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1. INTRODUCTION

The time-dependent close-coupling method was
developed to study few-body dynamics in atomic and
molecular collision processes [1]. Applications include
photon, electron, and proton collisions with atoms,
molecules, and their ions. In this paper we review the
application of the time-dependent close-coupling method
to calculate energy and angle differential cross sections
for the electron-impact ionization of atoms and
molecules.

Thetime-dependent close-coupling (TDCC) method
was first used used to calculate energy and angle
differential cross sectionsfor the electron-impact single
ionization of the hydrogen [2, 3] and helium [4, 5] atoms.
For the electron-impact singleionization of the hydrogen
or helium atoms, collision probabilities are found by the
projection of a fully time evolved six-dimensional
coordinate space wavefunction onto simple products of
gpatial functions representing two outgoing electronsin
thefield of H* or He*. The six-dimensiona wavefunction
for two continuum electrons moving in a stationary
spherical Coulomb field is represented by an expansion
of two-dimensional (2D) radial functions in coupled
spherical harmonics. The TDCC-2D method, along with
the converged close-coupling [6] and the exterior
complex scaling [ 7] methods, provide anon-perturbative

solution of this fully differential three-body spherical
quantal problem.

The time-dependent close-coupling method was
recently used to calculate energy and angle differential
cross sections for the electron-impact double ionization
of the helium atom [§].

For the electron-impact double ionization of the
helium atom, collision probabilities are found by the
projection of a fully time evolved nine-dimensional
coordinate space wavefunction onto antisymmetric
products of spatial and spin functionsrepresenting three
outgoing electrons in the field of He?*. The nine-
dimensional wavefunction for three continuum electrons
moving in a stationary spherical Coulomb field is
represented by an expansion of three-dimensional (3D)
radial functions in coupled spherical harmonics. The
TDCC-3D method provides anon-perturbative solution
of this fully differential four-body spherical quantal
problem.

Thetime-dependent close-coupling method was also
recently used to calculate energy and angle differential
cross sections for the electron-impact single ionization
of the hydrogen molecule[9, 10]. For the electron-impact
single ionization of the hydrogen molecule, collision
probabilities are found by the projection of afully time
evolved six-dimensional coordinate space wavefunction
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onto simple products of spatial functions representing
two outgoing electrons in the field of H7. The six
dimensional wavefunction for two continuum el ectrons
moving in a stationary non-spherical Coulomb field is
represented by an expansion of four-dimensional (4D)
radial and angular functions in rotation functions. The
TDCC-4D method provides a non-perturbative solution
of thisfully differential three-body non-spherical quantal
problem.

Theremainder of this paper isorganized asfollows.
The close-coupled equations and various total and
differential ionization cross section expressions are
presented for the TDCC-2D method in Section 2, the
TDCC-3D method in Section 3, and the TDCC-4D
method in Section 4. Selected total and differential cross
section results for the electron-impact ionization of H,
He, H? and H, are presented in Section 5. In Section 6,
we conclude with a summary and an outlook for future
work. Unless otherwise stated, all quantitiesaregivenin
atomic units.

2. TIME-DEPENDENT CLOSE-COUPLING 2D
METHOD

The time-dependent Schrodinger equation for electron
scattering from an atom with one active electron is
given by:

,Wz H (1) W (5 Tt), e

where the non-relativistic Hamiltonian is given by:

H(5.6) = 2 024V (1) -3 03
1
V() + = (2
[
For the hydrogen atom:
1
V()= rE .. (3

while for the helium atom:

1

[24p (r) >

Hn 8

where V,, (r) is the direct Hartree potential, a is an
adjustable parameter, and p (r) isthe probability density
of the core electron.
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V(r) = —§+VH (r)-a .. (4)

The total six-dimensiona electronic wavefunction
is expanded in coupled spherical harmonicsfor each LS
total orbital and spin angular momentum symmetry:

R (1. 1,0 t)

W (Fl’ M t) = |1,Zz o, Y(|1,|2)L (fv I¢2)1 . (5)
where
Y(|1,|2)L (':1’ I:2) = z CrlrllllioYlm (fl) Ym, (fz): ... (6)
m, My
Cpze . isaClebsch-Gordan coefficient, and Y, ()

isaspherical harmonic. Upon substitution of y (7, T, t)
of Eq. (5) into the time-dependent Schrodinger equation
and projection onto the coupled spherical harmonics, we
obtain the time-dependent close-coupled partial
differential equationsfor each LS symmetry:

aP”LS (nor.t)

ot TI I, ( Ir l’z) Riles (I’l, Il t)
¥ ZWM o (1) BE (r 0 t) e (7)
where
Ii Ii +1 0
T|1I2(r1’ Z E 2 al’ (2 - ) +V (ri)H . (8)

and the coupling operator is given in terms of standard
3j and 6] symbols by:

W () = () (2, ) (2 +1) (2, +) (2, +1)
(nr,) 0O, A 10O, A 140G, L

L) "5 o odb o oBH, 1 A
...(9)

An initial condition for the solution of the time-
dependent close-coupling equations for electron
scattering from an atom with one active electronisgiven

by:
R (r, 1, t=0)

... (10)

1
SR ()R ()58,
-1)°

+(-1)° R, (r) Po(r) 8,.8, o],
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wherek, istheinitial linear momentum, F, (r) isaradial
wavepacket, and P, (r) isabound radial orbital for the
ground state of the hydrogen or helium atoms.

Following time evolution of the time-dependent
close-coupled partial differential equations into the
asymptotic region for each LS symmetry, the total cross
section is given by:

T[ 0 0
e Sl 0 [ ok

"Z (2L +1)(25+1) Z\Rﬁs k, k,)

o=

.. (11)
the energy differential cross section is given by:

gg = 4kof dk, [ k3 (o~ tan™ (k, /)
"Z (2L +1)(25+1) Z‘PHLS k., k)‘
- (12)

and the energy and angle differential cross section is
given by:

do m = S a1
dadodo, = a2 Jo o d2 (-t (. k)
"Z (25+1) Z| J2L+1 Z (=)™
xR () v (KK
- (13)

In the cross section expressions of Egs (11)-(13), a
istheangle inthe hyperspherical (k;, k,) plane, k, and k,
arethefinal linear momentum, and , and , are scattering
phase shifts. The momentum space projection
wavefunction for each LS symmetry and |,l, coupled
channel is given by:

J’ drI dr. PkI

X Pllles (rl’ l‘z,t - °°)’

LS
an
il

Py, ()

.. (14)

where P, (r) isabox normalized continuum radial orbital
calculated in the potentials of Eq. (3) for H* or Eq. (4)
for He'.

3. TIME-DEPENDENT CLOSE-COUPLING 3D
METHOD

The time-dependent Schrodinger equation for electron
scattering from an atom with two active electrons is
given by:

oW (7,7, T t

[ ... (15)

1 1 1
Y e R
... (16)
For the helium atom:
V(r)= —%. .. (17)

Thetotal nine-dimensional electronic wavefunction
isexpanded in coupled spherical harmonicsfor each LS
total orbital and spin angular momentum symmetry:

u%&a@x:hbmﬁﬁfzzﬁﬂ
N e (BB fs), .. (18)
where
(e (f )
= W,WZM,W%M Cimo Yim (12)
Y, (5) Yo, () .. (19)

Upon substitution of (Fl, [ r;,t) of Eg. (18) into
the time-dependent Schrodinger equation and projection
onto the coupled spherical harmonics, we obtain thetime-
dependent close-coupled partial differential equationsfor
each LS symmetry:
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R )

ot
= T||| (r17 rzir)RSlEi (I‘,I‘z,r3,'[)
3
Z IILI3IILI3( )
15 L lp 1<)
<Pl (), . (20)
where
01 9% IL(IL+1 0
T|1|2|3 (rl’ PYR! ) Z Ea_ (2'..2 ) +V (ri)E

.. (20)
VV|£| Llg, 1y L1y (r " )

- (_]-)I1+I1'+L6 6

I, 1

NEREIES +1) (21, +1) (2, +1)

\N|L| Llg 0 L1 (r r)
= 1)I2+£ 1.1y
(2I +1) 2I +1 (2 +1)(2Ié+1)

2L+1 ) (2L +1)
) 1 A 100, A 10

XZ 18 0 o8B 0 of

Ol £od, I Lo

A

and
L
VV|1|2 Llg,lgly LG (r2’ r3)

L+l +l+ L+ L'+ L
:(_1)1 2tz

” \
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Iy, 1y

(21, +1) (2, +1) (21, +1) (2, +1)
2L+1 (2L +1)

et o e

An initial condition for the solution of the time-
dependent close-coupling equations for electron
scattering from an atom with two active electrons is
given by:

sLs
Fﬁl Ll

(r,, 1,1, =0)

- Z RP (1. 1,) F . (r,)

98, 16,,0.00s00, ¢ .. (25)

where ' RY (1, 1) isacorrelated radial wavefunction
for thetwo target el ectrons of the ground state of helium.

Following time evolution of the time-dependent
close-coupled partial differential equations into the
asymptotic region for each LS symmetry, thetotal cross
section for singleionization is given by:

O:Z—’I%J':dkzj’:dks

xy (2£+1)(25+1)

L,S

.. (26)

ZLSZII gL's(lSk k3)‘

the energy differential crosssection for singleionization
isgiven by:

d « « -1
go _ 2_Tk[§-[0 dk, [k (B~ tan™ (ko /k,))

xy (2c+1)(25+1)

55 (15, K k)|

- (27)
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and the energy and angle differential cross section for
single ionization is given by:

do
dpdQ,dQ,

_ 2:5 f: dk, I: dk,3 (B - tan (ky/k,))
x Z(zs+1)x leiﬁ J2L+1
xzzwww@w

L 1515
x PSS (15, ke ko) Y, )P

. (28)

sune (&

In the cross section expressions of Eqs (26)-(28), B
isthe anglein the hyperspherical (k,, k;) plane, k, and k,
are the final linear momentum, and 3, and 9, are
scattering phase shifts. The momentum space projection
wave-function for each LS symmetry and sl, LI, coupled
channel is given by:

P (1s, Ky, k)

6

= 22

21 |2L53Ls Ijk J’drI dr,

XI: dr3 Pls (rl) szlz (rz) Pks's (rs)

X Pgstl:ls (rl’ Py I’3,'[ - °°),

... (29)
where P, (r) isabox normalized continuumradial orbital
calculated in the potential of Eq. (4) for He* and ijk is
summed over the six permutationsof 123. The probability
expansion coefficients, Q (ijk), are obtained using
standard algebraic reduction methods.

Similarly, thetotal cross section for doubleionization
isgiven by:

0= 5 Js i, dk J, ke

x 'y (2£ +1) (25 +1)

SLS
Z RYE
3L,

the energy differential crosssection for doubleionization
isgiven by:

ks Kz Ky ‘ .. (30)

f dk, [ dk, [} dk,
><6(a ~tan™ (k,/k,))
N
x;(zc +1)(2s+1)

X Z Z
[y P8

and the energy and angle differential cross section for
double ionization is given by:

dadB

SES

S (K ko k)|

.. (31)

do
dadpdQ,dQ,dQ,

2 Jo < o f ok
x 8 (o - tan™ (k,/k,))
ol )

xz 28+1 Z‘; \/71”;3

9 (_i)|1+|2 *ls (5, +3,, +3,)

2

.y (121 K, k)
.. (32)

In the cross section expressions of Egs (30)-(32), a
isthe angle in the hyperspherical (kj, k,) plane, B isthe
angle in the hyperspherical (\/kf +k, kg) plane, k,, k,,
and k, arethefinal linear momentum, and 6 o, and 6

: : 12
are scattering phase shifts. The momentum space

projection wavefunction for each £LS symmetry and
I, LI coupled channel is given by:

R, (ki ke ko)
Z ZQustaL o (iik) "o, [ "dr,
<[ dR, () Ry, (1) Ry, (1)

SLS
X RI Lls

(ke ko) Y,
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X Pﬁfﬂs (rl’ M5t - °°)v (33)

- P, (r) isabox normalized continuum radial orbital
calculated in the potential of Eq. (17) for He?*.

4. TIME-DEPENDENT CLOSE-COUPLING 4D
METHOD

The time-dependent Schrodinger equation for electron

scattering from a homonuclear diatomic molecule with

one active electron is given by:

6L|J (7,7 t)

pr =H (7, ;) v (7 5 t),

.. (34)

where the non-relativistic Hamiltonian is given by:

1 1
H(r.r) = - 02 +V (r, 6, —Emg

1
+V (1, 8,) + = = ... (35)
(A
For the hydrogen molecular ion:
1
V(r,0)=- 1
\/r2+R2—chose
4
_ 1 ... (39)
\/rz + 1R +rRoosH
4
while for the hydrogen molecule:
1
V(,0)=- I
\/r2+R2—chose
4
L1 l +V,, (r,6)
\/rz + =~ R*+rRcosH
4
(.9 :
D24p 0)®
- .. (37
=K (37)

where Ristheinternuclear distance, V,(r, 6) isthedirect
Hartree potential, a is an adjustable parameter,

96 \
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and p (r, 8) is the probability density of the core
electron.

The total six-dimensional electronic wavefunction
is expanded in simple products of rotational functions
for each M S total projection onto the internuclear axis
and spin angular momentum symmetry:

L P (1, 8y, 15,8, 1)
W rt) = m;Z r\/sn®, r,/sin6,

xo, (@), (0,). .. (39)
where
®u(0) = . - (39)
J2n

and M = m, + m,. Upon substitution of  (;, 7;, t) of
Eqg. (38) into the time-dependent Schrodinger equation
and projection onto the simple products of rotational
functions, we obtain the time-dependent close-coupled
partial differential equations for each MS symmetry:

i P S (1, 6,,1,,6,,1)
ot
=T, (rl, 6,,1,,6,) Pens (., 0,,1,,0,,1)

Z my My, my m, rl’el’ r2,9)

X PV (1, 8,15, 8, 1), ... (40)
where
Toym, (rl,el, r2,62)
= Z(K (ri)+K(ri,ei)+ﬁ+v(ri,ei)),
. (42)

andK (r), K (r, e) are kinetic energy operators. The
coupling operator is given by:

wM
mm,, mm,

(r.6,1,,6,)

(nr) < (A=la)
Z(rl’ 2)“1 Z()‘-"| |)

x IOan (pl Ioznd(p2q3

R (cos8,)

x P (cos®,)

n (@)
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o (9,),
.. (42)

where P (cos#) is an associated Legendre function.

An initial condition for the solution of the time-
dependent close-coupling equations for electron
scattering from a homonuclear diatomic molecule with
one active electron is given by:

P (1, 8,,1,,8,,t=0)

1
- ) R 8) Fu (502) 8,
X 6%M

+ (_1)8 oloM (v, 6,)

X PlsO(rZ’ 62) o

I, el)

.. (43)

mlyMémzﬁH

where B, (r, ) isabound orbital for the ground state
of the H3 or H, molecules.

Following time evolution of the time-dependent
close-coupled partial differential equations into the
asymptotic region for each MSsymmetry, thetotal cross
section is given by:

o= 4—’;§J’:dk11:dk2 S (25+1)

i (&)Y () B

istheangleinthe hyperspherical (k,, k,) plane, k; andk,
are the final linear momentum, 6, and @ are angles the
incoming electron makes with the internuclear (2) axis,
and 9, and 3, are scattering phase shifts. The momentum
space projection wavefunction for each MS symmetry
and mm, coupled channel is given by:

Rt (ko) = [dr, [0, [, [d6,R;, , (1, 6,)
B ,m, (r.. 6,)

x P (1,6,,15,0,,t ), . (47)

where P, (r, 8) is abox normalized continuum orbital

calculated in the potential s of Eq. (36) for H2* or Eq. (37)
for H3,.

5. SELECTED RESULTS

The TDCC-2D method wasfirst applied to the el ectron-
impact singleionization of the hydrogen atom. Thetotal
cross section calculated [11] using Eq. (11) is compared
with experiment [12] in Fig. 1. Previous converged close-
coupling calculations [13] had also achieved excellent
agreement with experiment.

<y SRS ) @
Myl my,
the energy differential cross section is given by:
do _ * tan-l __ 60 Bty e,
i f dk, [ dk,d (o - tan (k, k) 3
5
* 3 (25475 5 Rt (6 K g 7
lo,M I, my Iy, m, ﬁ E 2
..(45) 8 j
and the energy and angle differential cross section is © 20 E 3
given by: ;
do m = o - 0 : : -
= dk, [ dk,3(a —tan™ (k,/k,) 0 20 40 60 80
dadQldQZ 4k§ IO IO ( ) Incident Energy (eV)
Fig. 1. Total electron-impact single ionization cross section for
X ZS + 1 jloy” ’ hydrogen, square boxes: TDCC-2D calculations [11], solid circles:
Z z loM ( K (Pk) experiment [12] (1.0 Mb = 1.0 x 1078 cm?)
AL+l (s, +8, The TDCC-2D method was then lied to the
oy y (Pt e (k) 0o OV e PP
S5, ectron-impact singleionization of the heliumatom. The
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total cross section calculated [14] using Eqg. (11) is
compared with experiment [15] in Fig. 2. Previous

R-matrix with pseudo-
states [17] cal culatlons had also achieved excellent
agreement with experiment.

The energy and differential cross section calculated
[4] using Eq. (13) is compared with experiment [18] in
Fig. 3. The differential cross section is at an incident
energy of E, = 44.6 eV, equal energy sharing with
E, =E,=10.0eV, co-planar with ¢, = @, = 0°, and with
6, = 147° Good agreement is found between theory and
experiment.

The TDCC-3D method was first applied to the
electron-impact double ionization of the helium atom.
Thetotal cross section calculated [ 19, 20] using Eg. (30)
is compared with experiment [21] in Fig. 4. Excellent
agreement is found between theory and experiment.

50

40 | ]
_ Aiiist 5 |
2 i i
“l‘:' 30 + f 4
2
3 (3
@ 20 | L)
5 &

E N
10 | g
0 L i i
0 50 100 150 200

Incident Energy (eV)

Fig. 2: Total electron-impact singleionization cross section for
helium. Square boxes: TDCC-2D calculations [14], solid circles:
experiment [15] (1.0 Mb = 1.0 x 10-18 cm?)

The energy and differential cross section calculated
[8] using Eq. (32) is compared with experiment [22] in
Fig.5. Thedifferential crosssectionisat anincident energy
of E,=109 eV, equal energy sharingwithE, =E,=E; =
9.0eV, co-planar with @, =@, = @,=0°, andwith 6, = 45°
and 6, =315°. Good rel ative agreement isfound between
theory and experiment, although the measurement
magnitudes have been divided by afactor of 25.

98 \
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The TDCC-4D method was first applied to the

‘ 5. The total cross

section cal culated [23] using Eq. (44) |s compared with

experiment [24] in Fig. 6. Excellent agreement is found
between theory and experiment.

2000+

Cross Section (besrz eV)
8 =

L
=
LI B

R il BRI I S ST T R R R |
-"18(1 -120 =60 0 60
Angle (deg)

120

Fig. 3: Energy and angle differentia electron-impact single
ionization cross section for helium. Solid line: TDCC-2D
calculations [4], solid circles: Experiment [18]
(1.0Kb=1.0x10-% cmd).

200
= 150
0
< T3 .32
S %
S
[&] 1 L
3 00 v
2 +*
g
o
50 | ;I
+F
-
0 - : :
0 70 140 210 280 350
Incident Energy (eV)

Fig. 4: Total electron-impact double ionization cross section for
helium. Square boxes: TDCC-3D calculations [20], solid circles:
Experiment [21] (1.0 Kb = 1.0 x 10-% cm?)

The TDCC-4D method was then applied to the
electron-impact single ionization of H,. The total cross
section calculated [25] using EQ. (44) is compared with
experiment [26] in Fig. 7. Previous R-matrix with
pseudo-states [27] calculations had also achieved
excellent agreement with experiment near theionization
threshold.
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The energy and angle differential cross section
calculated [9] using EQ. (46) iscompared with experiment
[9] inFig. 8. Thedifferential crosssectionisat anincident
energy of E;, = 35.4 eV, equal energy sharing with
E, = E, =10.0 eV, co-perpendicular with 6, = 8, = 90°,
and with @, =-@, = €. Good rel ative agreement is found
between theory and experiment, where experiment is
normalized to theory at & = 90° and theory is averaged
over all molecular orientations.

0.40
S 0.30
L]
o
w
&
5 0.20
©
1]
(9]
§
5 0.10
0.00 | . ’ - |
0 60 120 180 240 300 360
Angle (deg)

Fig. 5: Energy and angle differential electron-impact double
ionization cross section for helium. Solid line: TDCC-3D
calculations [8], solid circles: Experiment [22]
(1.0b=1.0x10"?* cm?)

25

20
o
: IR
SR ! Ly
5 -E
@
73]
@ 10
o
&)

5 b

0 L I 1

0 40 80 120 160
Incident Energy (eV)

Fig. 6: Total electron-impact singleionization cross section for
H?. Square boxes: TDCC-4D calculations [23], solid
circles: Experiment [24] (1.0 Mb = 1.0 x 1078 cn?)
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o898 833W5555

L)
L)

75

[
50 =

Cross Section (Mb)

25 t

-.-J
0 20

40 60 80
Incident Energy (eV)

100

Fig. 7: Total electron-impact single ionization cross section for
H,. Square boxes: TDCC-4D calculations [25], solid circles:
experiment [26] (1.0 Mb = 1.0 x 1078 cn)

in
T T T
|

(Kb/sr® eV)

Cross Section

=
90 120 150 180
Angle (deg)

Fig. 8: Energy and angle differentia electron-impact single
ionization cross section for H,. Solid line: TDCC-4D
calculations [9], solid circles: Experiment [9]
(1.0Kb=1.0x 10-?* cm?).

6. SUMMARY

The time-dependent close-coupling method has been
successfully applied to calculate electron-impact
differential ionization cross sections for atoms and
molecules. In this paper we reviewed the formulation of
the TDCC-2D method for the singleionization of atoms,
the TDCC-3D method for the doubl eioni zation of atoms,
and the TDCC-4D method for the single ionization of
diatomic molecules. Each TDCC method goes beyond
perturbation theory to achieve an exact numerical
description of a scattered electron movingin thefield of
one or two ejected electrons and the field of the ionized
core of the atom or molecule. Few-body quantal effects

/
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are strongest for certain energy and angle differential
cross sections, as for example, when the scattered and
€jected electrons move off with the same energy and close
to the same angular direction. In the future, we plan to
apply the TDCC methods to calculate differential cross
sections for the electron-impact single ionization of
several different alkali atoms, the el ectron-impact double
ionization of Be, and the el ectron-impact singleionization
of Li% and Li,,.
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