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Abstract: Dirac’s Generalized Hamiltonian Dynamics (GHD), a purely classical formalism, is applied to spinless
particles under the influence of a binomial potential. The integrals of the motion for this potential are chosen as the
constraints of GHD and Fradkin’s unit Runge vector is used in place of the Laplace-Runge-Lenz vector. A functional form
of the unit Runge vector is derived for the binomial potential. It is shown — in accordance with Oks and Uzer (2002) —
that there occurs a new kind of time dilation leading to classical stable, nonradiating states. The energy of these classical
stable states agrees exactly with the corresponding quantal results for the ground state and for all states of odd values of
the radial and angular harmonic numbers. The primary application of the obtained results is to pionic (and kaonic) atoms.
Other applications include nanoplasmas and the precession of planetary orbits.

PACS: 36.10.Gv, 45.20.Jj, 03.65.Ca, 31.10.+z.

1. INTRODUCTION

In 1950, Dirac developed a generalized Hamiltonian
dynamics (hereafter GHD) [1 – 3]. The conventional
Hamiltonian dynamics is based on the assumption that
the momenta are independent functions of velocities.
Dirac analyzed a more general situation where momenta
are not independent functions of velocities [1– 3].
Physically, the GHD is a purely classical formalism for
constrained systems; it incorporates the constraints into
the Hamiltonian. Dirac designed the GHD with
applications to quantum field theory in mind [3].

The present work, where GHD is applied to atomic
and molecular systems by choosing integrals of the motion
as the constraints of the system, stems from a paper in
which this idea was applied to hydrogenic atoms treated
non-relativistically on the basis of the Coulomb potential
[4]. Using this purely classical formalism, Oks and Uzer
demonstrated the existence of non-radiating states and
found their energy to be in exact agreement with the
corresponding results of quantum mechanics. They
employed two fundamental experimental facts, but did
not “forcefully” quantize any physical quantity describing
the atom. In particular, this amounted to classically deriving
Bohr’s postulate on the quantization of the angular

momentum rather than accepting it on an axiomatic basis.

It important to point out that the physics behind
classical non-radiating states is a new kind of time-dilation
found by Oks and Uzer [4]. This is a non-Einsteinian
time-dilation.

The subject of the present paper differs from the
above mentioned paper by Oks and Uzer in that the
dynamics analyzed are of a more general nature: a term
proportional to 1/r2 is added to the Coulomb potential.
This more complicated potential we call here the binomial
potential. Then the generalized unit Laplace-Runge-Lenz
vector [5, 6], or as named by Fradkin, the unit Runge
vector [5], is utilized instead of the classical Laplace-
Runge-Lenz vector.

This binomial potential has interesting applications.
The primary application considered here is to pionic (and
kaonic) atoms. We will classically obtain results
corresponding to the solution of the quantal (relativistic)
Klein-Gordon equation, the latter being appropriate
because pions are spinless particles. Another application
concerns the precession of planetary orbits: for this
phenomenon Einstein’s equations of general relativity are
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equivalent to non-relativistic equations for the motion in
the binomial potential [7]. We shall also briefly mention
an application furnished by the description of the energy
of nonradiating states of the so-called nanoplasmas [14].

The present paper has the following structure. In
Section 2, we briefly outline Dirac’s GHD. Section 3
serves to describe with more detail the applications of
the binomial potential mentioned in the above paragraph.
In Sections 4 and 5 we discuss the dynamical symmetries
or Fradkin and the generalization of the Laplace-Runge-
Lenz vector.

We present our new results in Section 6 and appen-
dices A, B, and C. Section 7 contains the appendices.

2. DIRAC’S GENERALIZED HAMILTONIAN
 DYNAMICS (GHD)

Dirac [1–3] considered a dynamical system of N degrees
of freedom characterized by generalized coordinates qn

and velocities n
n

dq
v

dt
= , where n = 1, 2, ..., N. If the

Lagrangian of the system is

L = ( )vqL , , ... (2.1)

then momenta are defined as

np =
nv

L

∂
∂

... (2.2)

Each of the quantities qn, vn, pn can be varied by δqn,
δvn, δpn, respectively. The latter small quantities are of
the order of ε, the variation being worked to the accuracy
of ε. As a result of the variation, Eq. (2.2) would not be
satisfied any more, since their right-hand side would differ
from the corresponding left side by a quantity of the order
of ε. Indeed, since the Lagrange and Hamilton functions
are related as L = pnvn – H, then for an arbitrary variation
in the momenta one has (here and below the summation
over a twice repeated suffix is understood):

Lδ = ( ) 0=δ−=δ





∂
∂− nnnn

n
n pvvp

p

H
v

In the above, we also used Hamilton’s equation

n
n p

H
v

∂
∂= .

Further, Dirac distinguished between two types of
equations. To one type belong equations such as Eq. (2.2),

which does not hold after the variation (he called them
“weak” equations). In what follows, for weak equations,
adopting Dirac’s nomenclature, we use a different equality
sign ≈ from the usual. Another type constitute equations
such as Eq. (2.1), which holds exactly even after the
variation (he called them “strong” equations).

If quantities ∂L/∂vn are not independent functions of
velocities, one can exclude velocities vn from Eqs (2.2)
and obtain one or several weak equations

( ) 0, ≈φ pq , ... (2.3)

containing only q and p. In his formalism, Dirac [1– 3]
used the following complete system of independent
equations of the type (3):

( ) 0, ≈φ pqm , ( )Mm ...,2,1= . ... (2.4)

Here the word “independent” means that neither of
the φ’s can be expressed as a linear combination of the
other φ’s with coefficient depending on q and p. The
word “complete” means that any function of q and p,
which would become zero allowing for Eq. (2.2) and which
would change by ε under the variation, should be a linear
combination of the functions φm (q, p) from (4) with
coefficients depending on q and p.

Finally, proceeding from the Lagrangian to a Hamil-
tonian, Dirac [1–3] obtained the following central result:

gH = ( ) ( )pqupqH mm ,, φ+ ... (2.5)

Equation (2.5) is a strong equation expressing a relation
between the generalized Hamil-tonian Hg and the
conventional Hamiltonian H (q, p). Quantities um are
coefficients to be determined. Generally, they are
functions of q, v, and p; by using Eq. (2.2), they could be
made functions of q and p. It should be emphasized that
Hg ≈ H (q, p) would be only a weak equation — in
distinction to Eq. (2.5).

Equation (2.5) shows that the Hamiltonian is not
uniquely determined, because a linear combination of φ’s
may be added to it. Equation (2.4) are called constraints.
The above distinction between constraints (i.e., weak
equations) and strong equations can be reformulated as
follows.

Constraints must be employed in accordance to
certain rules. Constraints can be added. Constraints can
be multiplied by factors (depending on q and p), but only
on the left side, so that these factors must not be used
inside Poisson brackets.
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If f is some function of q and p, then
df

dt
 (i.e., a

general equation of motion) in the Dirac’s GHD is

dt

df
= [ ] [ ], ,m mf H u f+ φ , ... (2.6)

where [f, g] is the Poisson bracket defined for two
functions f and g of the canonical variables p and q as:

[ ]gf , =
rrrr q

g

p

f

p

g

q

f

∂
∂

∂
∂−

∂
∂

∂
∂

. ... (2.7)

where r is an index put to stress the fact that in general
there will be several generalized coordinates and momenta.
Substituting φm′ in (2.6) instead of f and taking into account
Eq. (2.4), one obtains:

[ ] [ ] 0,, mmm ≈φφ+φ ′′ muH . (m′ = 1, 2, …, M). ... (2.8)

These consistency conditions allow determining the
coefficients um.

3. APPLICATIONS OF THE BINOMIAL
 POTENTIAL

3.1 Pionic Atoms Described by the Klein-Gordon
 Equation of Relativistic Quantum Mechanics

Relativistic treatments of the hydrogenic atoms are
typically presented working with the Dirac equation,
which is a relativistic wave equation for spin-1/2 particles.
However, in the literature one can also find a treatment
of relativistic hydrogenic atoms ignoring spin; that is,
working with the Klein-Gordon equation (hereafter, the
KG equation) [8, 10– 13].

The radial KG equation for the problem of the
hydrogenic atom is given by:

( )
0

)1(

4

12
2

2

2

2

=











ρ

α−+−−
ρ
λ+

ρρ
+

ρ
R

Zll

d

dR

d

Rd .

... (3.1)

where Z is the nuclear charge and
137

12

≅=α
hc

e
 is the

fine structure constant. Other notations in Eq. (3.1) are
as follows:

λ = ZαE/(M2c4 – E2)1/2, ρ = βr,

β = 2 (M2c4 – E2)1/2/(c).

The radial KG Eq. (3.1) for the Coulomb potential is
equivalent to the radial Schrödinger equation with a
potential U and an energy W, such that

U/(4W) = λ/ρ + (Zα)2/ρ2, (W < 0),

which is a binomial potential.

For usual hydrogenic atoms, the fine structure splitting
predicted by the KG equation is greater than what is
observed experimentally [8]. However, for pionic (and
kaonic) atoms, the KG equation becomes exact assuming
the nucleus to be point-like. Indeed, the pionic atom is an
exotic hydrogenic atom, where the atomic electron is
substituted by a negative pion, which is spinless. Negative
pions are spinless particles of the same charge as
electrons, but 273 times heavier than electrons.

3.2 Precession of Planetary Orbits

In his seminal paper, Die Grundlange der allgemeinen
Relativitästhoerie [7], Einstein showed that general
relativistic effects perturb the Kepler potential by an
additive term proportional to 1/r2 and used it to calculate
the precession of Mercury’s orbit around the sun. His
calculations for the precession yielded 43”/century, which
was later confirmed by observations. There is a number
of textbooks on general relativity presenting this result
[15–17].

3.3 Radiation of Nonrelativistic Particles in a
Central Field

Karnakov et al. [14] derive the spectrum and expressions
for the intensity of dipole radiation for a classical
nonrelativistic particle executing nonperiodic motion. The
potential in which the particles under consideration move

is of the form ( )
2rr

rU
β+α−= . The authors of this paper

apply their results to the description of the radiation and
the absorption of a classical collisionless electron plasma
in nanoparticles irradiated by an intense laser field. Also,
they find the rate of collisionless absorption of
electromagnetic wave energy in equilibrium isotropic
nanoplasma.

4. DYNAMICAL SYMMETRIES BY FRADKIN

Fradkin [5] has shown that all classical dynamical
problems of both the relativistic and non-relativistic type,
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dealing with a central potential, necessarily possess O (4)
and SU (3) symmetries. This led him to a generalization
of the Runge-Lenz vector in the Kepler problem. Here
we  will  briefly  present  his  results  relating  to  the
generalization of the Runge-Lenz vector and the
construction of the elements of the Lie algebra of O (4)
and SU (3) in terms of canonical variables.

In the non-relativistic Kepler problem the force on
the affected particle is an inverse square force given by:

•
p = r

r
ˆ

2

λ− ;
•

= rp m ,
r

r
r=ˆ ... (4.1)

and the overdot denotes total differentiation with respect
to time. In the Kepler problem, the Hamiltonian and the
angular momentum vector L are the conserved quantities.
There also exists another conserved vector quantity,
namely the Laplace-Runge-Lenz vector, or simply the
Runge-Lenz vector defined as

A = ( ) ( )rmmE ˆ2 2

1

λ−×− − Lp ... (4.2)

This vector lies in the plane of the orbit and points from
the nucleus to the perihelion of the orbit; some authors
refer to it as the eccentricity vector [10], as shown in Fig. 1.

,i jL A   = kijk Aε

,i jA A   = kijk Lε ... (4.3)

It is seen that the Lie algebra given above is
isomorphic to that of the generator of the O (4) symmetry
group, which is the group of orthogonal transformations
representing rotations in four dimensions. Fradkin also
concluded that if the existence of the Runge-Lenz vector
is simply to ensure that the plane of the motion is
conserved, then it should always be possible to find a
vector analogous to the Runge-Lenz vector for all central
potentials.

Fradkin proposed a generalization for the Runge-Lenz
vector by choosing LrLr ˆˆand,ˆ,ˆ ×  as a mutually orthogonal
triad of unit vectors. This unit Runge vector is

k̂ = LrLrkLLkrrk ˆˆ)ˆˆˆ(ˆ)ˆˆ(ˆ)ˆˆ( ××⋅+⋅+⋅ ,
... (4.4)

but since the unit Runge vector is in the plane of the orbit
and the angular momentum vector is perpendicular to the
plane of motion, then the second term is identically zero,

and ( )L⊥k̂ ⋅ k̂ may be chosen to be the direction from

which the azimuthal angle θ is measured (with the positive
sign given by a right-handed rotation about L̂), then we
have:

kr ˆˆ ⋅ = θ=×⋅θ sinˆˆˆandcos Lrk ... (4.5)

thus

k̂ = Lrr ˆˆ)(sinˆ)(cos ×θ+θ ... (4.6)

Defining u = 1/r, we may write the following diffe-
rential equation for u and the azimuthal angle θ in terms
of the energy E, potential V and angular momentum L:

2








θd

du
= ( ) 2

2

2
uVE

L

m −−






... (4.7)

At this point we note the following relations and
definition:

θcos = ),,( 2 ELuf

θsin =
( )

L

r

u

f p⋅







∂
∂ ˆ

... (4.8)

Further, after putting V = –λu for the potential of the
Kepler problem, the orbit equation becomes:

Fradkin found, by differentiation via the standard
Poisson bracket formalism, that for the Kepler problem,
and indeed for all central potential problems, that A, L,
and H satisfy the following closed Lie algebra:

[ ]HAi , = [ ] 0, =HLi

,i jL L   = kijk Lε

Fig. 1: Direction of the Laplace-Runge-Lenz (LRL) vector A within
the elliptic trajectory, corresponding to the motion in a
Coulomb field or a Kepler-Newton field
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θ= cosf = [ ] ( )muLmmEL λ−λ+
−

22
1

22 )(2 . ...(4.9)

The unit Runge vector may be expressed as:

k̂ = Lp ×
∂
∂+





∂
∂− −

u

f
Lr

u

f
uf 2ˆ ... (4.10)

Its Poisson bracket with the Hamiltonian function
vanishes. Poisson brackets containing between the
components of the unit Runge vector also vanish. A
complete set of Poisson brackets involving the unit Runge
vector is the following:

[ ] ;0,ˆ =Hk i [ ] ;0ˆ,ˆ =ji kk

[ ] 3,2,1,,for;ˆˆ, =ε= kjikkL kijkji . ... (4.11)

5. FURTHER RESULTS ON THE
 GENERALIZATION OF THE LAPLACE-
 RUNGE-LENZ VECTOR

Holas and March [6] provided a further development of
the unit Runge vector. They focused on the construction
and time dependence of the vector itself rather than on
the dynamical symmetries of central potentials or the
algebras satisfied by the unit Runge vector.

Holas and March used the relation

Lp × =
( )

rL
rpr ×⋅−
Lrr

L
22

2

... (5.1)

to rewrite the unit Runge vector, Eq. (4.10), as:

k̂ =
( )

rL
u

f

Lr
rf ˆˆˆ ×

∂
∂⋅− rp

... (5.2)

where the function f is specified in the next section. This
is the form of the unit Runge vector with which we
shall work.

6. APPLICATION OF THE GENERALIZED
 HAMILTONIAN DYNAMICS TO THE
 BINOMIAL POTENTIAL

In our case, the angular momentum vector and the unit
Runge vector are constants of the motion for a centrally
symmetric potential and consequently have vanishing
Poisson brackets with the Hamiltonian for the system
and are thus suitable constraints for the application of
GHD. Following Oks and Uzer [4], the Hamiltonian for
this system is:

gH = 2

22

22 rr

Zep

µ
Λ+−

µ

( ) ( )00
ˆˆ kk −⋅+−⋅+ wLLu , ... (6.1)

where Λ is the strength of the binomial potential, Ze is the
nuclear charge, –e is the electron charge, µ is the reduced
mass, u and w are yet unknown constant vectors (to be
determined later) of the GHD formalism, L0 and 0k̂  are
the values of the angular momentum and unit Runge vector
in a particular state of the motion so that in those states

0LL ≈ ... (6.2)

and

0
ˆˆ kk ≈ . ... (6.3)

We define the following quantities:

0H =
r

Zep 22

2
−

µ

BH =
20

2 r
H

µ
Λ+ ... (6.4)

where the subscript B stands for binomial. The
consistency conditions for this system are:

L, 0

ˆ, 0

g

g

H

k H

  ≈ 
  ≈ 

. ... (6.5)

First we must derive the form of the unit Runge vector
in this problem. It is derived in Appendix A. We arrive at
the result:

k̂ =
Lr

r
gggg

gg rp ⋅−
+++

+ ˆ
1

1
2
0

22
0

2

0

( )
( ) 











+
+

−
+

3
2

0

2
0

0

0

1

1

1
f

gg

gg

gg

fg

rL
uu

gg ˆˆ
3

3

×





−
−

. ... (6.6)

where

f =
2
0

22
0

2

0

1

1

gggg

gg

+++

+
. ... (6.7)
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and

u

f

∂
∂

= ( ) ( )
( ) 




















+++

++

−
+++

2
3

2
0

22
0

2

2
00

2
0

22
0

2

0

1

1

1

gggg

ggggg

gggg

g








∂
∂
u

g
,

... (6.8)

The functions g and are g0 defined in Appendix A.
The unit Runge vector as appears in Eq. (6.6) is a general
form for any value of the parameter Λ. Hereafter,
however, we only consider a small perturbation in the
binomial potential such that Λ « L2. We therefore perform
a Taylor series expansion about Λ = 0 and keep only terms
linear in Λ:

k̂ =
0

)0(
ˆˆ

=Λ

=Λ

Λ
Λ+

d

kd
k ... (6.9)

where )0(ˆ =Λk  denotes the unperturbed unit Runge vector,,
which, by definition, is equal to the normalized classical
Laplace-Runge-Lenz vector. The derivative term is fully
worked out in Appendix A.

The next step is to calculate the Poisson brackets
given in Eq. (6.5) to arrive at a functional form of the
consistency conditions and thus solve for the unknown
vector coefficients u and w. We begin with the angular
momentum bracket:

,i gL H   = [ ] 







µ
Λ+

20
2

,,
r

LHL ii

( )[ ] ( )[ ]jjijjij kkLwLLLu
j 00

ˆˆ,, −+−+

... (6.10)

Clearly the first two terms vanish since the angular
momentum is conserved in any centrally symmetric
potential in the absence of external forces. So we obtain:

L, gH   = 0ˆ ≈×+× kwLu ... (6.11)

We now proceed to the calculation of the time
derivative of the unit Runge vector via the Poisson bracket:

[ ]gHk,ˆ = [ ] 







µ
Λ+

20
2

,ˆ,ˆ
r

kHk ii

( )[ ]
i

LLku jij 0,ˆ −+

( )[ ] 0ˆˆ,ˆ
0 ≈−+ jjij kkkw . ... (6.12)

The following result is obtained:

[ ]gHk,ˆ = 0ˆ ≈× ku ... (6.13)

A well-known relation between A, L, and H0 is:

A = 2

2
02

1
Ze

LH

µ
+ ... (6.14)

We seek the unknown vector coefficients in the
following form:

u = 0030201
ˆˆ LL ×++ kaaka

w = 0030201
ˆˆ LL ×++ kbbkb ... (6.15)

Substituting Eq. (6.15) into Eq. (6.11) yields:

( )1 0 0 3 0 0 0 2 0 0
ˆ ˆ ˆa k a k b k× + × × − ×L L L L

( )3 0 0 0
ˆ ˆ 0b k k+ × × ≈L . ... (6.16)

For this expression to vanish and from Eq. (6.31) we
conclude that

0and 33221 ==== baaba . ... (6.17)

We now have:

u =
01k̂a

w =
0101

ˆ Lakb + . ... (6.18)

Now we need to find a1 and b1 in terms of the
coordinates, momenta and integrals of the motion. Oks
and Uzer [4] achieved this for the Coulomb potential by
calculating — at the similar stage — the equations of
motion of r and p. However, we found that in our case,
the use of the unit Runge vector makes these calculations
very tedious (see Appendix C, where we calculated the
equations of the motion).

Luckily, an alternative is available. Instead, the
coefficients sought may be found in a much simpler and
straightforward manner by calculating the frequency of
precession of the Runge-Lenz vector (which, by definition,
is equal to the precession frequency of the unit Runge
vector). The derivation of the frequency of precession of
the Laplace-Runge-Lenz vector and further details on
finding the unknown vector coefficients are given in
Appendix B.
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We remind that for any vector D that precesses in
the plane of motion, the following equation holds

dt

dD
=

dt

dD

Dprecessionprecession

1=ω⇒× Dω

... (6.19)

since the frequency vector is perpendicular to the plane
of the orbit. Also, it should be noted that in accordance to
the second part of Eq. (6.19) we need to deal only with
absolute values of vector D.

The precession of the Kepler orbit, caused by the
additional term in the binary Hamiltonian (by the term
additional to the Coulomb potential), leads— generally
speaking— to oscillations of both the eccentricity of
the orbit

ε = 2Ze

A
... (6.20)

and of the square absolute value of the Laplace-Runge-
Lenz vector

2A = 





µ
Λ−

µ
+=

µ
+

22

2

2

2
0

2

2
1

2
1

r
H

Ze

L

Ze

LH
B

... (6.21)

Following Oks and Uzer [4], we will investigate the
case of radiationless states, i.e. states in which the
classically-calculated radiation of the electron orbiting the
nucleus vanishes. In accordance to Oks and Uzer [4], in
the radiationless states the electron has zero velocity, but
a non-zero momentum— this became possible due to
inclusion of the integral of the motion as constrains into
the generalized Hamiltonian. Therefore, in the radiationless
states the oscillations of the absolute value of the Laplace-
Runge-Lenz vector should also vanish:

dt

dA2

= 0. ... (6.22)

This condition will allow finding the unknown
coefficients in (6.18) in terms of constants of the motion.

The calculation of the left side of Eq. (6.22) is, of
course, carried out through the Poisson bracket formalism
and is given by the following expression:

dt

dA2

= [ ]














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HA ,
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22

2
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




µ
Λ− gH

rZe

L
,

1
222

2

... (6.23)

where the first Poisson bracket is of the binomial
Hamiltonian with the generalized Hamiltonian and must
vanish since the binary potential is conservative, and the
bracket containing the square of the angular momentum
must necessarily vanish in a central potential. Since we
are concerned only with the first order contributions in
terms of Λ, then in the right side of Eq. (6.23) it is sufficient
to calculate all factors next to Λ in the zeroth order. The
details of the calculations of the right side of Eq. (6.23)
are presented in Appendix B. The result obtained for the
frequency, hereafter the generalized frequency ωg, is:

gω = pr ⋅
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≡ ( )000 ,1 LHB+ω . ... (6.24)

The above expression for the generalized frequency
contains only one coefficient b1 that still has to be
determined.

One of the central points is that the generalized
frequency varies from the classical frequency by a factor

denoted in Eq. (6.24) as ( )00 ,1 LHB+ . This is
equivalent to the following time transformation:

tt ′→ = ( )( )00 ,1/ LHBt + ... (6.25)

This is a new kindof non-Einsteinian  time dilation.
The radiationless states correspond to B (H0, L0) = –1.
Indeed, when B (H0, L0) reaches – 1, the time becomes
dilated by the infinite factor and the classical radiation
vanishes.

Upon substitution of this scaled time into all calcu-
lations, all quantities regain their standard functional form.
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This is in complete agreement with the results of Oks
and Uzer in [4]. With Eq. (6.25) in mind, we note that the
generalized period of the motion of the electron about the
nucleus is

gT = ( )00 ,1 LHB

T

+
. ... (6.26)

At this point it is necessary to point out that the
equations relevant to the results derived for the generalized
frequency resulted independent of a1 and, therefore,
without loss of generality we may set a1 = 0 in the
generalized Hamiltonian. Here, as in Appendix B, we
substitute Eq. (B.19) into the generalized Hamiltonian and
obtain:

gH =

( )
( )1ˆˆ

2
1

3248

32
8

2
1,

0

2
00

2
0

424284

24284
2

2
00

00
2

−⋅

µ
+

−
++

+







µ

+µ
+ kk

Ze

LH

L

AAeZeZ

AeZeZ
L

Ze

LH
LHBZe

H B

 =
( ) ( )1ˆˆ

3248

32
8

,
02

0
424284

24284
2

2
00

2

−⋅
−

++
+

µ
+ kk

A

L

AAeZeZ
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... (6.27)

With the goal of a generalized frequency for non-
radiating states of motion of the electron, we note that
following Oks and Uzer [4], the generalized frequency
from (6.24), may be rewritten as:

gω = ( ) ( )00

2

1

2

3
0

000 ,1
2

,1 LHB
Ze

H
LHB +






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





µ
=+ω

... (6.28)

where, again, the quantities differ from their standard value
by the factor 1 + B.

Equation (6.28) illustrates once again one of the
central results of the GHD: the generalized frequency
can vanish (i.e. ωg = 0) despite a non-zero standard
classical frequency ω0 ≠ 0. This occurs when B (H0, L0)
= –1, corresponding to a stable, nonradiating state of the
classical atom.

For determining the last unknown coefficient b1—
and thus B (H0, L0)— we employ the same experimental
fact as used by Oks and Uzer [4]. Namely, highly excited
atoms primarily emit radiation at a non-zero, finite
frequency determined by the limit H0 → 0. Thus, it is
expected that there exists a limiting value for the

generalized frequency as the Coulomb Hamiltonian
approaches zero. We have

g
H

ω
→ 00

lim = ( )
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1
3 2

0
0 020

2
lim 1 ,
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 
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H
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... (6.29)
and this yields:

( )00 , LHB =

1 1
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3 3
00 0
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   µ µ Ω   Ω − ≈ Ω =    ω   

Ze Ze

H H

... (6.30)

the contribution of –1 is negligible since in the limit as H0
approaches zero, the term containing Ω predominates.

Now let us consider a stable, radiationless state, so
that ωg = 0. In this stable state we denote H0 = HS (the
subscript S is for “stable”). We must have:

( )sS LHB ,  = 1− , ... (6.31)

thus

Ω =
13 3

2 22 2
2

8
2

−
− µ = −

µS SH Ze H
Ze

= ( )SS LH ,0ω− ... (6.32)

and

( )00 , LHB =
( )
( )000

0
2

3

0 ,

,

LH

LH

H

H SSS

ω
ω

−=− . ... (6.33)

Upon substitution of Eq. (6.32) and (6.33) into Eq.
(6.28) we arrive at:

gω = ( ) ( )0000 ,, LHLH SS ω−ω . ... (6.34)

We find then that the average frequency in the
classical process of radiation in a weakly bound state is
given by:

22

initial
g

final
g

initial
g

g

ω
≈

ω+ω
≈ω

=
( ) ( ) ( )

2

,

2

,, 00000 SSSS LHLHLH ω
≈

ω−ω

... (6.35)

where the final frequency is taken to vanish since there
should no longer be any radiation in the final state of motion
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and we also used the fact that ( ) >>ω SS LH ,0

( )000 , LHω .

At this point, in keeping with the treatment of the
problem as in [4], we take into consideration Planck’s
hypothesis. According to Plank, the smallest possible
change in energy is proportional to the frequency of the
motion, and the proportionality constant is the Planck’s
constant in SI units. In our particular problem, however,
this is not so simple because, as is established in Holas
and March [6], the unit Runge vector is only piecewise
continuous, reflecting the well-known fact that the motion
in the modified Coulomb potential is only conditionally
periodic (as opposed to periodic). For a conditionally-
periodic motion in a central field, the relation between
changes of the energy and of the angular momentum
should be refined as follows:

∫ ∆
rT

Edt
0

= ∫∫
θ

∆ω=θ∆
T

LdtLd
0

... (6.36)

where Tr is the period of radial motion and Tθ is the period
angular motion. Equation (6.36) is justified by the fact
the change in energy, ∆E/∆t = ω∆M / ∆t, is commesurate
with the change, in this case a decrease, of the size of
the orbit. Therefore, the integral in the left side of Eq.
(6.36), containing the energy, should be over the period
of radial motion. In the right side of Eq. (6.36), the integral
contains the angular momentum, which is the variable
canonically conjugate to the angular variable θ, therefore
the integration should be performed over the period of
angular motion.

Combining Eq. (6.36) with Planck’s hypothesis we get:

∫ ∆
rT

Edt
0

= E
T

T
LdtLd r

T

∆⇒∆ω=θ∆
θ

∫∫
θ

0

= ω=∆ω hL ... (6.37)

In Eq. (6.37), the change in energy must, of course,
satisfy the relation

E∆ = SS HHH ≈− 0

= ( )SSg LH
h

h ,
2 0ω=ω ... (6.38)

or

( )SSS LH
h

H ,
2 0ω≈ . ... (6.39)

We note that in both sides of the Eq. (6.39) only
physical quantities pertaining to the stable states are
present. Also, in Eq. (6.37) we have

θT
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1;

1

Lr

Λ+=γ
γ

=
ω
ωθ ... (6.40)

We note that as 0→Λ , 11
2

→Λ+=γ
L

, which

implies that θ= TTr , as known for the Coulomb potential.

Thus we have
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where n, m = 1, 2, 3…. In the third step of Eq. (6.41) we
used the relation between the frequencies given in

Eq. (6.40) and we substituted ( )SS LH ,0ω  for the term

( )
2

θω+ω mn r , which is the average of the two frequen-

cies throughout the motion (hence the 1/2); and, further,
the expression must be valid not only for the first harmonic,
but for all occurring harmonics of the radial and angular
frequencies, hence the integer factors n and m. We have
also used:

γω0 =
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42
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Equation (6.41) shows, in particular, that
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γ
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Solving Eq. (6.43) for HS, we obtain the final the
expression for the absolute value of energy of classical
non-radiating states in terms of the integers n and m:

SH = ( )
...2,1

2
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=
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µ
m;   n,

mnh

eZ
... (6.44)
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Now we compare this classically-derived result with
the known quantal result, which can be found, e.g. in the
textbook [18] in problem 3 after Section 36:

quantalH = ( ) ( )( ) ...2,1,0;
1212

2
22

42

=
++γ+

µ 


,n
nh

eZ
r

r

... (6.45)

In Eq. (6.45), nr and  are the radial and angular
momentum quantum numbers, respectively. We see that
in the quantal result, the ground state (, nr = 0), agrees
exactly with our classical expression (6.44) for n, m = 1.
Furthermore, our classical result coincides with the quantal
result for all odd n and m, i.e. when these integers are of
the form n = 2k + 1 and m = 2q + 1, where q, k = 0, 1,
2….

We  believe  that  the  expression ′→ =t t

( )( )0 0/ 1 ,+t B H L  from Eq. (6.25), representing the new

phenomenon of the non-Einsteinian time dilation, is valid
for arbitrary Λ rather than only for Λ << 1. This is because
the expression (6.44) for the energy of classical stable,
non-radiating states is in a good agreement with the
corresponding quantal result, the latter being valid for
arbitrary Λ.

7. CONCLUSIONS

We applied Dirac’s Generalized Hamiltonian Dynamics
(GHD) to studying so-called binomial potential, i.e. the
Coulomb potential plus an additional term proportional to
1/r2. We obtained an explicit expression for the additional
(to the angular momentum) vector integral of the motion
for the binomial potential: the unit Runge-Lenz vector. In
spirit of the GHD, we used the unit Runge-Lenz vector
and the angular momentum vector as constraints added
to the classical Hamilton function (called Hamiltonian for
brevity). Using consistency conditions, we derived the
explicit expression for the generalized classical
Hamiltonian and showed that it leads to a much richer
dynamics than the usual classical dynamics for the same
potential.

Then following the logic from Oks-Uzer’s paper [4],
we obtained classical stable, non-radiating states —
classical “discrete” states — for a spinless charged
particle, such as, e.g. pion (or kaon) in the binomial
potential. We showed that energies of these classical
discrete states agree with the corresponding quantal
results for pionic atoms in the ground state and in all states

of odd principal and angular momentum quantum numbers.
We demonstrated that these results can be interpreted as
a new (non-Einsteinian) time dilation, like in Oks-Uzer’s
paper [4].

It is worth emphasizing some interesting physics of
the classical stable, non-radiating states following paper

[4]. In those states,
dt

dr
 = 0=

dt

dp
, so that r (t) = r0 and

p (t) = p0, where r0 and p0 are some constant vectors.
Thus, the particle (for example, the pion) is motionless,
but its momentum is nonzero. This is not surprising: for
example, for a charge in an electromagnetic field
characterized by a vector potential A, it is also possible to

have 0=
−

=
m
mc

e
Ap

v , while 0≠= Ap
mc

e
.

Another interpretation — complementing and
consistent with the above one— is the following. Let us
consider a pionic atom in an arbitrary classical state (not
in one of the stable states). Due to a non-zero acceleration
of the pion, the atom radiates and its energy diminishes.
As its energy approaches the nearest classical stable state,
the time gets more and more dilated. As the atom reaches
the latter state, the time stops and so does the radiation.

There is nothing miraculous in the fact that stable, non-
radiating states of atomic and molecular systems can be
obtained classically via the GHD. Indeed, let us point out
that formal mathematical solutions of the Schrödinger,
Klein-Gordon, and Dirac equations do not show by
themselves any “quantization”, any discreteness property.
Discrete energy levels (quantization) are obtained by
imposingconstraints on the formal solutions—constraints
in the form of boundary conditions (including conditions at
the origin and at infinity). Having this in mind, it might be
now less surprising that the inclusion of constraints in the
classical Hamiltonian also leads to stable states
characterized by a discrete set of energies.

In our study we ended up with twice as many stable
states as in the corresponding quantal problem. Namely,
the classical stable states, characterized be even harmonic
numbers n and m in Eq. (6.44), do not have quantal
counterparts. It would be interesting to try obtaining the
corresponding experimental results for pionic (or kaonic)
atoms and to compare them with the predictions of the
two theories. However, it should be emphasized that for
pionic (or kaonic) atoms of a relatively small nuclear
charge, the difference relates only to the fine structure
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within the multiplet of a given principal quantum number
N—without affecting the primary energy scaling, where
|E | is proportional to 1/N2.

Regardless of the possible outcome of such bench-
mark experiments (which are difficult to conduct), we
would like to make the following final comments. Any
classical formalism has obvious advantages over quantal
formalisms — because quantal formalisms deal with
operators and therefore lack “transparency” and an intuitive
perception. Nevertheless, we do not advocate that the
classical GHD is better than the quantal formalism. Rather
we insist onpluralism in the analytical foundations of atomic
and molecular phenomena. One of our intentions is to
illuminate the variety of the underlying theories and to
provide a stimulus for a better physical understanding of
atomic and molecular phenomena.

After all, any physical theory is not the ultimate truth,
but just a model, whose limitations— if not known now
—will be discovered in the future. Let us refer to the
example that for the overwhelming majority of practical
purposes, the 4D-space-time “slice” of 10D string theory,
or of the 11D M-theory, or of the 12D F-theory (see,
e.g., [19]), is a sufficient useful model. Similarly, we
believe that despite being just a model, the applications of
the classical GHD to atomic and molecular phenomena
are useful and will be further developed.

APPENDIX A
Derivation of the Explicit Form of the Unit

Runge-Lenz Vector for the Binomial Potential

The function f, given by

θθ= ;cosf = ( )( )∫ ′
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where V (r) is the Coulomb part of the binomial
potential and

2
effL = Λ−2L ... (A.2)

is the effective angular momentum. The second term in
(A.2) corresponds to the presence of the term proportional
to 1/r2 in the binomial potential. The integral in Eq. (A.1),
upon the substitution of the Coulomb potential, may be
rewritten as:
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If we now introduce the substitutions
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then the left-hand side of Eq. (A.3), in the indefinite form
of the integral, becomes:
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after some simplifications. It is convenient to define
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2
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... (A.6)

and thus Eq. (A.5) reduces to:
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Putting in the limits of integration yields:
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It is convenient to define:
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Using the identity
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we may then write
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Consequently, the partial derivative in the unit Runge
vector becomes:
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where
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We may use the definitions (A.9) and (A.11) to
rewrite Eq. (A.13) and put it into Eq. (A.12) to get the

following compact form:
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where the term in the second set of parenthesis is the

simplification of
u
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∂
∂ . We thus arrive at:
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This is a general result valid for any value of Λ.
However, since we are considering a small perturbation
in the binomial potential, such that Λ « L2, then we may
perform a Taylor series expansion of the unit Runge vector
with respect to Λ about Λ = 0:
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where )0(ˆ =Λk  denotes the unperturbed unit Runge vector,,
which, by definition, is equal to the normalized classical
Laplace-Runge-Lenz vector. Differentiation with respect
to Λ yields:
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The second term in the parenthesis is due to =
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∂ effL
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1− . We now proceed to calculate the above quantities.

For the first term:
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as can be seen in Eq. (A.14); and
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We find:
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The second derivative term is found to be:
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We note that substituting Λ = 0 amounts to the
substitution Leff → L in accordance with Eq. (A.2).

APPENDIX B
Derivation of the Frequency of Precession of the

Laplace-Runge-Lenz Vector

We start by explicitly writing the generalized Hamiltonian
in Eq. (6.23), substituting the vectors u and w from
Eq. (6.18):

gH = 2

22

22 rr

Zep

µ
Λ+−

µ

1010101
ˆˆˆˆ bkkbkaka −⋅+⋅+⋅+ LL ... (B.1)

The Poisson bracket of the binomial term, which is
simply a term inversely proportional to the square of the
distance, with the generalized Hamiltonian (B.1) is, in
accordance with Eq. (6.23):
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where we have made the substitution

)0(ˆ =Λk =
A

A
,

which is justified by definition; it has also been taken into
account that the Poisson bracket of the binomial potential
with the angular momentum vanishes and the bracket
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with b1 must vanish as b1 is constant. It is worthwhile to
recall that the quantities indexed by a 0 are constant and
consequently may be factored out of any bracket in which
they appear. In (B.2) we note that:
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and
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since the second term of the bracket is zero because the
coordinates and momenta are assumed to be independent
of each other. Thus, the entire calculation of the frequency
of oscillation of the Runge-Lenz vector has been reduced
to the calculation of the derivative of the of the Runge-
Lenz vector with respect to the momenta. This is as follows:
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so that (B.4) becomes:
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With the simple result found in (B.6), we may now
calculate the last part of (B.4) in order to get a final form
for (B.3). We have:
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Then, finally, we arrive at:
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This expression was significantly simplified in form
by carrying out the dot product of the coordinates and
momenta with the Runge-Lenz vector:

Ar ⋅ =
r

r
Ze

L rp
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⋅
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µ
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. ... (B.9)

Furthermore, since our calculations are limited to the
first order in terms of Λ, then every factor next to Λ in
the right side of (B.8) can be calculated in the zeroth
order in terms of Λ. Therefore it is legitimate to replace
the quantities 1/r4 and 1/r3 in the right side of (B.8) by
their averages over the unperturbed Kepler ellipse.

These averages are determined as follows:
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where
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We shall keep the definitions of the momentum and
the eccentricity as in (B.11) for the sake of brevity, but it
is to be understood that these quantities are in terms of
constants of the motion. Now substitution of (B.11a, b)
into (B.8) yields:



Application of the Generalized Hamiltonian Dynamics to a Modified Coulomb Potential

International Review of Atomic and Molecular Physics, 1 (2), July-December 2010 157

pr ⋅
µ

Λ
22

22

Ze

L









































µ
+µ

−







µ

+
+

4

2
002

2
0

3

2
00

1
4

1

2
1

1
2

2
1

1

r

Ze

LH
Ze

L

r

Ze

LH

b

r

= pr ⋅
µ

Λ
422

2 12

rZe

L









































µ
+µ

−







µ

+
+

2
002

2
0

4

3

2
00

1

2
1

1

1

2
2

1

1

Ze

LH
Ze

L

r

r

Ze

LH

b

= 0 ... (B.12)

Next we find the frequency of precession. Since we
calculated the time derivative of the square of the
magnitude of the Runge-Lenz vector rather than the
magnitude to the first power, we make a small correction
to (B.12) to arrive at our desired result:

dt

dA2

=
dt

dA

Adt

dA
A precession

1
2 =ω⇒

=
dt

dA

A

2

22

1
... (B.13)

We therefore arrive at:
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We may now rewrite this as:
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where in the last step we substituted the expression for
the eccentricity and the classical Runge-Lenz vector. We
see from (B.15) and (B.16) that in for the case b1 = 0, we
recover the well-known classical expression. Thus, the
appearance of the function B (H0, L0) of Eq. (B.18) is a
result characteristic of the GHD for the central potential
as it depends directly on b1, the one remaining coefficient
from the formalism’s constant vectors introduced in the
generalized Hamiltonian.

Furthermore, we may solve for b1 in terms of the
Coulomb Hamiltonian, the angular momentum and B:
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in terms of the classical Runge-Lenz vector. We may
now substitute this result into the generalized Hamiltonian
to obtain:
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Furthermore, since the equations relevant to all results
are independent of a1, we may, without loss of generality,
set a1 = 0, and the Hamiltonian reduces to:
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The last step was obtained from substitution of (B.19),
where we used the magnitude of the classical Runge-
Lenz vector in terms of the Coulomb Hamiltonian and
the angular momentum. Furthermore, it should be noted
that the generalized Hamiltonian is expressed solely as a
function of conserved quantities.

APPENDIX C
Derivation of the Equations of the Motion

In classical mechanics the equations of motion for any
quantity are given by the Poisson bracket of the quantity
with the Hamiltonian for the system. In the GHD, this is
extended to the generalized Hamiltonian for the system.
Thus we have:
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The equations of motion are known for the pure
Coulomb potential, so we only have to calculate the
contributions due to the second term in the binomial
potential. The calculations yield:
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Here we have interchanged the order of differen-
tiation since, by assumption, all functions involved are, at
minimum, piecewise continuous and differentiable.

For the momentum we have:
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In Eq. (C.3), we note that the dot product with the
angular momentum, the coefficient of a1, vanishes in all
terms except for the term with δij. Furthermore, it is
important to note that the symmetry of the problem dictates
that the evolution of the momentum and of the radius-vector
should be contained in the plane of motion. Therefore, the
only acceptable value for a1 is zero— otherwise, the
momentum and the radius-vector would have contributions
perpendicular to the plane of the orbit. In Eqs (C.2) and
(C.3) only the derivatives of the vectors have been worked
out fully. This is because the derivatives of scalar quantities
are best dealt with as follows:
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For the derivative with respect to the momentum, we
find:
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and similarly
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After setting a1 to zero and carrying out the dot
products, the equations of motion become:
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