:

Experiment [21] (1.0 Kb = 1.0 × 10 – 21 cm2)

The TDCC-4D method was then applied to the
electron-impact single ionization of H2. The total cross
section calculated [25] using Eq. (44) is compared with
experiment [26] in Fig. 7. Previous R-matrix with
pseudo-states [27] calculations had also achieved
excellent agreement with experiment near the ionization
threshold.
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The energy and angle differential cross section
calculated [9] using Eq. (46) is compared with experiment
[9] in Fig. 8. The differential cross section is at an incident
energy of E0 = 35.4 eV, equal energy sharing with
E1 = E2 = 10.0 eV, co-perpendicular with θ1 = θ2 = 90°,
and with φ1 = –φ2 = ξ. Good relative agreement is found
between theory and experiment, where experiment is
normalized to theory at ξ = 90° and theory is averaged
over all molecular orientations.

Fig. 5: Energy and angle differential electron-impact double
ionization cross section for helium. Solid line: TDCC-3D

calculations [8], solid circles: Experiment [22]
(1.0 b = 1.0 × 10 – 24 cm2)

Fig. 6: Total electron-impact single ionization cross section for
H+

2. Square boxes: TDCC-4D calculations [23], solid
circles: Experiment [24] (1.0 Mb = 1.0 × 10 – 18 cm2)

Fig. 7: Total electron-impact single ionization cross section for
H2. Square boxes: TDCC-4D calculations [25], solid circles:

experiment [26] (1.0 Mb = 1.0 × 10 – 18 cm2)

Fig. 8: Energy and angle differential electron-impact single
ionization cross section for H2. Solid line: TDCC-4D

calculations [9], solid circles: Experiment [9]
(1.0 Kb = 1.0 × 10 – 21 cm2).

6. SUMMARY

The time-dependent close-coupling method has been
successfully applied to calculate electron-impact
differential ionization cross sections for atoms and
molecules. In this paper we reviewed the formulation of
the TDCC-2D method for the single ionization of atoms,
the TDCC-3D method for the double ionization of atoms,
and the TDCC-4D method for the single ionization of
diatomic molecules. Each TDCC method goes beyond
perturbation theory to achieve an exact numerical
description of a scattered electron moving in the field of
one or two ejected electrons and the field of the ionized
core of the atom or molecule. Few-body quantal effects
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are strongest for certain energy and angle differential
cross sections, as for example, when the scattered and
ejected electrons move off with the same energy and close
to the same angular direction. In the future, we plan to
apply the TDCC methods to calculate differential cross
sections for the electron-impact single ionization of
several different alkali atoms, the electron-impact double
ionization of Be, and the electron-impact single ionization
of Li+

2 and Li2.
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