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ABSTRACT: Methods for the laser-assisted diagnostics of oscillatory electric fields (OEFs) in plasmas are reviewed.
It is shown that several phenomena can be used for this purpose. First, a tunable laser radiation can scan both the
structure of energy levels and spectral line profiles of atoms interacting with the OEFs. Second, the laser radiation can
cause a saturation of the atomic transition, including the cases where the saturation parameter depends on characteristics
of the OEFs. Third, the laser radiation itself can modify both the structure of energy levels and spectral line profiles in
such a way that the modification would depend, in particular, on parameters of the OEFs.

PACS: 32.70Jz, 32.60.+i, 32.80.-t, 52.70.Kz

1. INTRODUCTION

Developing methods for diagnosing oscillatory electric fields (OEFs)
0( ) cos= ω

 
M M ME t E t  in plasmas is of a great

practical importance: the OEFs control many physical processes in plasmas. The term OEF embraces both the intrinsic
eigen-modes of plasmas (plasma turbulence) and extrinsic fields penetrating into plasmas from the outside. To the
latter type belongs, e.g., the field of the microwave radiation used for heating in some magnetic fusion machines.

Currently for diagnosing OEFs in plasmas, there are widely employed methods based on the emission
spectroscopy [1]. As an example, we note paper [2], where OEFs were revealed and studied in the peripheral
plasma of the tokamak T-10 by using profiles of spontaneously emitted spectral lines of deuterium.

Bringing into play a laser radiation can significantly broaden the scope of spectroscopic diagnostics of OEFs in
plasmas. The advantage is the possibility of measuring OEFs with a high temporal and spatial resolutions. In the

laser-assisted diagnostics of the OEF ( )


ME t , atoms in a plasma interact with both the laser field
0( ) cos= ω

 
L L LE t E t

and with the OEF ( )


ME t . We assume that ω
M
 <<ω

L
 and that the frequency ω

L
 is close to the frequency of the atomic

transition between the upper and lower energy levels.

In magnetic fusion machines, there are various ways for atoms to serve as sensitive “probes” with respect to the
OEFs. First, atoms of the main filling gases (hydrogen, deuterium) can be used for diagnosing OEFs in the peripheral
plasma. Second, for measuring OEFs in the core plasma one can inject neutral beams (hydrogen, deuterium, helium,
litium). Besides, one can also inject pellets (containing, e.g., lithium). As an example, Fig. 1 shows a possible
geometry for the laser-assisted diagnostics of OEFs in a tokamak, where atoms of the injected neutral beam play the
role of the “probes”. In this case, in addition to the OEF, one should also take into account the Lorentz electric field

/= ×
  

b bE V B c , where

bV  is beam velocity and


B  is the magnetic field.
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In this paper we consider physical principles that can serve as the basis for laser-assisted spectroscopic methods
for diagnosing OEFs in magnetic fusion plasmas.

2. ABSORPTION SPECTRA OF ATOMS NOT HAVING PERMANENT DIPOLE MOMENTS

The interaction of an atom with the OEF ( )


ME t can be characterized by the parameter

0 /[2 ( )]′ ′′ ′ ′′α α α α= ω ± ωM MR d E (1)

where ′ ′′α αd  is the matrix element of the dipole moment between the closely spaced levels α′, α′′, and ωα′ α′′ is the

separation between these levels. If R<< 1 (the case of a weak field ( )


ME t ), the field
0( ) cos= ω

 
M M ME t E t  can be

measured using the fact that the excitation rate for the two-quantum process, involving one quantum ω L of the

laser field
0( ) cos= ω

 
L L LE t E t and one quantum ω L of the field

0( ) cos= ω
 

M M ME t E t , is proportional to 2
0ME . Let

us consider, for instance, the excitation scheme shown in Fig. 2, where ω
23

 << ω
21

. We assume that in the electric
dipole approximation, the single-photon transitions 1 ↔ 3 and 2 ↔ 3 are allowed, whereas the single-photon
transition 1↔2 is forbidden.

Figure 1: Geometry of the observations for laser-assisted diagnostics of oscillatory electric fields in tokamak plasmas

Figure 2: Partial scheme of energy levels of an atom. (a) The excitation of the transition 12 Due to the absorption of a
laser photon ω

L
 and of an OEF quantum ω

M
. (b) The excitation of the transition 1 2 due to the

absorption of a laser photon ω
L
 and the emission of an OEF quantum ω

M
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Using the quantum-mechanical perturbation theory (we assume that R<<1 for the levels 2 and 3), one can
obtain the excitation rates for the two-quantum transitions shown in Fig. 1:

( ) 2 2 2 2 2 2
1 2 0 0 13 32 32 21

( ) 2 2 2 2 2 2
1 2 0 0 13 32 32 21

{ /[8 ( ) ]} ( , ),

{ /[8 ( ) ]} ( , ).

+
→

−
→

= ω + ω ω − ω − ω γ

= ω − ω ω − ω + ω γ




L M M L M

L M M L M

W E E d d L

W E E d d L
(2)

In Eqs. (2), 2 2( , ) ( / 2) /( / 4),ω γ ≡ γ ω + γL γ is the width (FWHM) of the line. The value of ( )
1 2

+
→W  corresponds to

the process shown in Fig. 2(a), whereas the value of ( )
1 2

−
→W corresponds to the process shown in Fig. 2(b). The

excitation rate for the direct single-photon transition 1→3 induced by the laser field is as follows:

2 2 2
1 3 13 0 21[ /(2 )] ( , )→ = ω − ω γL LW d E L . (3)

Figure 3 shows the absorption spectrum consisting of the lines ( )
1 2

±
→W  and W

1→3
 for the transitions 1→(2,3). One

can see that both the ratios ( )
1 2 1 3/+
→ →W W  and ( )

1 2 1 3/−
→ →W W  are proportional to 2

0ME . Therefore, the ratios ( )
1 2 1 3/+
→ →W W

and ( )
1 2 1 3/−
→ →W W  can be used to measure E

OM
 by scanning the laser frequency around the frequencies 21  and 31

and observing the fluorescence signals at transitions originated from the levels 2 and 3.

Figure 3: Absorption spectrum for the transitions 1(2,3) shown in Fig. 2. S
A
 W

13
 is the intensity of the allowed line 13;

( )
1 2

+
+ →≡S W  is the intensity of the line corresponding to the excitation scheme (a); ( )

1 2
−

− →≡S W  is the intensity of the line

corresponding to the excitation scheme (b) (cf. Fig. 2). The separation between the lines S_ and S
+
 is equal to 2

M

In the case where the parameter R in Eq. (1) is of the order or greater than unity, the formalism of quasienergy

states (QES) is more appropriate for treating the interaction of the atom with the OEF ( )


ME t . According to the

Floquet theory (see, e.g., Ref. [3]), for the atom interacting with the OEF
0( ) cos= ω

 
M M ME t E t , among the wave

functions (WFs) of the atom, there exists a basis of the WFs of QES

( , ) exp( / ) exp( ) ( )Φ = − ε − ω φ∑ n n M nk
k

r t i t ik t r (4)
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where ε
n
 is the quasienergy of the level n, and the functions ( )φ 

nk r  are time independent. We note that the term

“quasienergy states” was introduced in Refs. [4,5]. The quasienergies n  and the functions ( )φ 
nk r  can be obtained

either numerically, or analytically by solving the Schrödinger equation. Generally they depend on the parameters of

the field
0( ) cos= ω

 
M M ME t E t . Taking into account Eq. (4), one can see that the excitation of the transition b→a can

occur when the following resonance condition is satisfied

( ) /ω ≈ ε − ε + ωL a b Mk , 0, 1, 2,...= ± ±k

where ε
a
 and ε

b
 are the quasienergies of the levels a and b , respectively. Using Eq. (4), we find that for determining

the excitation rate for the transition b → a, we can use the formula (3), in which the dipole matrix element d
13

 should

be replaced by the effective dipole matrix element ( ) | |= ϕ φk
ba b akD d , where ϕ

b
 is the WF of the lower level b. (Wee

assume here that strong the OEF ( )


ME t perturbs only the upper state a.) As a result, the excitation rate for the

transition b→a can be expressed as

2 2 2
0[| | | | /(2 )] (( ) / , )→ = < ϕ φ > ε − ε − ω + ω γ b a b ak L a b L MW d E L k .

Let us assume that the levels b and a coincide, respectively, with the levels 1 and 2 shown in Fig. 2. In the case

of a weak OEF )(tEM


, according to Eq. (2) the ratio )(

21
)(
21 / −

→
+

→ WW  does not depend on E
OM

. However, for the

strong OEF )(tEM


 this ratio is a function of the parameters of the OEF. Figure 4 shows, as an example, the ratio

)(
21

)(
21 / −

→
+

→ WW  versus the amplitude of the OEF )(tEM


, calculated for two two-quantum transitions in helium

atoms: the transitions FP 11 42 →  and FP 33 42 → . For helium atoms, the levels ,4,2 1212 FP SS ++  and DS 124 +

(S = 0; l) play the role of the levels 1, 2, and 3 shown in Fig. 2. Using the dependence of )(
21

)(
21 / −

→
+

→ WW  on the

parameters of the OEF, one can measure these parameters in a plasma by observing the laser-induced fluorescence
(LIF) signal at the transition from the level 2 to some lower level q. The advantage of this method is that both the
fluorescent lines originate from the same level 2 - therefore, a possible collisional transfer of the population from
the level 2 to nearby levels does not interfere with the measurements of the OEF.

Figure 4: The ratio ( ) ( )
1 2 1 2/+ −
→ →=Y W W  versus the amplitude E

OM
 of the OEF for two two-quantum transitions in helium atoms:

FP 11 42 →  (curve 1) and FP 33 42 →  (curve 2). The OEF frequency in this example 
M

 was 2.4 × 10111 s-1
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3. ABSORPTION SPECTRA OF ATOMS POSSESSING PERMANENT DIPOLE MOMENTS

Let us consider laser-induced transitions in atoms possessing permanent dipole moments ( | | 0≡< ϕ ϕ >≠aa a ad d ).

Hydrogen atoms are one of the examples of such atoms. In the case where d
aa

≠ 0, the WF of a QES of the atom,

which is in the state a and interacts with the OEF
0( ) cos= ω

 
M M ME t E t , has the form [6]

0( , ) exp[ sin /( )] ( )Ψ = − ω ω ϕ a aa M M M ar t id E t r (5)

Let the frequency ω
L
 of the laser radiation be close to the frequency of the transition b ↔ a. Performing the

Fourier series expansion in Eq. (5) and taking into account the formula exp( sin ) ( )exp( )
+∞

=−∞

− ω = − ω∑M n M
n

ix t J x in t ,

where J
n
(x) are the Bessel functions, we find that the effective matrix element of the dipole moment between the

levels a and b has the form: ( )( ) = ∆βk
ab k ab abD J d , where 0( ) /( )∆β ≡ − ωab aa bb M Md d E . Using the above expression

for ( )k
abD , we obtain the increase of the population ∆N

a
 of the upper level a

1 2 2
0 0 0 12

2 2 1 1 2
12

2 2
0

1

2 ( ) /[1 ( ) ],

4 ( ) , 2 ( ),

( ) [ ( ) ( )]/ , /(2 ), 0, 1, 2,...

−

− −

∞

− +
=

∆ ≡ − = − + ω + ω − ω − σ τ +

≡ ∆β τ Γ σ = ω ∆β

ν = − ≡ = ± ±∑ 

a a a k b a ab M L k k

k ab k ab k M ab k ba

k k r k r ab ab L
r

N N N G N N k G

G W J W g

g J v J v r W d E k
(6)

Here τ
12

 and Γ–1 are transverse and longitudinal relaxation times, respectively. The quantity τ
12

 is inversely
proportional to the impact width of the spectral line a → b; the quantity Γ controls the relaxation rate of the levels
a and b.

In the case of a weak laser field the expression for ∆N
a
 in (6) simplifies to:

2 2 2 1
0 12 0 0

2 2 2
12

( ) ( )
, 0, 1, 2,...

2 1 ( )

−∆β τ Γ −∆ = = ± ±
+ ω + ω − ω τ

ab L k ab b a
a

ab M L

d E J N N
N k

k (7)

In fact, Eq. (7) determines Blokhinzew’s spectrum [6], where the satellite at the frequency ω = ω + ωL ab Mk  has

the intensity proportional to 2 ( )∆βk abJ .

From Eq. (6) it follows that that in the general case the spectrum of the atomic absorption of the laser radiation
consists of a set of satellites at the frequencies

ω
L
 = ω

ab
 + kω

M
 – σ

k
, k = 0, ± 1, ± 2,..., (8)

the half-width of the k-th satellite being 1/ 2
,1/ 2 122(1 ) /∆ω = + τk kG . We point out that the term σ

k
 in the denominator

of the expression for ∆N
a
 (see Eq. (6)) is related to the dynamic Stark shift of the quasienergy levels. It depends on

both the laser field, and the OEF ( )


ME t . We note that the expression for σ
k
 was first obtained in Refs. [7, 8]. Figure

5 shows, as an example, the absorption spectrum of the laser radiation by atoms possessing the permanent dipole
moments in the states a and b. It consists of the unshifted line S

0
 and of the satellite lines S

±k
 (k = 1,2,..). The

intensity of these lines, according to Eq. (6), is the function of the amplitude E
0M

 of the OEF. For Fig. 5, the matrix

elements of the dipole moment were assumed to be as follows: 02.15=abd ea , 03.5− =aa bbd d ea  where a
0
 is the

Bohr radius. Profiles shown in Fig. 5 were calculated at E
0L

 = 15 kV/cm, E
0M

 = 7 kV/cm, 112.4 10ω = ×M  s-1. For the

profile (a), the separation between the satellites S
+k

 and S–k
 is equal to 2kω

M
. One can see from Fig. 5 that the

allowance for the dynamic Stark shifts σ
k
 can be important for calculations of the absorption spectra of atoms.
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Equations (6) can be used for measuring the amplitude of the microwave field E
0M

 in plasmas. For this purpose

one should record the wavelength-integrated intensity of LIF 2∝ ∆fI N  during the transition from the upper level a

to one of the lower levels versus the laser field intensity 2
0∝L LI E : ( )1 1

,1− −∝ +f k satur LI I I , 1 1
, 0( )− −≡k satur L k MI I G E .

Here k is the number of microwave quanta involved in the resonance (see Eq. (8)). The amplitude E
0M

 can be

measured in two ways. In the first way, one could measure the ratio of slopes of experimental dependences 1 1( )− −
f LI I

at two different values of k (k = k′, and k = k′′), and use the dependence of the ratio /′ ′′k kG G  on E
0M

. In the second

way, one could use the dependence of the dynamic Stark shift σ
k
 on the parameters of the OEF ( )


ME t . By scanning

the laser frequency around the frequency ω
ab

 and by recording peaks of the LIF intensity, one could tune to multi-

quantum resonances (8) corresponding to two different indices k = k
1
, and 2kk = . The laser frequency should be

kept constant. In this situation one would have:

1,1 1ω = ω + ω − σL ab M kk ,
2,2 2ω = ω + ω − σL ab M kk . (9)

Since ω
M
 is known, from Eqs. (9) one would determine the dynamic Stark shifts

1
σk  and

2
σk . Then, using the

fact that the ratio
2 1

/σ σk k  depends on E
0M

 but does not depend on E
0L

, one could finally find the OEF amplitude E
0M

.

Figure 5: Absorption spectra of the laser radiation in the presence of the field E
M

(t) = E
0M

 cos w
M

t  by atoms possessing
permanent dipole moments in their states a and b. Profile (a) was calculated without the allowance for the dynamic

stark shifts (DSS) 
k
 of the satellites, whereas profile (b) was calculated with the allowance for the

DSS 
k
 of the satellites

Now let us consider a situation where a hydrogen (or deuterium) beam travels through a magnetic fusion

plasma containing OEF ( )


ME t . In this case, hydrogen atoms are subjected to the combined electric field

( ) ( ),ε = +
 

b Mt E E t  where /= ×
  

b bE V B c  is the Lorentz electric field. The field ( )


bE t  causes the static Stark splitting

of the hydrogen energy level of the principal quantum number n . By a proper choice of the beam velocity, it is
possible to realize the situation where this Stark splitting (in the frequency scale) coincides with the frequency ω

M

of the OEF ( )


ME t , thus resulting in a resonance. The resonance condition has the form:
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3

2
ω = 

M bnE
me

. (10)

Under the condition (10), the probability, that the hydrogen atom is in a Stark sublevel of the energy level n ,
oscillates at the Rabi frequency, which is proportional to the OEF amplitude. This causes an additional splitting of
those hydrogen spectral lines, for which the energy level n  serves as the upper level or as the lower level. This
additional splitting is linear with respect to the OEF amplitude.

As an example, Fig. 6 shows the spectrum of the hydrogen line Lα under the resonance (10) for the upper level n
= 2. The additional splitting, being linear with respect to the OEF amplitude, can be used as sensitive tool for measuring
the OEF amplitude in magnetic fusion plasmas. For tuning into the resonance (10), one should vary the beam energy.
The additional splitting would manifest in the spectrum of the fluorescence excited by the laser tuned to the atomic
transition, for which the level n (where n satisfies Eq. (10)) serves as the upper level or as the lower level.

For an estimate, let us assume the OEF frequency ω
M
 = 8.7 × 1011s-1, the magnetic field B = 1T, the hydrogen

beam velocity

bV  being orthogonal to the magnetic field


B . For fulfilling the resonance (10) for the energy level

n = 3 (which is the upper level of the Hα line), we find that the energy of the hydrogen beam should be 30 keV.

Figure 6: Spectrum of the hydrogen line L in two orthogonal electric fields: A lorentz field


bE and an oscillatory field

0( ) cos= ω
 

M M ME t E t  - under the resonance (10) for the level n = 2. The observation is perpendicular to both


bE and ( )


ME t .

The spectrum was calculated for two orientations of the linear polarization analyzer: parallel to


bE (solid line) and

parallel to ( )


ME t (dashed line). The rabi frequency controlling the splitting is 0 0

3

2
Ω = 

ME
me

4. CONCLUSIONS

In this review we presented the main physical principles that can serve as the basis for laser-assisted spectroscopic
methods for diagnosing OEFs in plasmas. As atomic “probes”, one can use either atoms possessing permanent
dipole moments (e.g., hydrogen or deuterium atoms) or atoms that do not possess permanent dipole moments (e.g.,
helium or lithium atoms).
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 We showed that several phenomena can be used for laser-assisted diagnostics of OEFs in magnetic fusion
plasmas. First, a tunable laser radiation can scan spectral line profiles and/or the structure of energy levels of atoms
interacting with OEFs. In this case, parameters of the OEFs can be deduced from the spectrum of fluorescence,
resulting from the atomic transition from an excited state to a lower state. For this case we assumed that the laser
intensity is relatively weak, so that it does not modify the structure of the atomic energy levels.

Second, the laser radiation can cause the saturation of the atomic transition. In this case for some atomic
transitions the saturation parameter depends both on the laser intensity and on the parameters of the OEF. The latter
can be used for diagnosing the OEF. For this case one needs a sufficiently intense laser radiation that can cause the
saturastion.

Third, a combined effect of the OEF and of a strong laser field can modify both the structure of energy levels
and spectral line profiles. In this case, the character of the modification is controlled by the quantity, in which
parameters of both the OEF and the laser field are represented in an entangled way.
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