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Abstract: We investigate the dynamics of a two-component Bose-Einstein condensate dispersively coupled by an
optical cavity. Following the approach of D. Nagy et. a. (Eur. Phys. J. D 55, 659, 2009), we derive the corresponding
master equation for the quadratures of atwo-component condensate by adiabatically eliminating the cavity field. The
existence of resulting diffusion and friction makes the dynamics differ significantly from the non-dissipative casein the
classically bistable regime. We give numerical resultssuch aslinear entropy and correl ations between the two quadratures

to demonstrate our conclusions.
PACS Numbers; 03.75.Kk, 37.10.Vz.

Recent successintrappi ng condensed bosonicatomsinside
an optical cavity has attracted much interest in investi-
gationsof cavity quantum el ectrodynamicsand ultracold
atomic physics[1-16]. Compared to the scenario where
aBose-Eingtein condensatei splacedinsideanopticd lattice
in free space, the quantized nature of the cavity photon
field plays astrikingly different role. The cavity field is
dispersively coupled to the condensate and affects the
motion of the condensate which in turn acts back to the
cavity fieldand modifiesthephotondistributioninsidethe
cavity. Thecoupling betweenthecondensateandthecavity
field in many aspects resembles the canonical
optomechanics. For example, bistablebehaviorshavebeen
experimentally observedwhichdemonstratestheintrinsic
nonlinearity of thesystem(7, 15].

In this paper, we investigate the dynamics of a
twocomponent condensatein an optical cavity. We extend
the previous work for a single-component condensate to
atwo-component condensate [12]. By taking the leakage
of cavity photons into consideration, we derive the
corresponding master equation along similar linesto Ref.
[12]. Because both componentsare simultaneoudy coupled
to the cavity field through the radiation pressure from
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intra-cavity photons, weare particularly interested in the
correlation between the two components.

We consider a cigar-shaped two-component Bose-
Einstein condensate in asingle mode high-Q optical cavity.
The two components are hereafter labelled as 1 and 2.
The cavity with mode frequency w,_,, is driven by an
external laser field with frequency w. The cavity
frequency is detuned far below the atomic transition
frequency w,,, . for component j, so the excited state can
be adiabaticalljy eliminated. This results in an optical
potential U= gZ/(w .. ) for atoms of component j. ¢]
isthesingle photon Rabl frequency of the cavity. Because
thecondensateistightly trapped inthe transversedirection,
transverse degrees of freedom are frozen. Therefore we
can treat the condensate as a one dimensional system
aong the x-axis. We further assume a monotonic cavity
mode k = w,, /c with acorresponding mode function cos
(kx). The above assumptions greatly simplify our
derivations and allow us to grasp essential features of
the dynamics.

In the rotating frame of the pump laser, the many-
body Hamiltonian for the combined condensate-cavity

systemis(h :1)
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: depends on a"a which actually brings more complexity
- _ t t_
H=-Acaa+in (a a) to the above problem.

D 2 O
X) —+U; a'acos’ (kx)Ow, (x
O o (), (4

Therefore, we closely follow the approach which is
showninRef. [12]. Tobegin with, we assumethe depletion

from the ground state is small, i.e. ¢, ~ /N, and d; ~

J'dxklJT

+ QOJ’dx (HJI (x) W, (x) + W, (x) W5 (x)) (1) /N,, and introduce the quadratures

where A, = w- w,,,. Theoriginisassumed to belocated
at the center of the cavity. a and a' are annihilation and
creation operators for cavity photons, respectively,
satisfying [a, a'] = 1. n denotes the amplitude of the
driving laser. W (x) and HJ} (X) are condensate field
operators with [‘PJ. (), L)) = 61.' QO (X x’).rq isthe
atom mass for component j. For completeness, we have
also included a possible conversion between the two
components with a Rabi frequency Q,. In the above
Hamiltonian, we have neglected the swave scattering
between the atoms for the weak atom-atom interaction
limit asin previoustreatments, e.g. [12]. Inthefollowing,
wetake asimilar approach as shown by Nagy et. al. [12]
which aso serves asareview of themethod in Ref. [12].

Restricting the dynamicsto the two | owest modes of
the condensate, we expand the atomic field operators as

W, (X) O ¢, + /2¢, cos (2kx) and W, (x) 0 d, + +/2d, cos
(2kx) where c,, c,, d,, and d, are the usual bosonic
operators for the corresponding modes 1 and 2,
respectively. The Hamiltonian can be rewritten as

NU, , NU

_ U 20t i (af =
H= H—AC+ Eaaﬂn(a a)

+ 4005 , CIC, + aTa(c{;c2 + coc;)

J2u,
4

fu

+ 4oy, dld, + =2 a'a(d]d, + d,d)

+Q, (C;dz + Czd;) +Q, (ngo + Codg) - (2

WherecoR =k?/(2m) istherecoil energy for component
j- €hCy+ €hc, = N, and did; + dd, = N,. N, isthe atom
number of component j- We can |mmed|ately see that,
for Q, # 0, both N, and N, are time dependent. This
makes the dynamics rather complicated and it seems not
possible for a simple analytic treatment. Therefore, we
focusonthecasewith Q, = 0inthefollowing discussions.
We also note that the above Hamiltonian is quadratic in
Co, » and d, , and in principle can be diagonalized by a
unitary transformation. However, such atransformation
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= 5ldre),  v=sldre)
X2=%(d§+d2), Y,= 'T(dT d,).

The Hamiltonian becomes

H=-A.a'a+in (aT - a)

+ ZZE?wR](X2+Y2)+u a'ax. iH

u = L )

Thecorresponding Hei senberg—Langevinequationis

0o, o O

=0 uX.g-kOa+n+§, ... (49

QD C Z ] JD a ( )
X, = 4oy )Y, ... (4b)
Y, = —4wg X, ~ua'a .. (4c)

where [E (t) &' (t')0= 2k& (t - t') and k is the cavity
decay rate.

For typical experimental conditionswith k>> ., we

can adiabatically eliminate the cavity photon field. We
thenobtain

a()=a()+z(,

a ()= k%’

A= AC_Zquj’
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S (1) = J—;e(m—k)(t—t') £ (t') dt'

We note that a (t) is an operator valued function of
operators X which shows the back-action of the
condensate on the cavity field. The subsequent bistability
has been observed experimentally [7]. Here theresulting
expressionsfor the cavity photonfiedisformally identical
to the single component case. Thisisnot surprising since
the cavity is subject only to the combined effect of the
two-component condensate. The only non-vanishing
second order correlation function for the noisetermis

= (1) 5 (v)c= €20 (e - ) ()

whichisfurther approximated by aL orentzian function

2k

(=(1) =" (v)) o St =t).

Therefore, the cavity intensity with anoiseterm can
be written as

(6)

2kn?

D= —(k2 o

A7)

We note that the fluctuation of the cavity field is
affected by operator A which depends explicitly on
operators X, again showing the back-action of the
condensate. Since the fluctuation of the cavity field is
solely related to A, our derivations below will resemble
that of the single component condensate. Asin Ref.[12],
we are motivated to perform a perturbative analysis on
operators Y; assuming that the recoil energy is much
smaller compared to other energy scales.

and O, and {O} stands for the collection of operators.
We can see that, to the first order correction, there will
be a corresponding correction on Y, for each component.
In its most general form, the coe.cient in front of Y]
depends on both quadratures X, and X.,.

Withthe help of theidentity

dal @
6XJE

da: Z R]%(]

. (9)

we obtain termsin the order of Y; by comparing Eq. (4a)
and Eq. (8).

The zeroth order term gives

ao({xj}) - ﬁ, .. (10)
and the first order term gives
~ 4w
o () = 2o
- dicoy —(k‘j"i”A)3. . (11)

Finally we expressthe cavity .eld intensity up to the
first order of Y,

ata= %(a*a + 0(0(*)

= oo +5 3 {¥ il -l
J
.. (12)

from which we can extract the friction force on
component j as

= U, (a*a—|ao|2)

1, (K (K
: : . , = - Y., +
Wearelooking for theamplitudein thefollowing form: 2 Ui Z{ SLECEREE }
1 (i) 1
a({x}.1) = ao({x})+5 3 {vall ({x})} =2y Z{Yk,rk({x,-})} .. (13)
J
.. (8) with
which is essentially the first order correction to the 2K
adiabatic dimination. Herethe notation of{Oj, O means rk({xj}) = —160g y Ls .. (14)
the anti-commutator of the two enclosed operators 0 (k2 + Az)
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We note that both F; and I'; ({ X}) are proportional  from which we obtain
u. Thustheintra- speC|esfr|ct| on force isd uzand the

inter -species friction force U u,u u.kn
o e o g ({X}) = ‘4°)R,kﬁ- .. (18)
After adiabatically removing the cavity field, the (k +A )
reduced equations of motion for the quadratures are -
given by For the diffusion term, we have
¢ = Dad f
X = 4wy Y, u2
i R EFH = D({ }) ... (19)
Y, = —dwg X, - |0(0|
from which we obtain
1 { _
=-=—u Yo, el Xt +ug :} (15) _ CAQ
2 Z ({ 1}) i d({x}) = N arctan EmE ... (20)
We notethat the friction term takes aquadratic form Ingeneral, thedynamicsfor theabovemaster equation
of u, and thedissipationtermalinear formof u,, whichis  jscomputationally difficult to solve. Inthefollowing, we
amanifest of the fluctuation-dissi pation theorem. concentrate on a specific case with Wy = W = W i.e.

The master equation corresponding to the above thetwo componentsrefer to two different internal states
for the same alkali (thereisno conversion between them

guantum Langevin equations should be in the following
since Q, = 0). u, can be changed by using different atom

form numbersN Denotlnggk({X}) ukG we have
p =i B"eff ) DE+ LgicP + Ly Ps )
- k
G- _4%, .. (21)
2 .v2\_N (k tAa )
Pl = Zsz’j (Xj Y )—?arctan FkE  independent of atomic species. Thefrictiontermis £, p
RS S I
Lo 0= (112) Z%J ({ })’{Yj’p} g By making coordinate transformations (u? = U2 + u2)
X +UX U X —ux
g p=-H{x}) B({x}).oE - a0 X =S K=
where £, ;. takes aform similar to the famous Caldeira— Y, = ulY—uzy’ Y, = UzY_Uly, (22

Leggett master equation [17].

We need the exact form of g, ({X}) and d ({X}) to
construct the full master equation. To this end, we note
that g; ({ X;}) is related to the drifting of 'Y; which can be

we can rewrite the master equation as

p=-i B"eﬁ, pH"’ LgicP T+ Lyg P

determined by matching <Yj> from the master equation Her = 205 (X2 + Y2+ X2 + y)
and the Heisenberg—Langevian equation. Similarly, d — WX
({X}) is related to the diffusion of Y, which can be _f]_ arctan Hiuﬁ
determined by matching (Y7).
For the friction term (k # j), we have Lic P= _(i /2) 2 @(XHY’ p} E
I
9 U kA wgukn®
—% = Ujrk = —1600R i Mg (17) G (X) = -4 ~R 2\?
X, ’ (k2+A2) (k2+(AC—uX) )
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(A, —uxX O

d(X)— Tarctan Hia

We can immediately see that the master equation is
separable in the center of mass coordinates (X, Y) and
the relative coordinates (X, y). This allows us to treat
them separately. Here u; playsthe role of effective mass
in the coordinate transformations. Note that U isnot pro-

portional to N, but \/N_J . Theradiation pressurefromthe
cavity actsonly on the center of mass motion of thetwo-
component condensate and has no influence on the
corresponding relative motion. We emphasize that the
decoupling of the center of mass and relative motion is
also clear from Eqgs (4a)-(4c) where the relative motion
is decoupled from the center of mass motion under the
transformation (Eq. 22). Both the friction term and the
noiseterm have been cancelled out in the rel ative motion.

. (23)

Weassumetheinitial density matrix separableinthe
center of mass and relative motion, i.e. p (t = 0) = p,(X,
X, t=0) p, (x, x) with p, (X, X) = @, (X) @, (X) where @,
(x) is the lowest eigenstate of the harmonic oscillator,
2 (x2+y?). Therefore, at any timet, p,(X, X', t) satisfies

Ps =~ [Hes o P + LigicPs + Legs Ps - (24)
A, —uX O

Herr ¢ = 2005 (X2 + Y?) — —arctan Eia

By reducing theoriginal two-component problemtoa
one-body problem, wecannumerically integratethe master
equation (Eg. 24) and compute the dynamicsfor various
operators. Because of the large parameter space, we do
not want to exploreevery possibl ecases. Instead, wefocus
on arepresentative case which is also discussed in Ref.

[12]: k=342.103, A, = —825wy, U= 169.74 (), = /2u, =

J2u,, and n = 120w, We will consistently use these

parameters unless otherwise specified. For these
parameter values, it turns out that the potential in Hy; ¢
exhibits a double well structure which fallsinto the so-
called bistability regime. Such aregimehasbeen discussed
indetail [12] and wesimply quotetheir resultshere.

Theinitial statefor pgischosenasp (t=0) = | (t=

)W (t = 0) |with X[ (t= 0)C=1/v2 (W, (X) + Wy (X)).
P, (X)). Wy, 1 (X) arethetwo lowest eigenstates of Hy; .
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Dueto the double well structure, theinitial state Y (X) is
mosgtly localized intheleft potential well. Without dissipation
and friction, therewill be Josephson oscill ations between
the two potential wells. The existence of diffusion and
friction altersthe dynamicssignificantly.

To demonstrate the difference, we numerically solve
the master equation and our results are shown below.
We first compute [X,Oas function of time t. From the

u.
transformation of Eqg. (22), we have X,0= UJ<X>

Therefore, X; and X, show the same behavior as in the
single component case. Thisresult iseasy to understand
since the radiation pressure always drives the two
components in phase. More interestingly, the amplitude
of X Osproportional to U whichimpliesthat the average
displacement dependslinearly on the squareroot of atom
number. Recall in this study we have neglected the
s-wave scattering potential, this dependence on atom
number is purely a back action of the cavity field and
differs from the usual nonlinearity with the mean field
approximation. Our numerical resultsareshowninFig. 1.
We can clearly see damped oscillations due to diffusion
andfriction sincetherewill be coherent oscill ation between
thetwowellsif therearenofrictionand disspation. Similar
results are also reported in Ref. [12]. The decay rate is
found to be about 10 times larger than the Josephson
tunnelling rate so that Josephson oscilla-tions are strongly
suppressed [12]. Asaconsequence, theintra-cavity field
intensity [@'allis expected to show a similar damped
behavior. Such a damping will reduce the average
intracavity photon. From Eg. (12) and the transformation
of Eq. (22), we have

-8agkn? u A, —uX)%
k2+(Ac —uX)z)3 o/

<a*a> =(|oo|"+

=
m

.. (25)

The first term is the leading term where it already
takes the back action of condensed atoms into consi-
deration. Thesecond termismerely afirst order correction
and does not play important role for the chosen
parameters. The numerical resultsareshowninFig. 2. It
iseasy to observethat thereisroughly atphase between

(X,) and <a7a>. This can be seen from Eq. (10) where
0, isinversely related to A. So alocal maximumin o,
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Fig. 1: (X;) asfunction of timet. Timeisin unit of 1/cw.
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Fig. 2: <aTa> asfunction of timet. Timeisin unit of 1/w.

corresponds to alocal minimumin (X, ) and vice verse.
However, both (X;) and <aTa> saturate to finite values.

For friction and diffusion process, mixedness is
another important quantity that deserves some discu-
ssions. It is defined as S=1-Tr (p?) = 1 - Tr (p).
Mixedness characterizes the loss of coherence in a
guantum system. Without diffusion andfriction, pisaways
associated with a single pure state and Swill always be
0. However, thisisnot the casewhen weincludediffusion
and friction as can be seen from our numerical resultsin
Fig. 3. It turns out that there are two mgjor differences
compared to (X;) and <aTa>. First, we find that Sis a
monotonically increasing function of time t despite the
oscillationsin <x1> and <aTa>. Second, the mixedness of
our state increases at atime scale of ~0.1 whichismuch

106 \
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Fig. 3: Linear entropy S (mixedness) as function of time t. Time
isin unit of 1/

smaller than the oscillation period (X,) and <aTa .
Denoting the time scal e of Josephson oscillation, damped
oscillation, and mixednessast;, T, and 1,,, respectively,
they satisfy 1, ~ 61, and 1, » T}, in the current model.
Thisclearly showsthat the di.usion term playsadominant
role.

For atwo-component condensate, we are particularly
interested in the correl ation dynamics between different
o X, and
X, X, andY,. While such correlation effect isabsentina
single component condensate, it naturally arises in the
two component case. To this end, we define the
normalized covariance for two operators P and Q to
characterize the degree of correlation

(PQ) +(QP) -2(P)(Q)
2 JAP?AQ? '

CP.Q=

IfP=Q,C(P,Q)=1.If Pand Q arenot correlated,
C (P, Q) =0.Therefore, C (P, Q) givesanoverall feature
of correlation. From the transformation of Eq. (22), we
can obtain various expressions for C (XJ., X,) and C
(XJ., Y,). For example, we have

uu,

2
C (X, X,) = 4

M jﬁé(sz —sz) + A2

Our numerical resultsfor C (X, X,) asfunction of timet
are shown in Fig. 4. Other C (X, Y,) shows similar

(Ax2 - sz)

... (26)

D:II'I;‘\H
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Fig. 4: Covariance C (X, X,) as Function of time t. Time is in

unit of 1/ wy

patternsand will not be addressed any more. From Fig. 4,

we can see that, in spite of a few small amplitude
oscillations at the initial stage, the overal trend of C

(X;, X,) isto increase and saturate to a constant value.

While the time scale associated with the increase stage
is similar to that of mixedness, the time scale of small

amplitude oscillations is about the same as that in [X,[
and [@" alJThedamping effect dueto diffusion and friction

dominates the Josephson tunnelling effect in the
condensate dynamics. It may be surprising that correlation
between X, and X, may increase to such an extent inthe
presence of dissipation and diffusion. Analysis show that

the wave packet actually becomes more flatten due to

dissipation and diffusion. Such aphenomenonisadirect

result of the condensate motion driven by acommon cavity
field. Itisanalogousto the so-called environment-assisted
entanglement [18].

To further show the dependence of C (X, X,) on
u,/u,, we present our numerical results in Fig. 5 with
fixed u = 169.74wy at t = 24/w,. We find the peak is
achieved for u, = u,, i.e. the two quadratures are
symmetrically coupled to the cavity field. This can be
easily understood since the two quadratures are coupled
to the cavity field in the same fashion and u; is the only
parameter that is associated with quadrature X;.

In conclusion, we have shown the dynamics for a
two component Bose-Einstein condensate which is
dispersively coupled to a high-Q optical cavity. By
adiabaticaly diminating the cavity field, we obtain amaster
equation for the quadratures of a two-component
condensate. As a result of diffusion and friction, the

International Review of Atomic and Molecular Physics, 1 (2), July-December 2010
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1772

Fig. 5. Covariance C (X;, X,) as Function of u,/u, for Fixed
U= 169.74w at t = 24/wy,

dynamics exhibits a strong damping effect which is
different from the non-dissipative case. We give our
numerical results for the average of quadratures and the
intensity of the intra-cavity field as a function of time.
We also present the time dependence of linear entropy
and normalized covariance between quadratures of the
condensate. All of these demonstrate that damping plays
an important role in the dynamics for a two-component
condensate. For afuture study, we plan to investigate the
effect due to transition between the two components.
We hope our results reported here can be helpful to
ongoing experimental effortsin exploring the combined
condensate-cavity system.

Wethank J. Ludlow for proof reading our manuscript.
Thiswork issupported by NSF Theoretical Physicsunder
agrant to Auburn University.
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