
RESEARCH ARTICLE

INTERNATIONAL REVIEW OF ATOMIC AND MOLECULAR PHYSICS (IRAMP)
Volume 1, No. 2, July-December 2010, pp. 101-108, © International Science Press,  ISSN: 2229-3159

QUANTUM CORRELATION OF A TWO-COMPONENT BOSE-EINSTEIN
CONDENSATE IN AN OPTICAL CAVITY

B. SUN AND M.S. PINDZOLA
Department of Physics, Auburn University, Auburn, Alabama-36849, USA.

WENXIAN ZHANG
The Key Laboratory for Advanced Materials and Devices, Department of Optical Science and Engineering,

Fudan University, Shanghai-200433, People’s Republic of China.

Abstract: We investigate the dynamics of a two-component Bose-Einstein condensate dispersively coupled by an
optical cavity. Following the approach of D. Nagy et. al. (Eur. Phys. J. D 55, 659, 2009), we derive the corresponding
master equation for the quadratures of a two-component condensate by adiabatically eliminating the cavity field. The
existence of resulting diffusion and friction makes the dynamics differ significantly from the non-dissipative case in the
classically bistable regime. We give numerical results such as linear entropy and correlations between the two quadratures
to demonstrate our conclusions.
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Recent success in trapping condensed bosonic atoms inside
an optical cavity has attracted much interest in investi-
gations of cavity quantum electrodynamics and ultracold
atomic physics [1– 16]. Compared to the scenario where
a Bose-Einstein condensate is placed inside an optical lattice
in free space, the quantized nature of the cavity photon
field plays a strikingly different role. The cavity field is
dispersively coupled to the condensate and affects the
motion of the condensate which in turn acts back to the
cavity field and modifies the photon distribution inside the
cavity. The coupling between the condensate and the cavity
field in many aspects resembles the canonical
optomechanics. For example, bistable behaviors have been
experimentally observed which demonstrates the intrinsic
nonlinearity of the system [7, 15].

In this paper, we investigate the dynamics of a
twocomponent condensate in an optical cavity. We extend
the previous work for a single-component condensate to
a two-component condensate [12]. By taking the leakage
of cavity photons into consideration, we derive the
corresponding master equation along similar lines to Ref.
[12]. Because both components are simultaneously coupled
to the cavity field through the radiation pressure from

intra-cavity photons, we are particularly interested in the
correlation between the two components.

We consider a cigar-shaped two-component Bose-
Einstein condensate in a single mode high-Q optical cavity.
The two components are hereafter labelled as 1 and 2.
The cavity with mode frequency ωcav is driven by an
external laser field with frequency ω. The cavity
frequency is detuned far below the atomic transition
frequency ωat, j for component j, so the excited state can
be adiabatically eliminated. This results in an optical
potential Uj = g2

j/(ω – ωat, j) for atoms of component j. gj
is the single photon Rabi frequency of the cavity. Because
the condensate is tightly trapped in the transverse direction,
transverse degrees of freedom are frozen. Therefore we
can treat the condensate as a one dimensional system
along the x-axis. We further assume a monotonic cavity
mode k = ωcav /c with a corresponding mode function cos
(kx). The above assumptions greatly simplify our
derivations and allow us to grasp essential features of
the dynamics.

In the rotating frame of the pump laser, the many-
body Hamiltonian for the combined condensate-cavity
system is ( )1=
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H = ( )† †− ∆ + η −Ca a i a a
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jj
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0 1 2 1 2+ Ω Ψ Ψ + Ψ Ψ∫ dx x x x x ... (1)

where ∆C = ω – ωcav. The origin is assumed to be located
at the center of the cavity. a and a† are annihilation and
creation operators for cavity photons, respectively,
satisfying [a, a†] = 1. η denotes the amplitude of the
driving laser. Ψj (x) and Ψ†

j (x) are condensate field
operators with [Ψj (x), Ψ†

k (x′)] = δj, kδ (x – x′).mj is the
atom mass for component j. For completeness, we have
also included a possible conversion between the two
components with a Rabi frequency Ω0. In the above
Hamiltonian, we have neglected the s-wave scattering
between the atoms for the weak atom-atom interaction
limit as in previous treatments, e.g. [12]. In the following,
we take a similar approach as shown by Nagy et. al. [12]
which also serves as a review of the method in Ref. [12].

Restricting the dynamics to the two lowest modes of
the condensate, we expand the atomic field operators as

Ψ1 (x) ∝ c0 + 2c2 cos (2kx) and Ψ2 (x) ∝ d0 + 2d2 cos
(2 kx) where c0, c2, d0, and d2 are the usual bosonic
operators for the corresponding modes 1 and 2,
respectively. The Hamiltonian can be rewritten as

H = ( )† †1 1 2 2

2 2
 − ∆ + + + η −  C

N U N U
a a i a a

( )† † † †1
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2
4

4
+ ω + +R

U
c c a a c c c c

( )† † † †2
, 2 2 2 0 2 0 2

2
4

4
+ ω + +R

U
d d a a d d d d

( ) ( )† † † †
0 2 2 2 2 0 0 0 0 0+ Ω + + Ω +c d c d c d c d ... (2)

where ωR, j = k2/(2mj) is the recoil energy for component
j. c†

0 c0 + c†
2 c2 = N1 and d†

0d0 + d †
2d2 = N2. Nj is the atom

number of component j. We can immediately see that,
for Ω0 ≠ 0, both N1 and N2 are time dependent. This
makes the dynamics rather complicated and it seems not
possible for a simple analytic treatment. Therefore, we
focus on the case with Ω0 = 0 in the following discussions.
We also note that the above Hamiltonian is quadratic in
c0, 2 and d0, 2 and in principle can be diagonalized by a
unitary transformation. However, such a transformation

depends on a†a which actually brings more complexity
to the above problem.

Therefore, we closely follow the approach which is
shown in Ref. [12]. To begin with, we assume the depletion

from the ground state is small, i.e. c0  1N  and d0 

2N , and introduce the quadratures

X1 = ( )†
2 2

1

2
+c c , Y1 = ( )†

2 2
2

+i
c c ,

X2 = ( )†
2 2

1

2
d d+ , Y2 = ( )†

2 2
2

i
d d− .

The Hamiltonian becomes

H = ( )† †
Ca a i a a− ∆ + η −

( )2 2 †
,

1, 2

2 ,R j j j j j
j

X Y u a aX
=

 + ω + + ∑

C∆ = 1 1 2 2 ,
2 2C

N U N U∆ − −

u j =
2
j jN U

. ... (3)

The corresponding Heisenberg–Langevin equation is

a = C j j
j

i u X k a
  
 ∆ − − + η + ξ, 
   

∑ ... (4a)

jX = ,4 ,R j jYω ... (4b)

jY = †
,4 R j j jX u a a− ω − ... (4c)

where ( ) ( ) ( )† 2t t k t t〈ξ ξ ′ 〉 = δ − ′  and k is the cavity
decay rate.

For typical experimental conditions with k >> ωR, we
can adiabatically eliminate the cavity photon field. We
then obtain

a (t) = α (t) + Σ (t),

α (t) = ,
k i

η
− ∆

∆ = ,C j j
j

u X∆ − ∑
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Σ (t) = ( ) ( ) ( )
0

t i k t te t dt∆ − − ′ ξ ′ ′∫ .

We note that α (t) is an operator valued function of
operators Xj which shows the back-action of the
condensate on the cavity field. The subsequent bistability
has been observed experimentally [7]. Here the resulting
expressions for the cavity photon field is formally identical
to the single component case. This is not surprising since
the cavity is subject only to the combined effect of the
two-component condensate. The only non-vanishing
second order correlation function for the noise term is

( ) ( )†t t〈Σ Σ ′ 〉 = ( ) ( )( ) ,i t t k t t k t te e e∆ − ′ − − ′ − + ′− ... (5)

which is further approximated by a Lorentzian function

( ) ( ) ( )†
2 2

2
.

k
t t t t

k
Σ Σ ′ δ − ′

∆ +
 ... (6)

Therefore, the cavity intensity with a noise term can
be written as

a†a = ( ) ( )2
,t tα + Ξ

( ) ( )t tΞ Ξ ′ = Dδ ( )t t− ′ ,

D =
( )

2

22 2

2k

k

η

+ ∆
. ...(7)

We note that the fluctuation of the cavity field is
affected by operator ∆ which depends explicitly on
operators Xj, again showing the back-action of the
condensate. Since the fluctuation of the cavity field is
solely related to ∆, our derivations below will resemble
that of the single component condensate. As in Ref. [12],
we are motivated to perform a perturbative analysis on
operators Yj assuming that the recoil energy is much
smaller compared to other energy scales.

We are looking for the amplitude in the following form:

{ }( ),jX tα = { }( ) ( ) { }( ){ }0 1

1
, ,

2
j

j j j
j

X Y Xα + α∑
... (8)

which is essentially the first order correction to the
adiabatic elimination. Here the notation of {Oj, Ok} means
the anti-commutator of the two enclosed operators Oj

and Ok and {Oj} stands for the collection of operators.
We can see that, to the first order correction, there will
be a corresponding correction on Yj for each component.
In its most general form, the coe.cient in front of Yj
depends on both quadratures X1 and X2.

With the help of the identity

d

dt

α
=

t

∂α
∂  + ,2 , ,R j j

jj

Y
X

 ∂α ω  ∂  
∑ ... (9)

we obtain terms in the order of Yj by comparing Eq. (4a)
and Eq. (8).

The zeroth order term gives

{ }( )0 jXα =
k i

η
− ∆

, ... (10)

and the first order term gives

( ) { }( )1
j

jXα =
, 0

4 R j

ji k X

ω ∂α
∆ − ∂

= ( ), 34 .j
R j

u
i

k i

η
ω

− ∆
... (11)

Finally we express the cavity .eld intensity up to the
first order of Yj

a†a = ( )* *1

2
α α + αα

=
( ) ( ){ }2 * *

0 0 1 0 1

1
, ,

2
j j

j
j

Yα + α α + α α∑
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from which we can extract the friction force on
component j as

j = ( )2†
0ju a a− − α

= ( ) ( ){ }**
0 1 0 1

1
,

2
k k

j k
k
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with

Γk ({Xj}) =
( )

2

, 32 2
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u k

k
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+ ∆

... (14)
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We note that both j and Γj ({Xj}) are proportional
t o uj. Thus the intra-species friction force is ∝ u2

j and the
inter-species friction force ∝ u1u2.

After adiabatically removing the cavity field, the
reduced equations of motion for the quadratures are
given by

jX = ,4 ,R j jYω

jY =
2

, 04 R j j jX u− ω − α

= { }( ){ }1
,

2 j k k j j
k

u Y X u− Γ + Ξ∑ ... (15)

We note that the friction term takes a quadratic form
of uj and the dissipation term a linear form of uj, which is
a manifest of the fluctuation-dissipation theorem.

The master equation corresponding to the above
quantum Langevin equations should be in the following
form

ρ = ,eff fric diffi H − ρ + ρ + ρ,  L L

Heff = ( )
2

2 2
,2 tan ,R j j j

j

X Y arc
k k

η ∆ ω + −   ∑

Lfric ρ = ( ) { }( ) { }/ 2 , , ,j j j
j

i g X Y − ρ ∑

Ldiff ρ = { }( ) { }( ), ,j jd X d X  − ρ    ... (16)

where Lfric takes a form similar to the famous Caldeira–
Leggett master equation [17].

We need the exact form of gj ({Xj}) and d ({Xj}) to
construct the full master equation. To this end, we note
that gj ({Xj}) is related to the drifting of Yj which can be
determined by matching jY  from the master equation
and the Heisenberg– Langevian equation. Similarly, d
({Xj}) is related to the diffusion of Yj which can be

determined by matching 2
jY .

For the friction term (k ≠ j), we have

gk

jX

∂
∂

= j ku Γ  =
( )

2

, 32 2
16 j k
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u u k

k

η ∆
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from which we obtain

gk ({Xj}) =
( )

2

, 22 2
4 k

R k

u k

k

η− ω
+ ∆

. ... (18)

For the diffusion term, we have

2

2
j

d

X

 ∂
 ∂ 

= { }( )2
j ju D X ... (19)

from which we obtain

d ({Xj}) = tanarc
kk

η ∆ 
   . ... (20)

In general, the dynamics for the above master equation
is computationally difficult to solve. In the following, we
concentrate on a specific case with ωR, 1 = ωR, 2 = ωR, i.e.
the two components refer to two different internal states
for the same alkali (there is no conversion between them
since Ω0 = 0). uj can be changed by using different atom
numbers Nj. Denoting gk ({Xj}) = ukG̃, we have

G =
( )

2

22 2
4 ,Rk

k

ω η−
+ ∆

... (21)

independent of atomic species. The friction term is Lfric ρ

= ( ) { }( ) { }/ 2 , ,j j jj
i G X u Y − ρ ∑  .

By making coordinate transformations (u2 = u2
1 + u2

2)

X1 = 1 2u X u x

u

+
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2 1u X u x

u

−
,
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u Y u y

u

−
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2 1 ,
u Y u y

u

−
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we can rewrite the master equation as

ρ = ,eff fric diffi H − ρ + ρ + ρ  L L
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2
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Ldiff ρ = ( ) ( ), ,d X d X  − ρ  

d (X) = tan c uX
arc

kk

 ∆ −η
  


... (23)

We can immediately see that the master equation is
separable in the center of mass coordinates (X, Y) and
the relative coordinates (x, y). This allows us to treat
them separately. Here uj plays the role of effective mass
in the coordinate transformations. Note that uj is not pro-

portional to Nj but jN . The radiation pressure from the
cavity acts only on the center of mass motion of the two-
component condensate and has no influence on the
corresponding relative motion. We emphasize that the
decoupling of the center of mass and relative motion is
also clear from Eqs (4a)-(4c) where the relative motion
is decoupled from the center of mass motion under the
transformation (Eq. 22). Both the friction term and the
noise term have been cancelled out in the relative motion.

We assume the initial density matrix separable in the
center of mass and relative motion, i.e. ρ (t = 0) = ρs (X,
X′, t = 0) ρo (x, x′) with ρo (x, x′) = φ0 (x) φ0 (x′) where φ0
(x) is the lowest eigenstate of the harmonic oscillator,
2 (x2 + y2). Therefore, at any time t, ρs (X, X′, t) satisfies

sρ = – i [Heff, s, ρs] + Lfricρs + Ldiff ρs ... (24)

Heff , s = 2ωR (X2 + Y2) –
2

tan c uX
arc

k k

 ∆ −η
  



By reducing the original two-component problem to a
one-body problem, we can numerically integrate the master
equation (Eq. 24) and compute the dynamics for various
operators. Because of the large parameter space, we do
not want to explore every possible cases. Instead, we focus
on a representative case which is also discussed in Ref.

[12]: k = 342.1ωR, ∆̃.c = –825ωR, u = 169.74 ωR =
12u  =

22u , and η = 120ωR. We will consistently use these

parameters unless otherwise specified. For these
parameter values, it turns out that the potential in Heff, s
exhibits a double well structure which falls into the so-
called bistability regime. Such a regime has been discussed
in detail [12] and we simply quote their results here.

The initial state for ρs is chosen as ρs (t = 0) = |ψ (t =
0)〉 〈ψ (t = 0) | with 〈X |ψ (t = 0)〉 = ( ) ( )( )0 11/ 2 X Xψ + ψ .
ψ1 (X)). ψ0, 1 (X) are the two lowest eigenstates of Heff, s.

Due to the double well structure, the initial state ψ (X) is
mostly localized in the left potential well. Without dissipation
and friction, there will be Josephson oscillations between
the two potential wells. The existence of diffusion and
friction alters the dynamics significantly.

To demonstrate the difference, we numerically solve
the master equation and our results are shown below.
We first compute 〈X1〉 as function of time t. From the

transformation of Eq. (22), we have 〈Xj〉 =
ju

X
u

.

Therefore, X1 and X2 show the same behavior as in the
single component case. This result is easy to understand
since the radiation pressure always drives the two
components in phase. More interestingly, the amplitude
of 〈Xj〉 is proportional to uj which implies that the average
displacement depends linearly on the square root of atom
number. Recall in this study we have neglected the
s-wave scattering potential, this dependence on atom
number is purely a back action of the cavity field and
differs from the usual nonlinearity with the mean field
approximation. Our numerical results are shown in Fig. 1.
We can clearly see damped oscillations due to diffusion
and friction since there will be coherent oscillation between
the two wells if there are no friction and dissipation. Similar
results are also reported in Ref. [12]. The decay rate is
found to be about 10 times larger than the Josephson
tunnelling rate so that Josephson oscilla-tions are strongly
suppressed [12]. As a consequence, the intra-cavity field
intensity 〈a†a〉 is expected to show a similar damped
behavior. Such a damping will reduce the average
intracavity photon. From Eq. (12) and the transformation
of Eq. (22), we have

†a a =
( )

( )( )
2

2
0 322

8
,

R c

c

k u uX
Y

k uX

 
 − ω η ∆ − α +  
 + ∆ −  




.

... (25)

The first term is the leading term where it already
takes the back action of condensed atoms into consi-
deration. The second term is merely a first order correction
and does not play important role for the chosen
parameters. The numerical results are shown in Fig. 2. It
is easy to observe that there is roughly a π phase between

1X  and †a a . This can be seen from Eq. (10) where
α0 is inversely related to ∆. So a local maximum in α0
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smaller than the oscillation period 1X  and †a a .
Denoting the time scale of Josephson oscillation, damped
oscillation, and mixedness as τJ, τD, and τM, respectively,
they satisfy τJ ~ 6τD and τD » τM in the current model.
This clearly shows that the di.usion term plays a dominant
role.

For a two-component condensate, we are particularly
interested in the correlation dynamics between different
q u a d r a t u r e s  u n d e r  a  c o m m o n  r a d i a t i o n  f i e l d ,  e . g . X1 and
X2, X1 and Y2. While such correlation effect is absent in a
single component condensate, it naturally arises in the
two component case. To this end, we define the
normalized covariance for two operators P and Q to
characterize the degree of correlation

C (P, Q) =
2 2

2

2

PQ QP P Q

P Q

+ −

∆ ∆
.

If P = Q, C (P, Q) = 1. If P and Q are not correlated,
C (P, Q) = 0. Therefore, C (P, Q) gives an overall feature
of correlation. From the transformation of Eq. (22), we
can obtain various expressions for C (Xj, Xk) and C
(Xj, Yk). For example, we have

( )1 2,C X X =
( )

( )

2 21 2
2

1
2 2

2 2 2
2
j

j

u u
X x

u

u
X x x

u

∆ − ∆

 
∆ − ∆ + ∆ 

 
∏

... (26)

Our numerical results for C (X1, X2) as function of time t
are shown in Fig. 4. Other C (Xj, Yk) shows similar

Fig. 3: Linear entropy S (mixedness) as function of time t. Time
is in unit of 1/ωR.

Fig. 2: †a a  as function of time t. Time is in unit of 1/ωR.

corresponds to a local minimum in 1X  and vice verse.

However, both 1X  and †a a  saturate to finite values.

For friction and diffusion process, mixedness is
another important quantity that deserves some discu-
ssions. It is defined as S = 1 – Tr (ρ2) = 1 – Tr (ρ2

s).
Mixedness characterizes the loss of coherence in a
quantum system. Without diffusion and friction, ρ is always
associated with a single pure state and S will always be
0. However, this is not the case when we include diffusion
and friction as can be seen from our numerical results in
Fig. 3. It turns out that there are two major differences

compared to 1X  and †a a . First, we find that S is a
monotonically increasing function of time t despite the
oscillations in 1X  and †a a . Second, the mixedness of
our state increases at a time scale of ~ 0.1 which is much

Fig. 1: 1X  as function of time t. Time is in unit of 1/ωR .
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dynamics exhibits a strong damping effect which is
different from the non-dissipative case. We give our
numerical results for the average of quadratures and the
intensity of the intra-cavity field as a function of time.
We also present the time dependence of linear entropy
and normalized covariance between quadratures of the
condensate. All of these demonstrate that damping plays
an important role in the dynamics for a two-component
condensate. For a future study, we plan to investigate the
effect due to transition between the two components.
We hope our results reported here can be helpful to
ongoing experimental efforts in exploring the combined
condensate-cavity system.

We thank J. Ludlow for proof reading our manuscript.
This work is supported by NSF Theoretical Physics under
a grant to Auburn University.
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patterns and will not be addressed any more. From Fig. 4,
we can see that, in spite of a few small amplitude
oscillations at the initial stage, the overall trend of C
(X1, X2) is to increase and saturate to a constant value.
While the time scale associated with the increase stage
is similar to that of mixedness, the time scale of small
amplitude oscillations is about the same as that in 〈X1〉
and 〈a† a〉. The damping effect due to diffusion and friction
dominates the Josephson tunnelling effect in the
condensate dynamics. It may be surprising that correlation
between X1 and X2 may increase to such an extent in the
presence of dissipation and diffusion. Analysis show that
the wave packet actually becomes more flatten due to
dissipation and diffusion. Such a phenomenon is a direct
result of the condensate motion driven by a common cavity
field. It is analogous to the so-called environment-assisted
entanglement [18].

To further show the dependence of C (X1, X2) on
u1/u2, we present our numerical results in Fig. 5 with
fixed u = 169.74ωR at t = 24/ωR. We find the peak is
achieved for u1 = u2, i.e. the two quadratures are
symmetrically coupled to the cavity field. This can be
easily understood since the two quadratures are coupled
to the cavity field in the same fashion and uj is the only
parameter that is associated with quadrature Xj.

In conclusion, we have shown the dynamics for a
two component Bose-Einstein condensate which is
dispersively coupled to a high-Q optical cavity. By
adiabatically eliminating the cavity field, we obtain a master
equation for the quadratures of a two-component
condensate. As a result of diffusion and friction, the

Fig. 5: Covariance C (X1, X2) as Function of u1/u2 for Fixed
u = 169.74ωR at t = 24/ωR.

Fig. 4: Covariance C (X1, X2) as Function of time t. Time is in
unit of 1/ ωR
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