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ABSTRACT: Electrostatic turbulence frequently occurs in various kinds of laboratory and astrophysical plasmas.
Transport phenomena are affected most significantly by a low-frequency electrostatic turbulence – such as, e.g., ionic
sound. In this case, for computing profiles of spectral lines, emitted by plasma ions, by any appropriate code for
diagnostic purposes, it is necessary to calculate the distribution of the total quasistatic field. For a practically important
situation, where the average turbulent field is much greater than the characteristic ion microfield, we develop a robust
computational method valid for any appropriate distribution of the ion microfield at a charged point. We show that the
correction to the Rayleigh distribution of the turbulent field is controlled by the behavior of the ion microfield distribution
at large fields - in distinction to the opposite (and therefore, seemingly erroneous) result in the literature. We also obtain
a universal analytical expression for the correction to the Rayleigh distribution based on the asymptotic of the ion
microfield distribution at large fields at a charged point. Our results can be used for spectroscopic diagnostics of a low-
frequency electrostatic turbulence for various kinds of plasmas – especially for laser-produced plasmas.

PACS numbers: 52.35.Ra, 52.38.-r, 32.60.+i, 32.70.Jz

1. INTRODUCTION

Electrostatic turbulence frequently occurs in various kinds of laboratory and astrophysical plasmas [1, 2]. It affects
transport phenomena in plasmas. It is represented by Oscillatory Electric Fields (OEFs) sometimes called also
collective electric fields: they correspond to collective degrees of freedom in plasmas – in distinction to the electron
and ion microfields that correspond to individual degrees of freedom of charged particles.

The most significant effect on transport phenomena has a low-frequency electrostatic turbulence. At the absence
of a magnetic field, there is only one type of a low-frequency electrostatic turbulence: ion acoustic waves – frequently
called ionic sound. The corresponding OEF is a broadband field, whose frequency spectrum is below or of the order
of the ion plasma frequency
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where N
i
 is the ion density, Z is the charge state; m

p
 and m

i
 are the proton and ion masses, respectively. In the

“practical” parts of Eqs. (1, 2 – 4), CGS units are used.

In magnetized plasmas in addition to the ionic sound, propagating along the magnetic field B, two other types
of low-frequency electrostatic turbulence are possible. One is electrostatic ion cyclotron wave, whose wave vector
is nearly perpendicular to B. Its frequency is close to the ion cyclotron frequency
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Another type is lower hybrid oscillations having the wave vector perpendicular to B. Its frequency is
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where ω
ce

 is the electron cyclotron frequency

ω
ce

 = eB/(m
e
c) = 1.76 x107 B. (4)

From Eq. (3) it is seen that ω
lh
 < ω

pi
 always. This means that frequencies of both ionic sound and lower hybrid

oscillations are below or of the order of the ion plasma frequency ω
pi
.

It is usually assumed that hydrogenic radiators perceive OEFs, associated with a low-frequency plasma turbulence
as quasistatic. Let us discuss this assumption in more detail. The discussion is based on papers [3, 4], the results of
which were recently summarized in paper [5].

The physics of the spectral line broadening in plasmas containing OEFs is very rich and complex due to the
interplay of a large number of characteristic times and frequencies. There are 7 characteristic frequencies, which
can be considered as “elementary” parameters. For our specific discussion here the following 4 frequencies are
important.

1. ∆ω – detuning from the unperturbed position of a given spectral line of the radiator. It affects the characteristic
value of the argument τ of the dipole-dipole correlation function.

2. ω – OEF frequency.

3. γ – homogeneous width of the power spectrum of OEF, which is also the inverse of the OEF coherence time
τ

F
. (It is the width at a fixed wave vector k of the OEF – in distinction to the width due to the dependence

ω(k).)

4. δ
s
(E

0
) – instantaneous Stark shift at the amplitude value E

0
 of OEF (i.e., the shift formally calculated at a

static field equal to E
0
). For example, δ

s
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 in the case of the linear Stark effect or δ

s
(E

0
) = a

2
E

0
2 in

the case of the quadratic Stark effect; a
1
(j), a

2
(j) are Stark constants that depend on the set of quantum

numbers of the particular states of the radiator. Here and below the set of quantum numbers is denoted by j.

On the basis of the above “elementary” frequencies, there occur 2 composite parameters that are characteristic
times as follows.

1. τ
QS

(j, E
0
, ω) – a characteristic time of the formation of Quasienergy States (QS):

τ
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(j, E
0
, ω) ~ min(1/(ω2 δ

s
)1/3, 1/ω). (5)

Being subjected to OEF, the states of the radiator can oscillate with the OEF frequency ω. This effect is
described as the emergence of QS, which were introduced in 1967 in papers [6] and [7] (independently of
each other). The above formula for τ

QS
(j, E

0
, ω) was derived in paper [3]. So, for relatively weak OEF, the

QS are formed at the timescale of the order of the period of the OEF 1/ω. However, for relatively strong
OEF, the QS are formed at a much shorter time scale proportional to 1/E

0
1/3 or to 1/E

0
2/3 in the cases of the

linear or quadratic Stark effect, respectively.
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, ∆ω) – the lifetime of the exited state of the radiator:
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where T
i
 is the ion temperature, N

e
 and T

e
 are the electron density and temperature, respectively. In Eq. (7), Γ is the

sum of the homogeneous Stark widths due to electrons (γ
e
), dynamic part of ions (γ

i
), and OEF (γ

F
). (The Stark

broadening of a spectral line is homogeneous when it is the same for all radiators, a typical example being the Stark
broadening by the electron microfield; in distinction, the Stark broadening by the quasistatic part F

qs
 of the ion

microfield is inhomogeneous because different radiators are subjected to generally different values of F
qs

).

The contribution γ
F

hf(j, γ, ω, E
0
) caused by Langmuir (high-frequency) electrostatic turbulence was calculated in

paper [6]. However, the contribution to the homogeneous Stark width from a low-frequency plasma turbulence γ
F

lf
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is typically much smaller than (γ
e
 + γ

i
), so that this contribution can be neglected. As for the Stark broadening by

ions, in the present paper we consider the situation where, from the point of view of a radiating ion, the overwhelming
part of perturbing ions is quasistatic. The corresponding well-known criterion can be found, e.g., in review [8] and
is presented here in Appendix. This situation is relevant, in particular, to hydrogenlike ions of the nuclear charge
Z ~ 10 emitted from laser-produced plasmas of relatively high electron densities N

e
 > 1020 cm-3 and temperatures

T
e
 < 1 keV.

A criterion for OEF to be considered as quasistatic is the following

τ
QS

(j, E
0
, ω) >> min[1/δ

s
(E

0
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0
, ∆ω)]. (8)

For hydrogenlike ions of the nuclear charge Z ~ 10 emitted from laser-produced plasmas, the condition (8) is
usually fulfilled for OEFs of low-frequency electrostatic turbulence.

One of the primary motivations for the present work is the experiment at JETI Jena laser system described and
analyzed in papers [5, 9]. In this experiment two high-powered short-pulse laser beams have been used. The first
one created the plasma, and the plasma existed after the laser was off. A delayed high-power short pulse laser was
then used to cross the preformed plasma. The study in [5, 9] concerned the effect of the external strong OEF due to
this second laser on the Stark profiles of the beta-line of Al XII. The analysis of the experimental Stark profiles was
done via advanced simulations: by coupling a lineshape code based on the Floquet-Liouville formalism with a
particle-in-cell (PIC) kinetic code (based on the theory of laser-plasma interactions) that provided a spatial distribution
of the OEF in the plasma. Laser-plasma interactions significantly enhanced the OEF in the plasma compared to the
laser field in vacuum: the high-frequency OEF up to 5 GV/cm in the plasma was found consistent with the experimental
line profiles.

The theory of laser-plasma interactions predicts also a possibility of the development of ionic sound (a low-
frequency OEF) in this kind of experiments. It was estimated that the electric field of ionic sound could reach
values ~ 10 GV/cm [10]. So, it could exceed the characteristic ion microfield by 2 – 3 orders of magnitude. Indeed,
e.g., for the conditions of the experiment [5, 9], where N

e
 was about 3x1020 cm-3, the characteristic ion microfield

E
N
 = 2.6 Z

p
1/3eN

e
2/3 was only about 0.04 GV/cm (here Z

p
 is the charge of perturbing ions). In order to test this

prediction of the theory of laser-plasma interactions, one needs to significantly modify the distribution of the
quasistatic field by allowing for a possible dominant contribution of the turbulent field.

In view of the above motivation, we consider below a non-magnetized plasma, so that only one type of the low-
frequency electrostatic turbulence is possible: ionic sound. We study the typical situation, where both the turbulent
field E

t
and the ion microfield F

i
 are quasistatic. We develop a robust method for calculating the distribution of the

total quasistatic field at a charged point for the case where the average turbulent field is much greater than the
characteristic ion microfield. We also reveal a misconception in one of the previous works devoted to this subject.

2. DISTRIBUTION OF THE TOTAL QUASISTATIC ELECTRIC FIELD

In any code designed for calculating spectral line profiles, an important task becomes the averaging over the ensemble
distribution W(E) of the total quasistatic field E = E

t
 + F

i
 . In other words, the key part of the problem becomes the

calculation of W(E).

In paper [11] the distribution of a low-frequency turbulent field was derived and shown to be the Rayleigh
distribution, which in the isotropic case can be represented in the following form

W
t
(α, x)dx = 3[6/π]1/2α3x2exp(–3α2x2/2)]dx. (9)

Here

x = E
t
/E

N
(10)

is the scaled turbulent field and

α = E
N

/ E
R

(11)



E. Oks and E. Dalimier

46 International Review of Atomic and Molecular Physics, 2 (1), January-June 2011

is the ratio of the “standard” ion microfield E
N
 to the root-mean-square turbulent field E

R
, where

E
N
 = 2π(4/15)2/3Z

p
1/3eN

e
2/3 = 3.751x10-7 Z

p
1/3[N

e
(cm-3)]2/3 V/cm. (12)

The total quasistatic field E results from the vector summation of the two statistically independent contributions:
E = E

t
 + F

i
 . The justification of this has been given in papers [12, 13]. Therefore a general distribution W

g
(E/E

N
)

of the total field is a convolution of the distribution W
t
(E

t
/E

N
) of the turbulent field with the distribution W

i
(F

i
/E

N
)

of the ion microfield (subscript “g” in W
g
(E/E

N
) stands for “general”):

W
g
(β)dβ = [∫∫ dxdu W

i
(u)W
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(x)δ(β – β

s
)]dβ,  = E/E

N
, x = E

t
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N
 , u = F

i
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N
 . (13)

Here

β
s
 = |x + u| = (x2 + u2 – 2ux cosθ)1/2, (14)

where θ is the angle between vectors u and x.

Equation (13) represents a general result valid for both isotropic and anisotropic distributions of the turbulent
field. A general form of anisotropic, but axially-symmetric distribution W

t
(x) of the turbulent field was derived in

paper [14] (and was later called in the literature Sholin-Oks’ distribution). Calculations of W
g
() using Sholin-Oks’

axially-symmetric distribution of W
t
(x) will be published elsewhere. In the present paper we consider the case of

the isotropic distribution of the turbulent field, so that it is represented by Eq. (9). In this case, the distribution of the
total field W(β) will be also isotropic (since both W

i
(u) and W

t
(x) are isotropic) and can be written as

W(β)dβ = [∫∫ dxdu W
i
(u)W

t
(x)δ(β – β

s
)]dβ. (15)

In paper [11] the study was focused at so-called ideal (or “non-coupled”) plasmas where the kinetic energy is by
several orders of magnitude greater than the potential energy. It is manifested by a very large number of perturbing
ions N

iD
 in a sphere of the electron Debye radius r

De
:

N
iD

= (4π/3)N
e
r

De
3/Z

p
 >> 1, (16)

where

r
De

 = [T
e
/(4πe2N

e
)]1/2. (17)

A practical formula for the quantity N
iD

 is*/:

N
iD

 = 1.7181x109 [T
e
(eV)]3/2 /{Z

p
[N

e
(cm-3)]1/2}. (18)

The study in paper [11] was designed for application to experiments, where hydrogen line profiles were emitted
from turbulent plasmas of electron densities ~ 1014 – 1015 cm-3 and temperatures of several eV. For example, for N

e

= 3x1014 cm-3, T
e
 = 4 – 5 eV, and Z

p
 = 1, Eq. (18) yields N

iD
 ~ 103. For this kind of plasmas, where N

iD
 was “dramatically”

greater than unity, the ion microfield distribution was chosen in paper [11] as the Holtsmark distribution [15]:

3/ 2
H

0

W (u) (2u / ) dx sin ux exp( u ).
∞

= π −∫ (19)

The Holtsmark distribution describes a transition from the Gaussian distribution for weak fields u << 1 to the
binary distribution (nearest-neighbor distribution) of strong fields u >> 1, as noted in review [8]. Indeed, the weak-
field part of the Holtsmark distribution W

H
≈ 4u2/(3π) is due to a cumulative effect of large number of perturbers –

therefore, like any sum of a large number of random quantities, it follows the Gaussian distribution (i.e., its starting
part ~ u2). In the opposite limit of u >> 1, where W

H
 = 15/[4(2π)1/2u5/2] = 1.496/u5/2, only the nearest neighbor

controls the distribution.

For the distribution of the total quasistatic field, defined by Eq. (15), the following result was obtained in paper
[11] for ideal plasmas – by performing analytically several integrations in (15):

* / N
iD

 is related to another coupling parameter Γ used in plasma physics as follows: N
iD

 = [Z
p
/(3Γ)]3/2.
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1/ 2 2 2 2 2
H

0

W( , ) [3/(2 ) ] du{exp[ 3 ( u) ] exp[ 3 ( u) ]}W (u) / u.
∞

α β = π αβ − α β − − − α β +∫ (20)

In the present paper we focus at weakly non-ideal (“weakly-coupled”) plasmas, where the quantity N
iD

 is still
greater than unity, but not dramatically greater: N

iD
 ~ 10. A particular application could be, e.g, the laser-produced

plasma experiment described in papers [5, 9], characterized by N
e
 ~ 3x1020 cm-3, T ~ 150 eV, the majority of

radiating and perturbing ions having the charge Z = 12, so that N
iD

 = 15. In this situation, first of all, the ion
microfield distribution differs significantly from the Holtsmark distribution. The second distinction is that the ion
microfield distribution should be calculated at a point of the charge Z ~ 10, and in plasmas of N

iD
 ~ 10 this distribution

would be noticeably different from the distribution at a neutral point because of ion-ion correlations.

Therefore, our starting point is the following expression for the distribution W(α, β) of the total quasistatic
field, which is similar to Eq. (20), but without assuming any specific form of the ion microfield distribution W

i
(u):

1/ 2 2 2 2 2
i

0

W( , ) [3/(2 ) ] du{exp[ 3 ( u) ] exp[ 3 ( u) ]}W (u) / u.
∞

α β = π αβ − α β − − − α β +∫ (21)

In other words, W
i
(u) could be any ion microfield distribution at a charged point, calculated by any appropriate

code (e.g., by using the APEX method [16]).

Equation (21) can be rewritten in the form:

W(α, β) = [3/(2π)1/2]αβ exp(– 3α2β2) x (22)

2 2 2 2
i

0

du{exp[ 3 (u 2 u) / 2] exp[ 3 (u 2 u) / 2]}W (u) / u.
∞

− α − β − − α + β∫

For the situation considered in the present paper, where the average turbulent field is much greater than the
characteristic ion microfield (α = E

N
/E

R
 << 1), it is appropriate to expand both exponentials in the integrand in (22)

in Taylor series. Keeping terms up to (including) those ~ u4, we obtain

W(α, β) = W
t
(α, β) [1 – (3α2/2)(1 – α2β2)M

i2
], (23)

where W
t
(α, β) is the Rayleigh distribution given by Eq. (9) and M

i2
 is the second moment of the ion microfield

distribution:

2
i2 i

0

M du u W (u).
∞

= ∫ (24)

Equation (23) shows that at α = E
N
/E

R
 << 1, in the first approximation the distribution of the total quasistatic

field reduces to the Rayleigh distribution, as should be expected. More important is that Eq. (23) also shows that the
first nonvanishing correction to the Rayleigh distribution (the second term in brackets in (23)) is controlled by the
second moment of the ion microfield distribution.

Two important comments should be made at this point. First, Eq. (23) has a great computational advantage
compared to Eq. (21). Indeed, while employing Eq. (21), one would have to choose at least ~ 102 values of â and at
least ~ 10 values of α. So, one would have to use W

i
(u), calculated numerically by some code, at least ~ 103 times.

In distinction, while utilizing Eq. (23), one would have to use W
i
(u) only once – for calculating the second moment

of W
i
(u). Thus, the employment of Eq. (23) instead of Eq. (21) makes much more robust any code for calculating

spectral line profiles in turbulent plasmas.

The second comment, following from Eq. (23), is related to paper [17]. This paper was also devoted to calculations
of the distribution of the total quasistatic field for the situation where the average turbulent field is much greater
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than the characteristic ion microfield. The authors of [17] suggested an approximate method where the correction to
the Rayleigh distribution was controlled by the behavior of the ion microfield distribution W

i
(u) at small fields

(u<<1). However, from Eqs. (23), (24) it can be seen that this was a misconception. Indeed, the integral in (24)
accumulates most of its value at u >> 1: it converges only because at very large values of u, the ion-ion correlations
– the repulsion between the radiating and perturbing ions – “kill” the integral. Thus, in reality the correction to the
Rayleigh distribution is controlled by the behavior of the ion microfield distribution W

i
(u) at large fields rather than

at small fields.

In view of the above second comment, we can use the well-known asymptotic of W
i
(u) at u >> 1 at a charged

point and obtain a universal analytical result for the second moment of W
i
(u) and thus for the correction to the

Rayleigh distribution. This is presented in the next section.

3. ASYMPTOTIC UNIVERSAL ANALYTICAL RESULT

Analytical results for the large-field asymptotic of the ion microfield distribution at a charged point were presented
in papers [18, 19]*/. We consider here plasmas where the charge of radiating ions Z

r
 is the same as for perturbing

ions: Z
r
 = Z

p
≡  Z. For this case, the corresponding formula, obtained in [18, 19] with the allowance for ion-ion

correlations and for the screening of the ion field by plasma electrons, has the form:

W
i,as

(u) = (q/Z2)(u/Z + v2/2)– 5/2 x (25)

exp{–[T
e
/(2qT

i
)] Z2v2(u/Z + v2/2)1/2 exp[–(1 + ZT

e
/T

i
)1/2/(u/Z + v2/2)1/2]}.

Here

q = 15/[4(2π)1/2] = 1.496,     v = r
0
/r

De
,     r

0
 = [15/(4N

e
)]1/3/(2π)1/2 . (26)

(the quantity r
0
 is defined such that it is close to the mean interionic distance).

The quantity v is yet another indicator of the proximity of a plasma to the non-ideality (i.e., the coupling
indicator). It is related to the number of perturbing ions N

iD
 in a sphere of the electron Debye radius as follows:

N
iD

 = 0.9974/(Zv3). (27)

It is seen that v << 1/Z1/3 corresponds to ideal plasmas (N
iD

 >> 1), while v > 1/Z1/3 corresponds to strongly-
coupled plasmas. A practical formula for the quantity v has the form:

v = 8.98x10–2 [N
e
(cm-3)]1/6 /[T

e
(K)]1/2. (28)

If the following condition is met

u >> Zv2/2, (29)

the asymptotic formula (25) simplifies to

W
i,as

(u) = (qZ1/2/u5/2) exp(–ku1/2), (30)

where

k = T
e
Z3/2v2/(2qT

i
). (31)

We emphasize that the condition (29) is usually much less restrictive than the validity condition (u >> 1) of the formula
(25). For example, for the laser-produced plasma experiment described in papers [5, 9], characterized by N

e
 ~ 3x1020

cm-3, T ~ 150 eV, Z = 12, the inequality (29) yields u >> 0.2. Thus, for a broad range of weakly coupled plasmas, the
simplified asymptotic from Eq. (30) can be used with a very good accuracy instead of the asymptotic from Eq. (25).

Using this asymptotic, the second moment of the ion microfield distribution can be approximately represented
in the form:

*/ The current status of the ion microfield distribution studies can be found in review [20].
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C
2 1/ 2 1/ 2 1/ 2

i2 1 2 1 i 2

0 C

M I I , I du u W (u); I du(qZ / u )exp( ku ),
∞

= + = = −∫ ∫ (32)

where C ~ 1. The second integral I
2
 can be calculated analytically yielding:

I
2
 = (2qZ1/2/k)exp(–C1/2k). (33)

The central point of this section is that for a broad range of weakly coupled plasmas, the integral I
2
 ~ (2qZ1/2/k)

>>1, while the first integral in (32) I
1
 ~ 1. Therefore, the second moment of the ion microfield distribution, calculated

by any appropriate code, can be well approximated by the analytical result (33) as long as k < 1 (so that I
2
 from (33)

is not sensitive to a particular choice of C ~ 1) and

2qZ1/2/k = 4q2T
i
/ (Zv2T

e
) >> 1. (34)

Under this condition, which is satisfied for a broad range of weakly coupled plasmas, the second moment of the
ion microfield distribution can be accurately calculated by the analytical formula (33) regardless of the particular
behavior of this distribution at small fields. In this sense, formula (33) is universal.

As an illustration of the accuracy of the analytical result (33), we compare it with the exact calculation of the
second moment for the nearest neighbor (binary) distribution W

iB
(u) at a charged point*/. The latter distribution in

the normalized form is given by the following expression (under the condition (29)):

5 / 2 3/ 2 1/ 2 5 / 2 3/ 2 1/ 2
iB

0

W (u) u exp( u ku ) / du[u exp( u ku )].
∞

− − − −= − − − −∫ (35)

Figure 1 shows two calculated dependences of the second moment of the above binary distribution versus
parameter k. Solid line represents the result obtained using the large-field asymptotic with the choice of the lower
limit C = 1, dashed line – the exact result. It is seen that the asymptotic method is very accurate as long as k < 1.

*/ This distribution has two important common features with ion microfield distributions calculated by any appropriate code for weakly
coupled plasmas: the asymptotic at the large fields and a significant shift of the maximum toward small fields (compared to the Holtsmark
distribution).

Figure 1: The second moment of the nearest neighbor distribution at a charged point versus parameter k = T
e
Z3/2v2/(2qT

i
),

representing the degree of the non-ideality of plasmas: solid line – the result obtained using the large-field asymptotic of
the nearest neighbor distribution with the choice of the lower limit C = 1; dashed line – the exact result. Here Z is the

charge of plasma ions, parameters v and q are defined in Eq. (26)
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Figure 2 shows dependences of the second moment of the above binary distribution, calculated by using the
asymptotic formula (33), versus parameter k – for two different choices of the lower limit of the integration: C = 0.5
(solid line) and C = 2 (dashed line). It is seen that the results are practically insensitive to a particular choice of the
lower limit of the integration c within the requirement C ~ 1 – as long as k < 1.

Figure 2: The second moment of the nearest neighbor distribution at a charged point, calculated using the large-field asymptotic
of this distribution, versus parameter k = T

e
Z3/2v2/(2qT

i
), representing the degree of the non-ideality of plasmas:

solid line – with the choice of the lower limit C = 0.5; dashed line – with the choice of the lower limit C = 2.
Here Z is the charge of plasma ions, parameters v and q are defined in Eq. (26)

Finally we emphasize that it is appropriate to calculate the second moment of the ion microfield distribution
using the approximate analytical result (33) because the second moment enters only the correction term in Eq. (23)
for the distribution of the total quasistatic field. Any correction to the analytical result (33) would enter Eq. (23)
only as “a correction to the correction”.

4. CONCLUSIONS

We considered plasmas containing a low-frequency electrostatic turbulence (such as, e.g., ionic sound), where
spectral lines are emitted by ions – e.g., by multicharged ions in laser-produced plasmas. For computing spectral
line profiles for this kind of plasmas by any appropriate code for diagnostic purposes, it is necessary to calculate the
distribution of the total quasistatic field. For a practically important situation, where the average turbulent field is
much greater than the characteristic ion microfield, we developed a robust computational method valid for any
appropriate distribution of the ion microfield at a charged point.

We also showed that the correction to the Rayleigh distribution of the turbulent field is controlled by the
behavior of the ion microfield distribution at large fields . In this way we demonstrated that the authors of paper
[17] seem to make a conceptual error by suggesting an approximate method where the correction to the Rayleigh
distribution was controlled by the behavior of the ion microfield distribution at small fields.

Finally, we obtained a universal analytical result for the correction to the Rayleigh distribution based on the
asymptotic of the ion microfield distribution at large fields. In the present paper we used the asymptotic at a charged
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point for plasmas where all ions have the same charge. The corresponding results for plasmas having ions of two
different charges will be published elsewhere.

We believe that our work created a basis for spectroscopic diagnostics of a low-frequency electrostatic turbulence
for various kinds of plasmas – especially for laser-produced plasmas, such as, e.g., in experiments [5, 9].
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Appendix. Validity Criterion for the Quasistatic Description of the Ion Microfield

In accordance to the review [8], the quasistatic description of the ion microfield is valid if at least one of the following two inequalities are
satisfied:

V
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e
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p
)1/3 << max[Z
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Here V
Ti
 is the mean thermal velocity of the relative motion in the pair “perturbing ion – radiating atom/ion”, n is the principal quantum

number of the level, from which a spectral line originates, γ
e
 is the dynamical Stark width due to plasma electrons, ∆ω is the detuning from

the line center, and ω
pe

 is the plasma electron frequency:

ω
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 = (4πe2N
e
/m

e
)1/2 = 5.6414x104 [N

e
(cm-3)]1/2 . (A.3)

Equations (A.1) and (A.2) contain four validity conditions for the quasistatic description of the ion microfield – the fulfilment of any
of the four conditions is sufficient. The physical meaning of these conditions is the following.

The quantity in the left side of Eq. (A.1) is the characteristic frequency of variation of the ion microfield in its multi-particle description.
The first quantity (out of three) in the right side of (A.1) is the instanteneous Stark shift at the typical strength of the ion microfield; its
comparison with the left side of (A.1) is called a “modulation-type” condition for the quasistatic approximation. The comparison of the left
side of (A.1) with the second quantity (γ

e
) is called a “damping-type” condition for the quasistatic approximation. The third quantity (ω

pe
)

in the right side of (A.1) manifests the screening of the ion microfield by electrons.

The quantity in the left side of Eq. (A.2) is a so-called ion Weisskopf frequency. The Weisskopf frequency is a concept related to the
binary (rather than multi-particle) description of the ion microfield. In the binary description, which is appropriate for sufficiently far wings
of a spectral line, the characteristic frequency of variation of the ion microfield is the Weisskopf frequency. If it is smaller than the detuning
∆ω from the unperturbed position of the spectral line, this would be yet another sufficient condition for the quasistatic approximation.
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