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Abstract: Dirac’s Generalized Hamiltonian Dynamics (GHD), a purely classical formalism, is applied to spinless
particles under the influence of a binomia potential. The integrals of the motion for this potential are chosen as the
constraints of GHD and Fradkin’s unit Runge vector is used in place of the Laplace-Runge-Lenz vector. A functional form
of the unit Runge vector is derived for the binomial potential. It is shown—in accordance with Oks and Uzer (2002) —
that there occursanew kind of timedilation |eading to classical stable, nonradiating states. The energy of these classical
stabl e states agrees exactly with the corresponding quantal resultsfor the ground state and for all states of odd val ues of
theradial and angular harmonic numbers. The primary application of the obtained resultsisto pionic (and kaonic) atoms.
Other applications include nanoplasmas and the precession of planetary orbits.

PACS: 36.10.Gv, 45.20.Jj, 03.65.Ca, 31.10.+z.

1. INTRODUCTION

In 1950, Dirac developed a generalized Hamiltonian
dynamics (hereafter GHD) [1-3]. The conventional
Hamiltonian dynamics is based on the assumption that
the momenta are independent functions of velocities.
Dirac analyzed amore general situation where momenta
are not independent functions of velocities [1-3].
Physically, the GHD is a purely classical formalism for
constrained systems; it incorporates the constraints into
the Hamiltonian. Dirac designed the GHD with
applicationsto quantumfield theory inmind [3].

The present work, where GHD is applied to atomic
and molecul ar systems by choosingintegrals of themotion
as the constraints of the system, stems from a paper in
which thisideawas applied to hydrogenic atomstreated
non-relativistically on the basis of the Coulomb potential
[4]. Using thispurely classical formalism, Oksand Uzer
demonstrated the existence of non-radiating states and
found their energy to be in exact agreement with the
corresponding results of quantum mechanics. They
employed two fundamental experimental facts, but did
not “forcefully” quantize any physical quantity describing
theatom. In particular, thisamounted to classically deriving
Bohr’s postulate on the quantization of the angular
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momentum rather than accepting it on an axiomatic basis.

It important to point out that the physics behind
classical non-radiating statesisanew kind of time-dilation
found by Oks and Uzer [4]. This is a non-Einsteinian
time-dilation.

The subject of the present paper differs from the
above mentioned paper by Oks and Uzer in that the
dynamics analyzed are of amore general nature: aterm
proportional to 1/r? is added to the Coulomb potential.
Thismore complicated potentia wecall herethebinomial
potential. Then the generalized unit Laplace-Runge-Lenz
vector [5, 6], or as named by Fradkin, the unit Runge
vector [5], is utilized instead of the classical Laplace-
Runge-Lenz vector.

Thisbinomial potential hasinteresting applications.
The primary application considered hereisto pionic (and
kaonic) atoms. We will classically obtain results
corresponding to the solution of the quantal (relativistic)
Klein-Gordon equation, the latter being appropriate
because pions are spinless particles. Another application
concerns the precession of planetary orbits: for this
phenomenon Einstein’s equations of general relativity are
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equivalent to non-relativistic equationsfor themotionin
the binomial potential [7]. We shall also briefly mention
an application furnished by the description of the energy
of nonradiating states of the so-called nanoplasmas[14].

The present paper has the following structure. In
Section 2, we briefly outline Dirac’s GHD. Section 3
serves to describe with more detail the applications of
thebinomial potential mentioned in the above paragraph.
In Sections4 and 5 we discuss the dynamical symmetries
or Fradkin and the generalization of the L aplace-Runge-
Lenz vector.

We present our new resultsin Section 6 and appen-
dicesA, B, and C. Section 7 containsthe appendices.

2. DIRAC’S GENERALIZED HAMILTONIAN
DYNAMICS (GHD)

Dirac [1-3] considered adynamical system of N degrees

of freedom characterized by generalized coordinates g,

and velocities v, = dq“, wheren =1, 2, ..., N. If the
Lagrangian of the systemis
L=1L(qv),

then momenta are defined as

. (2.1)

_ oL
ov,

P, . (2.2

Each of the quantitiesq,, v, p,, can be varied by dq,,,
ov,, dp,, respectively. The latter small quantities are of
the order of €, the variation being worked to the accuracy
of €. Asaresult of the variation, Eq. (2.2) would not be
satisfied any more, sincetheir right-hand sidewould differ
fromthe corresponding left side by aquantity of the order
of €. Indeed, sincethe Lagrange and Hamilton functions
arerelatedasL = p,v,— H, thenfor anarbitrary variation
in the momenta one has (here and below the summation
over atwice repeated suffix is understood):

5L = BV -ZTHnEBDH =(v, - v,)3p, =0

In the above, we also used Hamilton’s equation
_0OH
~op,

Further, Dirac distinguished between two types of
equations. To onetype belong equationssuch asEq. (2.2),

144 \
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n

which does not hold after the variation (he called them
“weak” equations). In what follows, for weak equations,
adopting Dirac’s nomenclature, we use a different equality
sign = from the usual. Another type constitute equations
such as Eg. (2.1), which holds exactly even after the
variation (he called them “strong” equations).

If quantities dL/0v,, are not independent functions of
velocities, one can exclude velocities v, from Egs (2.2)
and obtain one or several weak equations

o(q, p)=0, .. (2.3)

containing only g and p. In his formalism, Dirac [1-3]
used the following complete system of independent
equations of thetype (3):

O (@, p)=0, (M=1,2,..M). ... (24

Here the word “independent” means that neither of
the ¢’s can be expressed as a linear combination of the
other @’s with coefficient depending on q and p. The
word “complete” means that any function of g and p,
which would become zero allowingfor Eqg. (2.2) and which
would change by € under the variation, should be alinear
combination of the functions ¢, (g, p) from (4) with
coefficients depending on g and p.

Finally, proceeding from the Lagrangian to a Hamil-
tonian, Dirac [1- 3] obtained the following central result:

Hgy = H (a, p)+u,@, (a. p)

Equation (2.5) isastrong equation expressing arelation
between the generalized Hamil-tonian H_ and the
conventional Hamiltonian H (g, p). Quantities u_, are
coefficients to be determined. Generally, they are
functionsof g, v, and p; by using Eq. (2.2), they could be
made functions of g and p. It should be emphasized that
H, = H (g, p) would be only a weak equation—in
distinctionto Eq. (2.5).

Equation (2.5) shows that the Hamiltonian is not
uniquely determined, because alinear combination of @'s
may be added toit. Equation (2.4) are called constraints.
The above distinction between constraints (i.e., weak
eguations) and strong equations can be reformulated as
follows.

.. (2.5

Constraints must be employed in accordance to
certain rules. Constraints can be added. Constraints can
be multiplied by factors (depending on g and p), but only
on the left side, so that these factors must not be used
inside Poisson brackets.
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If fis some function of g and p, then % (i.e, a

general equation of motion) in the Dirac’s GHD is

df

& :[f,H]+um[f,cpm],

... (2.6)
where [f, g] is the Poisson bracket defined for two
functions f and g of the canonical variables p and g as:

of ag of 9
[fg] =2 -2 8

wherer is an index put to stress the fact that in genera
therewill beseveral generalized coordinates and momenta.
Substituting @' in(2.6) instead of f and taking into account
Eq. (2.4), oneaobtains:

[0, H]+u,, [0, 0,]=0.(M=1,2,...,M). ... (2.8)

These consistency conditions allow determining the
coefficients u..

3. APPLICATIONS OF THE BINOMIAL
POTENTIAL

3.1 Pionic Atoms Described by the Klein-Gordon
Equation of Reativistic Quantum Mechanics

Relativistic treatments of the hydrogenic atoms are
typically presented working with the Dirac equation,
whichisarelativistic wave equation for spin-1/2 particles.
However, in the literature one can aso find a treatment
of relativistic hydrogenic atoms ignoring spin; that is,
working with the Klein-Gordon equation (hereafter, the
KG eguation) [8, 10-13].

The radial KG equation for the problem of the
hydrogenic atomisgiven by:

2 _ 2
d ?+gdj+%_£_l(l+1)2(2a) Or=0.
do® pdp [ 4 p B8

. (31)

2
where Z is the nuclear charge and o = € Di isthe
ch 137

fine structure constant. Other notations in Eqg. (3.1) are
asfollows:

International Review of Atomic and Molecular Physics, 1 (2), July-December 2010 /

P D F To remove this message, purchase the
product at www.SolidDocuments.com

5 SaLID

A\ = ZaE/(M?c* - BA)Y?, p=(r,
B =2 (M%c* - E?1/2/(he).

Theradial KG Eg. (3.1) for the Coulomb potential is
equivalent to the radial Schrodinger eguation with a
potential U and an energy W, such that

U/(4W) = Np + (Za)?/p?, (W< 0),
whichisabinomial potential.

For usual hydrogenic atoms, thefine structure splitting
predicted by the KG equation is greater than what is
observed experimentally [8]. However, for pionic (and
kaonic) atoms, the KG equation becomes exact assuming
the nucleusto be point-like. Indeed, the pionic atomisan
exotic hydrogenic atom, where the atomic electron is
substituted by anegative pion, whichisspinless. Negative
pions are spinless particles of the same charge as
electrons, but 273 times heavier than electrons.

3.2 Precession of Planetary Orbits

In his seminal paper, Die Grundlange der allgemeinen
Relativitasthoerie [7], Einstein showed that general
relativistic effects perturb the Kepler potential by an
additive term proportional to 1/r? and used it to cal cul ate
the precession of Mercury’s orbit around the sun. His
calculations for the precession yielded 43”/century, which
was later confirmed by observations. There is a number
of textbooks on general relativity presenting this result
[15-17].

3.3 Radiation of Nonrelativistic Particlesin a
Central Field

Karnakov et al. [14] derivethe spectrum and expressions
for the intensity of dipole radiation for a classical
nonrel ativistic particle executing nonperiodic motion. The
potential in whichthe particlesunder consideration move

isof theformu (r) = 9y % Theauthorsof this paper
ror

apply their results to the description of the radiation and
the absorption of aclassical collisionlesselectron plasma
in nanoparticlesirradiated by anintense laser field. Also,
they find the rate of collisionless absorption of
electromagnetic wave energy in equilibrium isotropic
nanoplasma.

4. DYNAMICAL SYMMETRIES BY FRADKIN

Fradkin [5] has shown that all classical dynamical
problems of both therd ativistic and non-relativistic type,
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dealingwith acentral potential, necessarily possess O (4)
and U (3) symmetries. Thisled himto ageneralization
of the Runge-Lenz vector in the Kepler problem. Here
we will briefly present his results relating to the
generalization of the Runge-Lenz vector and the
construction of the elements of the Lie algebraof O (4)
and SU (3) in terms of canonical variables.

In the non-relativistic Kepler problem the force on
the affected particleis aninverse square force given by:

. (4.1)

and the overdot denotestotal differentiation with respect
to time. In the Kepler problem, the Hamiltonian and the
angular momentum vector L arethe conserved quantities.
There also exists another conserved vector quantity,
namely the Laplace-Runge-Lenz vector, or simply the
Runge-Lenz vector defined as

L

A= (-2mE)2 (pxL - AmF) .. (4.2)

Thisvector liesintheplaneof theorbit and poi ntsfrom
the nucleus to the perihelion of the orbit; some authors
refertoitastheeccentricity vector [10], asshowninFig. 1.

Center of force

Fig. 1: Direction of the Laplace-Runge-Lenz (LRL) vector A within
the elliptic trajectory, corresponding to the motion in a
Coulomb field or aKepler-Newton field

Fradkin found, by differentiation via the standard
Poisson bracket formalism, that for the Kepler problem,
and indeed for all central potential problems, that A, L,
and H satisfy thefollowing closed Lie algebra:

[A.H] = [L.H]=0

Hh L E = il
146 \
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B—i' A E = A
%, AjE: sijkLk

It is seen that the Lie algebra given above is
isomorphicto that of the generator of the O (4) symmetry
group, whichisthe group of orthogonal transformations
representing rotations in four dimensions. Fradkin also
concluded that if the existence of the Runge-L enz vector
is simply to ensure that the plane of the motion is
conserved, then it should always be possible to find a
vector anal ogousto the Runge-Lenz vector for all central
potentials.

.. (43)

Fradkin proposed ggeneral izgti onfor the Runge-Lenz
vector by choosing r, L, and f x L asamutually orthogonal
triad of unit vectors. Thisunit Runge vector is

k = (KE) F + (KIL) L+ (KEx L) F x L,
. (4.9)

but sincethe unit Runge vector isin the plane of the orbit
and the angular momentum vector is perpendicular to the
plane of motion, then the second termisidentically zero,

and (12 O |_) rk may be chosen to be the direction from

whichthe azimuthal angle 6 ismeasured (with the positive
sign given by aright-handed rotation about L), then we
have:

cos® and kExL=sin@

F Ik .. (45)

thus

k .. (4.6)

Defining u = 1/r, we may write the following diffe-
rential equation for u and the azimuthal angle 8 in terms
of the energy E, potentia V and angular momentum L.

Bd_ug = @E(E -V)-u?

oo oL

(cos@) i +(sin @) Fx L

- (A7)

At this point we note the following relations and
definition:

cosb = f (u, L2, E)
snB = Bai \—(rﬂm)
ou L

Further, after putting V=—Aufor the potential of the
Kepler problem, the orbit equation becomes:

.. (4.8)
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f =cos® = [meL? + (Am)2] 72 (L2u - Am). - (4.9)

The unit Runge vector may be expressed as:

~ ] of 0. , -, of
k= —~Uu—+L“—pxL . (4.
GUE 6Up (4.10)

Its Poisson bracket with the Hamiltonian function
vanishes. Poisson brackets containing between the
components of the unit Runge vector also vanish. A
compl ete set of Poisson bracketsinvolving the unit Runge
vector isthefollowing:

fHl=0 i =0

i1 N

L.k |=eke fori, k=123, .. (4.11)
5. FURTHER RESULTS ON THE

GENERALIZATION OF THE LAPLACE-
RUNGE-LENZ VECTOR

Holas and March [6] provided afurther development of
the unit Runge vector. They focused on the construction
and time dependence of the vector itself rather than on
the dynamical symmetries of central potentials or the
algebras satisfied by the unit Runge vector.

Holas and March used the relation

+u[GL—LO)+W[(I2—I20), .. (6.1)
where A isthestrength of thebinomial potential, Zeisthe
nuclear charge, —e istheelectron charge, 1 isthereduced
mass, u and w are yet unknown constant vectors (to be
determined |ater) of the GHD formalism, Lyand k,are
thevaluesof the angular momentum and unit Runge vector
in aparticular state of the motion so that in those states

L=L, .. (6.2
and
k = 120 . .. (6.3)
We definethefollowing quantities:
2 Zez
o P2
2u r

N
H; = H, + .. (6.4
B 0 2Hr2 ( )

where the subscript B stands for binomial. The
consistency conditionsfor thissystem are:

2 yH,==0
pxL :%—@Lxr .. (5.1) B: gg . ... (6.5
r reL H< Hyg Bz 0
to rewrite the unit Runge vector, Eq. (4.10), as: _ _ _
First we must derive theform of the unit Runge vector
K= f f_@i [ xf (52 inthisprgblem. Itisderived in Appendix A. We arrive at
Lr du theresult:
wherethe function fis specified inthe next section. This ~_ 1+99 ;PO
is the form of the unit Runge vector with which we k \/1_,_ g2 + gg + gzgg Lr
shall work.
Daf _gli+gd) s
6. APPLICATION OF THE GENERALIZED H+gg (1+ )2
HAMILTONIAN DYNAMICS TO THE K 0 99%
BINOMIAL POTENTIAL _ 3
In our case, the angular momentum vector and the unit Eg g EL xf .. (6.6)
Runge vector are constants of the motion for a centrally Ou = Us
symmetric potential and consequently have vanishing where
Poisson brackets with the Hamiltonian for the system 1+
and are thus suitable constraints for the application of f = 9 9% . ... (6.7)
GHD. Following Oks and Uzer [4], the Hamiltonian for \/1+ 9° + 95 +9°9¢
thissystemis:
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and
8
of  ONL*o’+ g5+ 9708 C Py
- =0 2 L ,
ou Ol+ag,)(o+ga?) [OOUC
H1+92+g§+gzg§)% i

.. (6.8)

The functions g and are g, defined in Appendix A.
The unit Runge vector as appearsin Eg. (6.6) isageneral
form for any value of the parameter A. Hereafter,
however, we only consider a small perturbation in the
binomial potentia suchthat A « L. Wetherefore perform
aTaylor seriesexpansion about A = 0 and keep only terms
linear inA:

.. (6.9)

where k(" =9 denotesthe unperturbed unit Runge vector,
which, by definition, isequal to the normalized classical
Laplace-Runge-Lenz vector. Thederivativetermisfully
worked out in Appendix A.

The next step is to calculate the Poisson brackets
given in Eq. (6.5) to arrive at a functional form of the
consistency conditions and thus solve for the unknown
vector coefficients u and w. We begin with the angular
momentum bracket:

A\
2ur

2

Hi H E= [Li’HO]+§-i1

i

+u; lLi’(LJ' ~ Lo, )J+Wi lLi,(lzj _ROJ)J
.. (6.10)

Clearly the first two terms vanish since the angular
momentum is conserved in any centrally symmetric
potential in the absence of external forces. So we obtain:

A, HE=uxL+wxk=0 .. (6.11)

We now proceed to the calculation of the time
derivativeof theunit Rungevector viathe Poisson bracket:

CH | = [k AL
I.k’ HgJ - [k" H0]+§I’ 2w2E
wu; KL - L)
W, I.lzi'(lzi _QOJ)J:O'

148 \
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.. (6.12)

Thefollowing result isobtai ned:

[k H,|=uxk=0 .. (6.13)

A well-known relation between A, L, and H is:

2H,L?
pze?

1+ .. (6.14)

We seek the unknown vector coefficients in the
following form:

u = ak, +a,L,+ak,xL,

W b1|20 +b2L0+b3|20><L0

... (6.15)
Substituting EqQ. (6.15) into Eq. (6.11) yields:
allzo xL, +a, (120 XLO)XLO —bZIQO xL,
+b, (IQO XLO) xk,=0. .. (6.16)

For thisexpression to vanish and from Eq. (6.31) we
conclude that

a=b, and a,=a;=b;=0. .. (6.17)
We now have:
U= ailzo
W = bk, +a,l - .. (6.18)

Now we need to find a, and b, in terms of the
coordinates, momenta and integrals of the motion. Oks
and Uzer [4] achieved thisfor the Coulomb potential by
calculating—at the similar stage—the equations of
motion of r and p. However, we found that in our case,
the use of the unit Runge vector makesthese cal culations
very tedious (see Appendix C, where we calculated the
eguationsof themation).

Luckily, an alternative is available. Instead, the
coefficients sought may be found in amuch simpler and
straightforward manner by calculating the frequency of
precession of the Runge-Lenz vector (which, by definition,
is equal to the precession frequency of the unit Runge
vector). Thederivation of thefrequency of precession of
the Laplace-Runge-Lenz vector and further details on
finding the unknown vector coefficients are given in
Appendix B.
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We remind that for any vector D that precessesin
the plane of motion, thefollowing equation holds

d_D =W xDO w = id_D
dt - precession precession D dt
... (6.19)

since the frequency vector is perpendicular to the plane
of theorhit. Also, it should be noted that in accordanceto
the second part of Eg. (6.19) we need to deal only with
absolute values of vector D.

The precession of the Kepler orbit, caused by the
additional term in the binary Hamiltonian (by the term
additional to the Coulomb potential), leads— generally
speaking—to oscillations of both the eccentricity of
the orbit

= 22 ... (6.20)
and of the square absolute value of the Laplace-Runge-
Lenz vector

2H, L 212 A
A2 =1+—2 =1+ 2 H'B 5 2
pZe pZe 2ur
.. (6.21)

Following Oks and Uzer [4], we will investigate the
case of radiationless states, i.e. states in which the
classically-calculated radiation of the electron orbiting the
nucleus vanishes. In accordance to Oks and Uzer [4], in
the radiationl ess states the el ectron has zero vel ocity, but
a non-zero momentum—this became possible due to
inclusion of the integral of the motion as constrainsinto
thegeneralized Hamiltonian. Therefore, in theradiationless
statesthe oscillations of the absol ute value of the Laplace-
Runge-L enz vector should al so vanish:

2
di = O.
dt

This condition will allow finding the unknown
coefficientsin (6.18) intermsof constants of the motion.

The calculation of the left side of Eq. (6.22) is, of
course, carried out through the Poisson bracket formalism
and isgiven by thefollowing expression:

€

.. (6.22)

where the first Poisson bracket is of the binomial
Hamiltonian with the generalized Hamiltonian and must
vanish sincethebinary potential isconservative, and the
bracket containing the square of the angular momentum
must necessarily vanish in a central potential. Since we
are concerned only with the first order contributionsin
termsof A, thenintheright side of Eq. (6.23) itissufficient
to calculate al factors next to A in the zeroth order. The
details of the calculations of the right side of Eqg. (6.23)
are presented in Appendix B. Theresult obtained for the
frequency, hereafter the generalized frequency 0, is:

: R e
b, r Lo
a+ 2 - N
a %_'_ 2H,L, ED <i 7e? 1+ 2HoL,
g 2 4 nece 2
H uze? HH \r ze’ [
= w[L+ B (H,, Lo) . (6.24)

The above expression for the generalized frequency
contains only one coefficient b, that still has to be
determined.

One of the central points is that the generalized
frequency variesfrom the classical frequency by afactor

denoted in Eq. (6.24) as |1+ B(H,, Ly)|. This is
equivalent to the foll owing timetransformation:

t -t =t/(1+B(H,, L)) ... (6.25)

Thisis anew kindof non-Einsteinian time dilation.
The radiationless states correspond to B (H,, L) = -1.

dA* 212 A C Indeed, when B (H,, L,) reaches — 1, the time becomes
a [A ’ Hg]: 2 %"B T2 E HyC  dilated by theinfinite factor and the classical radiation
pzZe 2ur E )
vanishes.

AP C Upon substitution of this scaled timeinto all calcu-

=~ —-> 07 Hg ... (6.23) . . : . :
u-Ze B'_ E lations, all quantitiesregaintheir standard functiona form.
International Review of Atomic and Molecular Physics, 1 (2), July-December 2010 / 149
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Thisisin complete agreement with the results of Oks
and Uzer in[4]. With Eq. (6.25) in mind, we note that the
generalized period of the motion of the el ectron about the
nucleusis

T
g = |1+ B(Ho, Lo)| : ... (6.26)

At this point it is necessary to point out that the
equationsrelevant to theresultsderived for the generalized
frequency resulted independent of a, and, therefore,
without loss of generality we may set a, = 0 in the
generalized Hamiltonian. Here, as in Appendix B, we
substitute Eq. (B.19) into the generalized Hamiltonian and
obtain:

uze’B (H,, Lo)%"' ZHZOIEO E
- Hee R —
Hg=He* ., 2Z%®+37%'A? L2 (k[ko 1)
82°€® +247%" A% + 3A" 2H,L,
1+
pze?
_ uze’B (Ho, Lo) A° o
BT PO T, ek, 1)
L -0
826’ +247%* A +3A" A
... (6.27)

With the goal of a generalized frequency for non-
radiating states of motion of the electron, we note that
following Oks and Uzer [4], the generalized frequency
from (6.24), may be rewritten as:

Wy = m0\1+B(H0,L0)\=H2H ‘3§\1+B(H Lo)|
0
... (6.28)

where, again, the quantitiesdiffer fromtheir gandard value
by the factor 1 + B.

Equation (6.28) illustrates once again one of the
central results of the GHD: the generalized frequency
can vanish (i.e. 0, = 0) despite a non-zero standard
classical frequency w, # 0. This occurswhen B (H,, L)
=-1, corresponding to astabl e, nonradiating state of the
classical atom.

For determining the last unknown coefficient b, —
andthus B (H,, L,)—we employ the same experimental
fact asused by Oksand Uzer [4]. Namely, highly excited
atoms primarily emit radiation at a non-zero, finite
frequency determined by the limit H; — 0. Thus, it is
expected that there exists a limiting value for the

150 \
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generalized frequency as the Coulomb Hamiltonian
approaches zero. We have

1

’ 2H,['B

Tt = I, F e g 1 B (o Lo) =0
. (6.29)

andthisyidds:
2 E? B
B(H, L) Q e Ze2 _Q
2H 2H,

.. (6.30)

the contribution of —1isnegligiblesinceinthelimitasH,
approaches zero, the term containing Q predominates.

Now let us consider a stable, radiationless state, so
that w, = 0. In this stable state we denote H, = H (the
subscript Sis for “stable™). We must have:

B(Hg L) = -1, . (6.32)
thus
3 - 8 3
Q = -|2H |2 |uze’| 2 =~ /—uZez GBE
= -w, (HS’ LS) . (632)
and
_ _|Hs|2 —_% (Hs, L)
B(H,, Ly) = ™ N N R (6.33)

Upon substitution of Eq. (6.32) and (6.33) into Eq.
(6.28) we arrive at:

Wy = wy (HSvLs)_wo (HO'LO)' .. (6.34)

We find then that the average frequency in the
classical process of radiation in aweakly bound stateis
givenby:

wmmal +wf|nal 00initial
(w05) == ==
2 2
- %% (Hs, Ls) =y (Ho, L) ~ % (Hs, Ls)
2 2

.. (6.35)

where the final frequency is taken to vanish since there
should no longer beany radiationinthefinal state of motion
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Application of the Generalized Hamiltonian Dynamics to a Modified Coulomb Potential

and we also used the fact that w,(Hg,Lg)>>
Wy (Ho, L) -

At this point, in keeping with the treatment of the
problem as in [4], we take into consideration Planck’s
hypothesis. According to Plank, the smallest possible
changein energy is proportional to the frequency of the
motion, and the proportionality constant is the Planck’s
constant in Sl units. In our particular problem, however,
thisis not so simple because, asis established in Holas
and March [6], the unit Runge vector is only piecewise
continuous, reflecting thewell-known fact that the motion
in the modified Coulomb potential isonly conditionally
periodic (as opposed to periodic). For a conditionally-
periodic motion in a central field, the relation between
changes of the energy and of the angular momentum
should berefined asfollows:

T, Ty
[AEdt = §ALdO = [wALdt ... (6.36)
0 0

where T, isthe period of radial motion and T, isthe period
angular motion. Equation (6.36) is justified by the fact
the change in energy, AE/At = wAM/ At, is commesurate
with the change, in this case a decrease, of the size of
the orbit. Therefore, the integral in the left side of Eq.
(6.36), containing the energy, should be over the period
of radia motion. Intheright side of Eq. (6.36), theintegral
contains the angular momentum, which is the variable
canonically conjugateto theangular variable 6, therefore
the integration should be performed over the period of
angular motion.

Combining Eqg. (6.36) with Planck’shypothesiswe get:

Te
TAEdt = $ALAB = (ALt 1= AE
0 0 Ty

= (L) =h ()

In Eq. (6.37), the change in energy must, of course,
satisfy therelation

= [Hs[=[Ho|=[Hs|

.. (6.37)

h

We note that in both sides of the Eq. (6.39) only
physical quantities pertaining to the stable states are
present. Also, in Eg. (6.37) we have

T

_r

To

We note that as A ., 0, Y= /1+% - 1, which

impliesthat T, =T, , asknown for the Coulomb potential.
Thus we have

A\

L2

(0V)
2 ==; y= 1+ .. (6.40)
W

< |k

1 h
AE = V|Hs|:5wo (Hs’ Ls)

_ﬂ—(nwr+mw9)=ﬂ U=
T2 2 2%' y%?

3
IS -
- E—l 2“-224

wheren, m=1, 2, 3.... In the third step of Eq. (6.41) we
used the relation between the frequencies given in

Eq. (6.40) and we substituted wy, (H, Lg) for theterm

. (6.41)

M, which is the average of the two frequen-
ciesthroughout the motion (hence the 1/2); and, further,
theexpression must bevalid not only for thefirst harmonic,
but for all occurring harmonics of theradial and angular
frequencies, hence the integer factors n and m. We have

also used:
|H S| 2
2250 2 Z .. (6.42)
Equation (6.41) shows, in particul ar, that
1 3
—IHsl—hE”— Zz7e [Nl - (643

- h<wg> ==y, (He Lg) ... (6.38) Solving Eq. (6.43) for Hg, we obtain the final the
2 expression for the absolute value of energy of classical
or non-radiating states in terms of the integers n and m:
h 2.4
He|=— He, L 2uZ e
| s| 2000( s s). ... (6.39) |Hs| :%, nm=12.. .. (6.44)
B?(ny +m)
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Now we comparethisclassically-derived result with
the known quantal result, which can befound, e.g. inthe
textbook [18] in problem 3 after Section 36:

2uz%*
= " ,0=0,12...
W (@i+d)y+(n +p Ot

\ H

quantal ‘

... (6.45)

In Eq. (6.45), n, and ¢ are the radial and angular
momentum quantum numbers, respectively. We see that
in the quantal result, the ground state (¢, n, = 0), agrees
exactly with our classical expression (6.44) for n, m=1.
Furthermore, our classical result coincideswith the quantal
result for all odd nand m, i.e. when these integers are of
thefomn=2k+l1andm=2q+ 1, whereq, k=0, 1,
2....

We believe that the expression t _ t' =
t/(1+ B (HO, LO)) from Eq. (6.25), representing the new
phenomenon of thenon-Einsteiniantimedilation, isvalid
for arbitrary A rather than only for A << 1. Thisisbecause
the expression (6.44) for the energy of classical stable,
non-radiating states is in a good agreement with the
corresponding quantal result, the latter being valid for
arbitrary A.

7. CONCLUSIONS

We applied Dirac’s Generalized Hamiltonian Dynamics
(GHD) to studying so-called binomial potential, i.e. the
Coulomb potential plusan additional term proportional to
1/r2. We obtained an explicit expression for the additional
(to the angular momentum) vector integral of the motion
for the binomial potential: the unit Runge-Lenz vector. In
spirit of the GHD, we used the unit Runge-Lenz vector
and the angular momentum vector as constraints added
to the classical Hamilton function (called Hamiltonian for
brevity). Using consistency conditions, we derived the
explicit expression for the generalized classical
Hamiltonian and showed that it leads to a much richer
dynamicsthan the usual classical dynamicsfor the same
potential.

Then following the logic from Oks-Uzer’s paper [4],
we obtained classical stable, non-radiating states—
classical “discrete” states—for a spinless charged
particle, such as, e.g. pion (or kaon) in the binomial
potential. We showed that energies of these classical
discrete states agree with the corresponding quantal
resultsfor pionic atomsintheground stateand in all states
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of odd principal and angular momentum quantum numbers.
We demonstrated that these results can be interpreted as
anew (non-Einsteinian) time dilation, like in Oks-Uzer’s

paper [4].
It is worth emphasizing some interesting physics of
theclassical stable, non-radiating statesfollowing paper

dr_@z

il 0 =
[4]. In those states, pm at ,sothatr (t) =r,and

p (t) = po, Where r, and p, are some constant vectors.
Thus, the particle (for example, the pion) is motionless,
but its momentum is nonzero. Thisis not surprising: for
example, for a charge in an electromagnetic field
characterized by avector potential A, itisalso possibleto

e
p-—A _ e
havey=__MC _—qg whilep=—A=Z#0,

m mc

Another interpretation— complementing and
consistent with the above one—isthefollowing. Let us
consider apionic atomin an arbitrary classical state (not
inone of the stable states). Dueto anon-zero acceleration
of the pion, the atom radiates and its energy diminishes.
Asitsenergy approachesthe nearest classical stable state,
thetime getsmore and more dilated. Asthe atom reaches
the latter state, the time stops and so does the radiation.

Thereisnothing miraculousinthefact that stable, non-
radiating states of atomic and molecular systems can be
obtained classically viathe GHD. Indeed, | et us point out
that formal mathematical solutions of the Schrddinger,
Klein-Gordon, and Dirac equations do not show by
themselves any “quantization”, any discreteness property.
Discrete energy levels (quantization) are obtained by
imposing constraintsontheformal solutions— constraints
intheform of boundary conditions(including conditionsat
theoriginandat infinity). Having thisinmind, it might be
now lesssurprising that theinclusion of constraintsinthe
classical Hamiltonian also leads to stable states
characterized by adiscrete set of energies.

In our study we ended up with twice as many stable
states asin the corresponding quantal problem. Namely,
theclassical stable states, characterized be even harmonic
numbers n and m in Eq. (6.44), do not have quantal
counterparts. It would beinteresting to try obtaining the
corresponding experimental resultsfor pionic (or kaonic)
atoms and to compare them with the predictions of the
two theories. However, it should be emphasized that for
pionic (or kaonic) atoms of a relatively small nuclear
charge, the difference relates only to the fine structure
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Application of the Generalized Hamiltonian Dynamics to a Modified Coulomb Potential

withinthe multiplet of agiven principal quantum number
N—without affecting the primary energy scaling, where
|E|isproportional to 1/N,

Regardless of the possible outcome of such bench-
mark experiments (which are difficult to conduct), we
would like to make the following final comments. Any
classical formalism has obvious advantagesover quantal
formalisms— because quantal formalisms deal with
operators and therefore lack “transparency” and an intuitive
perception. Nevertheless, we do not advocate that the
classical GHD isbetter thanthequanta formalism. Rather
weinsist onpluralismintheanalytical foundationsof atomic
and molecular phenomena. One of our intentions is to
illuminate the variety of the underlying theories and to
provideastimulusfor abetter physical understanding of
atomic and mol ecul ar phenomena.

After all, any physical theory isnot the ultimatetruth,
but just amodel, whose limitations—if not known now
—will be discovered in the future. Let us refer to the
examplethat for the overwhelming majority of practical
purposes, the4 D-space-time “slice” of 10D string theory,
or of the 11D M-theory, or of the 12D F-theory (see,
e.g0., [19]), is a sufficient useful model. Similarly, we
believethat despite being just amodel, the applications of
the classical GHD to atomic and molecular phenomena
areuseful and will be further devel oped.

is the effective angular momentum. The second term in
(A.2) correspondsto the presence of the term proportional
to 1/r2inthebinomia potentid. Theintegra in Eq. (A.1),
upon the substitution of the Coulomb potential, may be
rewritten as:

u du’
= uj ... (A3)
T
vl
If we now introduce the substitutions
Ze u 2EL?
22e4 E . (A'4)

then theleft-hand side of Eq. (A.3), intheindefiniteform
of theintegral, becomes:

du’

I
Ju, —u)u-u,)

u+u2 E

et

. (A5)

APPENDIX A after some simplifications. It isconvenient to define
Derivation of the Explicit Form of the Unit N 762
Runge-Lenz Vector for the Binomial Potential u; = ul—zuzz% .. (A.6)
Thefunctionf, given by
and thus Eq. (A.5) reducesto:
il H y-%t%
f—cosee-—J E V(}/ Eﬁ Ooadu g 2 C
@k/iul -u)(u —uJE
. (AL
where V (r) is the Coulomb part of the binomial tan—lH u-u; E (A7)
potential and HJ(u, ui(u u,) F S
12 = [2-A . (A2) Puttingin thelimitsof integrationyields:
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following compact form:

2H  u-uy H

%an u, —u)u-u,)H E of _H Gf _ 9(1+9§) ¢3 Hg‘93E

f =cos ) ou +090, (1+ggo)2 Hu—u3 '
D—tan_lH Up —Us EE

H o BVl -uue-u) . (A14)

where the term in the second set of parenthesis is the

R
Itisconvenient to define: sSimpii Ication O EWet usarriveat:
g=g() = L ;9 (Up) = 9o Kk = 199, f—pl]

- u-w) J1to’+gi+g’e; U

(A.9)

2
Usingtheidentity J ot _ ol 902 f3E
1+9dy (1+gg,)

cos(tan‘1 (A) -tan™ (B))

1+ AB 0-0" ¢ (A.15)
, ... (A.10) U=U, ' T

\/1+ A’ + B” + A’B* This is a general result valid for any value of A.
However, since we are considering asmall perturbation
in the binomial potential, such that A « L,, then we may
1+ performaTaylor seriesexpansion of the unit Runge vector

f = 99 . .. (A.12) with respect to A about A = 0:
J1+g? + g2 + g%g? -
Kk = kn=0 4 o 9K
Consequently, the partial derivativeinthe unit Runge dA
vector becomes:

we may then write

.. (A.16)

A=0

where i (*=0) denotesthe unperturbed unit Runge vector,
which, by definition, isegual to the normalized classical

g % E Laplace-Runge-Lenz vector. Differentiation with respect
of  DNl+0%+0i+0%0: Crpg toAyields
- =0 ( 2) 0 , ~
ou o _(1+9g,)lg+g9s) HouC dk _df o pl Hd o 1 otH .
= - ,
%(1+gz+g§+gzgg32% dA A\ Lgr HIADuD 2L duf
- (A.17)
.. (A.12) oL
where The second term in the parenthesisis due to a—e” =
d 1
a_g = 1 We now proceed to calcul ate the above quantities.
u Ylu-u)u-u,) Lt
For thefirst term:
Hi- it E(—2u+u1+u2)
10 2 0 of ot og , ot dg, A18)
2 ((-u)u-u)? d\ " 0g OA  0g, OA -
.. (A.13) Where
We may use the definitions (A.9) and (A.11) to of _ _Gf _ g (1+ 93) £2:
rewrite Eq. (A.13) and put it into Eq. (A.12) to get the 0y 1+g99, (1+gg,)
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Application of the Generalized Hamiltonian Dynamics to a Modified Coulomb Potential

f f 1+ g? f
o _ o _sleg)s 00 9
ag, 1+99dy (1+gg,) dA [PuC
as can be seenin Eq. (A.14); and 0 g 3 g(1+g§) fzgi g—g3E
ag 1 0g ou “drge, (ool oA EU—US
N~ 2Lg Ou Ol
on « « e (gl ool go)gdﬁﬁg—gsg
99, 1 0dg, dy B (1"'990)2 (1+ggo)2 (1+ggo) FAA QU —Us
= - i=1,2,3 .. (A.20)
oA 2Ly Ou, oL ,
+ Ogef _ g(l+ go) DH]- 3g° Hdg
Wefind: é+ g9 (l+ g go) EHU Us Hd/\
dg 1 (U - Uz) 3
_— = —— = . 2
ou, 2(u—u3)2 Yo; _D Of _ 9(1 DDQ g® B du du3E
X 4+, l+ggo Eau ugodN  dA T
ou, _ _2u Lzl 2uE .. (A.23)
0L Lee L%
We note that substituting A = 0 amounts to the
dg, _ _1 (ul —u) 3. substitution L — L inaccordance with Eq. (A.2).
oy, 2 (U _Us)z :
APPENDIX B
ou, _ _, I; [2uE Derivation of the Frequency of Precession of the
OL Lyt Le L aplace-Runge-Lenz Vector
dg 9 Westart by explicitly writing the generalized Hamiltonian
a—o = —_—0; in Eq. (6.23), substituting the vectors u and w from
Uy U=l Eq. (6.18):
ou 2u 2 2
a|_3 =—L_3_ .. (A.21) ngg__ZiJr /\2
eff eff
and ! r 2ur
dg, _ 1 (u—uz) g% +aglo [k +al [k, + bk Ok = b, - (B.1)
oy, 2 (U - U3)2 o The Poisson bracket of the binomial term, which is
P ’ simply aterm inversely proportional to the square of the
oo Sy B uE distance, with the generalized Hamiltonian (B.1) is, in
OL g Let Lt accordance with Eq. (6.23):
g, 1 (u-u) da?  AL? D1 O
aul - 2 (u —US)Z gOf dt uZZe E_ QE
ou, u, AL? D 2r m 01 A
= - - 1/2 E = + ,—
0L Lt L% H UZZe g rt by 2 A%
. (B.2)
9% _ _ 9o . _
. u-u where we have made the substitution
Ug u-u,
0 2u S(A=0) = —
Y s . (A.22) k
OL gt Lest whichisjustified by definition; it hasalso been takeninto
The second derivative termisfound to be: account that the Poisson bracket of the binomial potential
with the angular momentum vanishes and the bracket
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with b, must vanish as b, isconstant. It isworthwhile to
recall that the quantitiesindexed by a0 are constant and
consequently may befactored out of any bracket inwhich
they appear. In (B.2) we note that:

01 AJD 1m0 Ar
Fe DT age AR A g Al
10 D Aol ,C
SAFT N A BT AE- 6
and

01 C 2)(I aAj
AC=E""2

Er_ E r* op
since the second term of the bracket is zero because the
coordinatesand momentaare assumed to beindependent
of eachother. Thus, theentirecal cul ation of thefrequency
of oscillation of the Runge-L enz vector hasbeenreduced

to the calculation of the derivative of the of the Runge-
L enzvector withrespect tothemomenta. Thisisasfollows:

oA 9

1 X,
T
0 1
= % Zez Ejkl‘c‘lmn Py Xim P

. (B.4)

= uz—lez (6Jm6kn —5J-n6km)
(81X P + 810X i)
" nze? (2X P =XPy =r méij) .. (B.5)
so that (B.4) becomes:
Eri’Aéz uz“(xrm 2. . (B6)

With the simple result found in (B.6), we may now
calculatethelast part of (B.4) in order to get afinal form

for (B.3). We have:
LB ARAAEL AL
= _pszr“A (gt o= par?)
uzz ; //:2 farm-pa?) | @)
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Then, finally, we arrive at:

dA” [, _ AP
F = [A 'Hg]_ uZZez
2r [p 01 A
% pr *0Ay g2 A
2AL2
pZZez rip
] : i
1+ o = T
O 1+=°9°0[ pZeZ\/l 2H, I;O[l:
H nze® H nze® H-
.. (B.8)

Thisexpression wassignificantly simplified in form
by carrying out the dot product of the coordinates and
momenta with the Runge-Lenz vector:

2
pu\:ﬂ
r

rtA = -r; .. (B.9)

pze?

Furthermore, since our calcul ationsarelimited to the
first order in terms of A, then every factor next to A in
the right side of (B.8) can be calculated in the zeroth
order interms of A. Thereforeit islegitimate to replace
the quantities 1/r* and 1/r® in the right side of (B.8) by
their averages over the unperturbed Kepler ellipse.

These averages are determined as follows:

2n 2
- 1TE P Hge=2tE
21 o [JL+&ecosO 2p

. (B.10a)
1y _ 1= %‘D dde——8+2482+3€4
<r4> o +€COSGE B 8p*
.. (B.10b)
where
LZ
p= E; and Szz—ez . (B.1D)

We shall keep the definitions of the momentum and
the eccentricity asin (B.11) for the sake of brevity, but it
is to be understood that these quantities are in terms of
constants of the motion. Now substitution of (B.11a, b)
into (B.8) yields:

International Review of Atomic and Molecular Physics, 1 (2), July-December 2010

P D F To remove this message, purchase the
product at www.SolidDocuments.com



Application of the Generalized Hamiltonian Dynamics to a Modified Coulomb Potential

. (B.12)

Next we find the frequency of precession. Since we
calculated the time derivative of the square of the
magnitude of the Runge-Lenz vector rather than the
magnitude to thefirst power, we make asmall correction
to (B.12) to arrive at our desired result:

2
(e P ale P H F
dt dt A d 0 2432 12 C
R = S
1 daz 0 8+24e” +3* 2HoL, [
= A2 T .. (B.13) H uZeZ E
We therefore arrive at: b,
_ 2AL2 1 HZezAz
wprecon - u Ze A2 r_4 r @)
2 4 ‘a8 +372%eA? Lg
H H/1 H 87%e® +247%*A* +3A* A
E“ b, O\r®/ L2 N
0 2H, L 1 L T - (B.16)
o §+ 020 ) pze? i+ ozoE[ _ _ _
0 pze r pze EE where in the last step we substituted the expression for
the eccentricity and the classical Runge-Lenz vector. We
_ 2AL? 1 rp seefrom (B.15) and (B.16) that in for the case b, = 0, we
I 2H,L, A\r* recover the well-known classical expression. Thus, the
n-ze EJ’ uZe? E appearance of the function B (H,, L,) of Eq. (B.18) isa
result characteristic of the GHD for the central potential
q T asit dependsdirectly on b, , the one remaining coefficient
0 ] <i3> ) from the formalism’s constant vectors introduced in the
bl O \r LO o . . .
O+ 2 - O generalized Hamiltonian.
O §+ 2H,L, ED <i4> uze? [1+ 2Holo O
B uze’® Hi \r puze? E Furthermore, we may solve for b, in terms of the
(B.14) Coulomb Hamiltonian, the angular momentum and B:
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uze’B(H,, Lo)§+2H0|;OE

uze
by 812 22°e® +37%'A* L2
827€® +247%e*A* + 3A* 1+ 2Hobo
pze?
.. (B.17)
or
b = uze?B (H,, L) A?

2 22°¢® +37%'N° 1§

8z24e® +247%e*AZ +3A* A

.. (B.18)

in terms of the classical Runge-Lenz vector. We may
now substitute thisresult into the generalized Hamiltonian
toobtain:

Hy = HB+alL0DkA+a1L |:Bzo

szl e

pZe A~
,  27°'¢®+37%'A 2 k-
L _ 0
82%€® +247%e" A7 +3A" 2H,L,
1+
pze’
.. (B.19)

Furthermore, sincethe equationsrelevant to al results
areindependent of a,, we may, without loss of generality,
set a, = 0, and the Hamiltonian reduces to:

0268 (M, L) e 2

pze? A
- H + k —1
Hy °oa2  2Z'f+3zietA’ 2 ( 0 )
82°€® +247%" A? + 3A* 1+ 2Holo
pze?
7e’B (H,, L,) A A
S+ uze’B (o, Lo) k&, -1)

2 22%¢’+37%'N 1§

82%® +247%* A2 +3A* A

... (8.20)

Thelast step was obtai ned from substitution of (B.19),
where we used the magnitude of the classical Runge-
Lenz vector in terms of the Coulomb Hamiltonian and
the angular momentum. Furthermore, it should be noted
that the generalized Hamiltonian is expressed solely asa
function of conserved quantities.
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APPENDIX C
Derivation of the Equations of the Motion

In classical mechanics the equations of motion for any
quantity are given by the Poisson bracket of the quantity
with the Hamiltonian for the system. Inthe GHD, thisis
extended to the generalized Hamiltonian for the system.
Thus we have:

i=H H,H= [r'HB]+ui [r!Li _Loi]"'Wilr'lzi _IzoiJ

p=F. HE=[p. Hg]+y, [p, L 'LO.]+V"i [p=i2i _QO.]'
.. (C.1)

The equations of motion are known for the pure
Coulomb potential, so we only have to calculate the
contributions due to the second term in the binomial
potential. The calculationsyield:

Po
[x. Hg =%+(blkj+a1Lj)[x,,kj

o ., pOs 0 [puoat
b, E&qapq rf + ° aqapqébr_LauEE
T 0. L% -r2p? pf N C
gTQIZ—UQ[Ler F
Eﬁiqirf +ﬂ6iqiEﬂ£EE
d O apq rL apq grL ourT
+bl/\ag L2 2 zmg E

-r?p |

H rL3 EﬁUD[Lxr]l E

Here we have interchanged the order of differen-
tiation since, by assumption, all functionsinvolved are, at
minimum, piecewise continuous and differentiable.

For the momentum we have:

o HoE= _Z_izﬁJr(bl'zj +a1Lj)[pi,I2].]

r r

of f 9 Pl of

Fod, % -5, PLA
0x, ps Tk Ta ox, OrL du

[ of %*%Eﬁ"[mli

uﬁ*’%(pméij —2p;x + pin)

fo]j

=

0=

DDD@DDDDQH
~|o
a
[SY)

rrrrrrrier

I |
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A d
_(blkj +ale)/\J
of . f 0 o of -~ .
équa—r 6ikr_3xk 6lqimrl_ —ug Xr]jE
E 6p? ~ H E
5&1%+7§?[W‘ -
00 rL ou C
0 ﬁ* (@3, -2p,% + p .)ﬁ C
.(C3)

In Eg. (C.3), we note that the dot product with the
angular momentum, the coefficient of a,, vanishesinall
terms except for the term with 9. Furthermore, it is
important to notethat the symmetry of the problemdictates
that theevolution of themomentum and of theradius-vector
should be contai ned intheplane of motion. Therefore, the
only acceptable value for a, is zero— otherwise, the
momentum and theradi us-vector woul d have contributions
perpendicular to the plane of the orbit. In Eqs (C.2) and
(C.3) only thederivativesof thevectorshave beenworked
out fully. Thisisbecausethederivativesof scalar quantities
arebest dealt with asfollows:

0  of
iq@@i—mﬁ

D p %6 f
Er— +
N au

(S

pm E
rL C
C
of X 6 2 9%f
3— —X
aur L oJLou

- (C.9)

H 9 of  gsf agf

|:l].+(_:]g0 ou (1+ggo)2 oul]
D_ (l+go) f3a_g
2 a ( ) ou
u D 1+gg,
auz E‘H‘Z g(1+gg) f3a_g
- (L+gg,)’ ou
H

I v

2
of _ﬂa_ua_r o oL +@190f _9(1"'902]:3E
ox, _ duor ox, oL %, +90 (1+90)
of 6 of — 302 -
rﬁ% ot E oL % @l X8 ng (C.6)
r U — U, du (U—Us) P .
0 & of ou or + o oL For the derivative with respect to the momentum, we
9 Fou or ox, oL ox, |- find:
1 of 6p- of
=55t E % . (C4) o _of oL dp
r ap, ~ oL dp dp,
and
61> 0
0 o =L ys,
axq OrL ourC
DSr d
5iq f Pkékq
pe OF _ [ 6p pﬂ o H oL [
DrL u 2 ou %
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andsimilarly
0  of
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"o 1 a”TE o
. (C8)

After setting a, to zero and carrying out the dot
products, the equations of motion become:
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