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ABSTRACT: Charge exchange and crossings of corresponding energy level sthat enhance charge exchange are strongly
connected with problems of energy losses and of diagnostics in high temperature plasmas. Besides, charge exchange
was proposed as one of the most effective mechanisms for population inversion in the soft x-ray and VUV ranges. One
of the most fundamental theoretical playgrounds for studying charge exchange is the problem of electron termsin the
field of two stationary Coulomb centers (TCC) of charges Z and Z' separated by a distance R. It presents fascinating
atomic physics: the terms can have crossings and quasi crossings. These rich features of the TCC problem also manifest
in a different area of physics such as plasma spectroscopy: a quasicrossing of the TCC terms, by enhancing charge
exchange, can result in an unusual structure (adip) in the spectral line profile emitted by aZ-ion from aplasmaconsisting
of both Z- and Z'-ions, as was shown theoretically and experimentally. Before year 2000, the paradigm was that the
above sophisticated features of the TCC problem and its flourishing applications were inherently quantum phenomena.
In year 2000 there was presented apurely classical description of the crossings of energy terms. In the present paper we
study the effect of an electric field (along the internuclear axis) on circular Rydberg states of the TCC system. We
provide analytical results for strong fields, as well as numerical results for moderate fields. We show that the electric
field has several effects. First, it leads to the appearance of an extra energy term: the fourth classical energy term — in
addition to thethree classical energy termsat zero field. Second, but moreimportantly, the electric field createsadditional
crossings of these energy terms. We show that some of these crossings significantly enhance charge exchange while
other crossings enhance the ionization of the Rydberg quasi-molecule.

PACS numbers: 32.60.+i, 32.80.Ee, 34.70.+e, 33.80.Be, 31.15.-p

1. INTRODUCTION

Charge exchange and crossings of corresponding energy levels that enhance charge exchange are strongly
connected with problems of energy losses and of diagnostics in high temperature plasmas — see, e.g., [1, 2] and
referencestherein. Besides, charge exchange was proposed as one of the most effective mechanismsfor population
inversion in the soft x-ray and VUV ranges [3-6]. One of the most fundamental theoretical playgrounds for
studying charge exchange is the problem of electron termsin the field of two stationary Coulomb centers (TCC)
of charges Z and Z' separated by adistance R. It presents fascinating atomic physics: the terms can have crossings
and quasi crossings.

The crossings are due to the fact that the well-known Neumann-Wigner general theorem on the impossibility of
crossing of terms of the same symmetry [7] is not vaid for the TCC problem of Z' # Z — as shown in paper [8].
Physically it is here a consequence of the fact that the TCC problem allows a separation of variablesin the elliptic
coordinates [8]. As for the quasicrossings, they occur when two wells, corresponding to separated Z- and Z'-centers,
have states W and W', characterized by the same energiesE = E', by the same magnetic quantum numbers m=nt, and
by the sameradia dlliptical quantum numbersk=Kk [9— 11]. In this situation, the electron has a much larger probability
of tunneling from one well to the other (i.e., of charge exchange) as compared to the absence of such degeneracy.

Theserich features of the TCC problem also manifest in adifferent areaof physics such as plasma spectroscopy
asfollows. A quasicrossing of the TCC terms, by enhancing charge exchange, can result in unusual structures (dips)

International Review of Atomic and Molecular Physics, 2 (1), January-June 2011 / 57



N. Kryukov and E. Oks
in the spectral line profile emitted by a Z-ion from a plasma consisting of both Z- and Z'-ions, as was shown
theoretically and experimentally [12-17].

Beforeyear 2000, the paradigm wasthat the above sophisticated features of the TCC problem and itsflourishing
applications were inherently quantum phenomena. But then in year 2000 one of us published papers [18, 19]
presenting a purely classical description of both the crossings of energy levelsin the TCC problem and the dipsin
the corresponding spectral line profiles caused by the crossing (via enhanced charge exchange). These classical
resultswere obtai ned anal ytically based on first principleswithout using any model assumptions. Later applications
of these results included a magnetic stabilization of Rydberg quasi-molecules [20] and a problem of continuum
lowering in plasmas [21].

In papers[18, 20, 21] the study wasfocused at Circular Rydberg States (CRS) of the TCC system (the analysis
in paper [19] went beyond CRS). CRS of atomic and molecular systems, with only one electron, correspond to
[m| = (n- 1) >>1, where n and m are the principal and magnetic electronic quantum numbers, respectively. They
have been extensively studied [22 — 25] both theoretically and experimentally for several reasons: (a) CRS have
long radiative lifetimes and highly anisotropic collision cross sections, thereby enabling experiments on inhibited
spontaneous emission and cold Rydberg gases [26, 27], (b) classical CRS correspond to quantal coherent states,
objects of fundamental importance, and (c) aclassical description of CRSisthe primary termin the quantal method
based on the 1/n-expansion (see, e.g. [28] and references therein).

While the authors of paper [20] studied analytically the effect of amagnetic field (along the internuclear axis)
on CRS of the TCC system, in the present paper we study the effect of an electric field (along the internuclear axis)
on CRS of the TCC system. We provide analytical resultsfor strong fields, aswell asnumerical resultsfor moderate
fields. We show that the electric field leads to the following consequences.

First, it leads to the appearance of an extra energy term: the fourth classical energy term — in addition to the
threeclassical energy termsat zero field. Second, but moreimportantly, the electric field creates additional crossings
of these energy terms. We show that some of these crossings enhance charge exchange while other crossingsenhance
theionization of the Rydberg quasi-molecule.

2. CALCULATIONSOF THE CLASSICAL STARK EFFECT FOR A RYDBERG QUASI-MOLECULE
INA CIRCULAR STATE

We consider aTCC system, where the charge Z is at the origin and the Oz axisis directed to the charge Z', whichis
at z= R (here and below the atomic units 7 = e= m_ = 1 are used). A uniform electric field F is applied along the
internuclear axis — in the negative direction of Oz axis. We study CRS where the electron moves around acirclein
the plane perpendicular to the internuclear axis, the circle being centered at this axis.

Two quantities, the energy E and the projection L of the angular momentum on theinternuclear axisare conserved
in this configuration. We use cylindrical coordinates to write the equations for both.

E = ((dp/dt)? + p? (d/dt)? + (dZdt)d)/2 - ZIr — Z'Ir’ - Fz (1)
L = p? do/dlt )

In the equations above, p isthe distance of the electron from the internuclear axis, ¢ isitsazimuthal angle, zis
the projection of the radius-vector of the electron on the internuclear axis, r and r* are the distances of the electron
from the particleto Zand Z’.

The circular motion implies that dp/dt = 0; as the motion occurs in the plane perpendicular to the z-axis,
dz/dt = 0. Further, expressing r and r’ through p and z, and taking d¢/dt from (2), we have:

E=L2%(2p%) - Z(p*+ )2 - Z’/(p* + (R- 29> - Fz (3)
With the scaled quantities
w=2zZR v=p/R,b=2'1Z € =-ER/Z m= LI(ZR)*?, f= FR¥YZ, r = ZRIL?, (4)
our energy equation takes the form below:
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€= V(W2 +Vv3)¥2 + b/((1 - w)? +Vv)¥2 + f w— n?/(2v?) (5)

We can seek the equilibrium points by finding partial derivatives of € by the scaled coordinates w, v and setting
them equal to zero. Thiswill give the following two equations.

f+b(1—w)/((1-w)?+v?)%2 = wl(w? + v?)32 (6)

MV = 1/ (W2 + Vv2)32 + b/ ((1 — w)? + ?)32 (7

From the definitions of the scaled quantities (4), n? = 1/r and E=- (Z/R) €. Sincer = ZR/L?, E= - (Z/L)? ¢Ir,

wherer = 1/m? can be obtai ned by solving (7) for m. Substituting minto the energy equation, we get the three master
equations for this configuration.

g, = p? (U(wW? + p)*2 + bI((1 - w)? + p)*2) (W + p/2)/(W? + p)** +

+b((1 - w)? + pl2)/((1 - w)* + p)** + f w) (8)
r=1/(p? (U(wW* + p)*2 + bl((1 - w)? + p)*?)) (9)
f+b(1-w)/((1-w)?+ p)¥2 = w/(w + p)*2 (10)

Inthese equationsE = - (Z/L)?e, and p= V2. Thus, €, is the “true” scaled energy, whose equation for E does not
include R The scaled energy €, andinternuclear distancer in (8) and (9) now explicitly depend only onthe coordinates
w and p (besides the constants b and f). Therefore, if we solve (10) for p and substitute it into (8) and (9), we will
have the parametric solution € (r) with the parameter w.

Our focus is at crossings of energy terms of the same symmetry. In the quantum TCC problem, “terms of the
same symmetry” means terms of the same magnetic quantum number m [8 — 11]. Therefore, in our classical TCC
problem, we fixed the angular momentum projection L and study the behavior of the classical energy at L = const =0
(theresultsfor L and —L are physically the same).

Equation (10) doesnot alow an exact analytical solution for p. Therefore, wewill use an approximate anal ytical
method.

Figure 1 showsacontour plot of Eq. (10) for arelatively weak field f = 0.3 at b= 3, withw on the horizontal axis
and p onthe vertical. The plot has two branches. The |eft branch spansfrom w = 0tow=w,. Theright one actually
has a small two-valued region between some w = w, and 1 (w, < 1). Indeed, at w = 1, there are two values of
p: p=0and p=f-23-1. Thus, the two-valued region exists only for f < 1.

The right branch touches the abscissaat w = 1 and at some w = w,,. Analytical expressions for w, and w, are
givenin Appendix A. The quantity w, is asolution of the equation

f s (2W3 _ 1)3/5 - W32’5 — b5 (1 _ W3)2/5 (11)
The method, by which w, was found from Eq. (11), is presented in Appendix B.

Figure 2 shows a contour plot of Eq. (10) for arelatively strong field f = 20 at b = 3. It is seen that thereis no
two-valued region.

From now onwe consider the situation where the radius of the electronic orbit isrelatively small, meaning that
p << 1. Physically this correspondsto strong fields f > f .~ 10.

Solving Eg. (10) in the small-p approximation, we obtain
p = (W/(f + b/(1-w)?))?% - w? (12
for the left branch (0 <w < w,) and
p = (b(1 - w)/(I/w? - 1)) - (1 - w)? (13)

for the right branch (1 < w < w,). Substituting these resultsinto Egs. (8) and (9), we get approximate solutions for
energy terms —¢ (r) inboth regionsin a parametric form, w being the parameter. Now we plot classical energy terms
—€,(r) by varying the parameter w over both regions, using the appropriate formula for each one.
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Figure 1: Contour Plot of Eq. (10) for a Relatively Weak Figure2: The Sameasin Fig. 1, but for a Relatively
Fildf=FR?/Z=03ath=2"/Z2=3 Strong Field f = FR?/Z = 20

Figure 3 shows classical energy termsat b = 3 for f = 20. Figure 4 presents classical energy termsat b = 3 for
f=5.

We al so solved the same problem numerically. By comparison we found that the approximate anal ytical solution
isaccurate for fields f = 5 and above.

Figures5 and 6 show the numerically obtained classical energy termsat b= 3for f=2andf=0.1, respectively.
For comparison, Fig. 7 shows the classical energy terms at b = 3 at the absence of the electric field (it had been
previously presented by one of usin papers[18, 19]).
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Figure 3: Classical Energy Termsat b =3 for f =20 Figure4: Classical Energy Termsat b=3for f =5
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Figure7: Classical Energy Termsat b = 3 at the Absence of the Electric Field

Theelectric field causes several important new features compared to the zero-field case. Whileat f = O thereare
three classical energy terms, the electric field brings up the fourth classical energy term. Indeed, let ustake as an
examplethe case of f=5at b = 3 presented in Fig. 4. There are four energy terms that we label asfollows:

#1 — the lowest term;

#2 — the next term up (which has a V-type crossing with term 1);

#3 — the next term up;

#4 — the highest term (which has a V-type crossing with term 3).
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We will usethis labeling also while discussing all other plots (except theplotin Fig. 7 for f = 0): terms 1 and 2
will be those having the V-type crossing at the lower energy, terms 3 and 4 will be those having the V-type crossing
at the higher energy,

At f = 0term 2 is absent, but it appears at any non-zero value of f — no matter how small. Actually, as f
approaches zero, this term behaves like —f/r, which iswhy it disappearsat f = O.

The existence of this additional term can be explained physically as follows. When f = 0, equilibrium of the
orbital plane to the right of Z’ (i. e., for w > 1) does not exist, so that the values of w, and w, reduce to the ones
presented in papers [18, 19] and the right branch of p(w) asymptotically goes to infinity when w goes down to
w,. When an infinitesimal field f appears, the right branch flips over positive infinity and ends up on the abscissa at
w, — oo, thus enabling the whole region w > 1 for equilibrium. As the field grows, w, decreases. Physically, the
force from the electric field at w > 1 balances out the Coulomb attraction of the Z,Z’ system on the left — the
situation not possible for f = 0. Thisterm is obtained by varying the parameter w from 1 to w,.

We emphasi ze that the above examples presented for Z'/Z = 3 represent atypical situation. In fact, for any pair
of Zand Z' £ Z, at the presence of the electric field, there are four classical energy terms of the same symmetry for
CRS.

Another important new feature caused by the electric field is X-type crossings of the classical energy terms.
Thiskind of crossings and their physical consequences are discussed in the next section.

3. X-TYPE CROSSINGSOFCLASSICAL ENERGY TERMSAND THEIR PHY SICAL CONSEQUENCES

Figure 8 shows a magnified version of the energy terms 2, 3, and 4 at b = 3 for f = 2. Figure 9 shows a further
magnified version of the energy terms 2 and 4 at b = 3for f = 2. Compared to Fig. 5 for the sameb andf, in Figs. 8
and 9 we decreased the exhibited energy range, but increased the exhibited range of the internuclear distancesr.
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Figure 8: M agnified Plot of the Classical Energy Terms 2, Figure 9: Further Magnified Plot of the Classical Energy
3,and4atb=3for f=2 Terms2and4atb=3for f=2

It is seen that term 2 has the X-type crossing with term 3 at r = 7.8 and the X-type crossing with term 4 at
r = 32. The situation where there are two X-type crossings exists in a limited range of the electric fields. For
example, for b= 3:

— two X-typecrossings exist at 1.31 < f< 2.4;
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— thereareno X-typecrossingsat f < 1.31;
— thereisone X-type crossing at f > 2.4 (the crossing of terms 2 and 3).

To reveal physical consequences of the X-type crossings, let us first discuss the origin of all four classical
energy termsfor arbitrary Z'/Z# 1. Atr - oo, term 3 corresponds to the energy of ahydrogenlikeion of the nuclear
charge Z . = min(Z, Z), slightly perturbed by the charge Z__ = max(Z', Z), asshown in [18, 19].

Atr - oo, term 4 correspondsto anear-zero-energy state (where the electron isa most free), asshownin[18, 19].
If theratio Z' / Zisof the order of (but not equal to) unity, thistermat r — oo can be described only in the terminol ogy
of eliptical coordinates (rather than parabolic or spherical coordinates), meaning that even at r — oo the electron
is shared between the Z- and Z'-centers. However, in the case of Z' >> Z, this term can be asymptotically considered
as the Z'-term, as shown in [18, 19]. It has the V-type crossing with term 3, which asymptoticaly is the Z-term
(snceZ , =ZforZ > Z). Likewise, in the case of Z' << Z, term 4 can be asymptotically considered as the Z-term, as
shownin[18, 19]. It hasthe V-type crossing with term 3, which asymptotically istheZ-term (since Z , = Z' for Z < 2).

Atr - oo, term 1 correspondsto the energy of ahydrogenlike ion of the nuclear charge Z__ slightly perturbed
by thecharge Z . , asshownin[18, 19]. Asfor theterm 2, atr — oo it has properties similar to term 4, but with the
interchangeof Z _ and Z . . In particular, in the case of Z' >> Z, this term can be asymptotically considered asthe
Z-term, having the V-type crossing with term 1, which asymptoticaly isthe Z-term (since Z _ = Z' for Z > Z). In
the case of Z' << Z, term 2 can be asymptotically considered as the Z' -term, having the V-type crossing with term
1, which asymptotically isthe Z-term (since Z__ = Zfor Z' < 2).

Thus, when Z and Z' differ significantly from each other, the V-type crossings occur between two classica
energy termsthat can be asymptotically labeled asZ- and Z'-terms. This situation classi cally depi cts charge exchange,
asexplained in papers[18, 19]. Indeed, say, initialy at r — o, the electron was apart of the hydrogenlikeion of the
nuclear charge Z . . Asthe charges Z and Z' come relatively close to each other, the two terms undergo a V-type
crossing and the el ectron is shared between the Z- and Z'-centers. Finally, asthe charges Zand Z' go away from each
other, the electron ends up as a part of the hydrogenlike ion of the nuclear charge Z__ .

So, thefirst distinction caused by the electric field is an additional, second V-type crossing leading to charge
exchange — compared to the zero-field case where there was only one such crossing. However, the second V-type
crossing (the crossing of terms 1 and 2) occurs at the internuclear distancer, , <<r, ,, wherer, istheinternuclear
distance of the first V-type crossing (the crossing of terms 3 and 4). Therefore the cross-section of the charge
exchange corresponding to the second V-type crossing is much smaller than the corresponding cross-section for the
first V-type crossing.

Now let us discuss the X -type crossing from the same point of view. When Z and Z' differ significantly from each
other, the X-type crossing of terms 2 and 4 is the crossing of terms that can be asymptotically labeled as Z- and Z-
terms. Thus, this situation again classically depicts charge exchange. The most important is that this
crossing occurs at the internuclear distance r,, >>r,, >>r . . Therefore, the cross-section of charge exchange
dueto this X-type crossing is much greater than the corresponding cross-sectionsfor the V-type crossings. Thisisthe
most fundamental physical consequence caused by the electric field: a significant enhancement of charge exchange.

When Z and Z differ significantly from each other, the X-type crossing of terms 2 and 3 isthe crossing of terms
having the same asymptotic labeling: either both of them are Z-terms or both of them are Z'-terms. Therefore this
second X-type crossing (at r = r,,) does not correspond to charge exchange — rather it represents an additional
ionization channel. Indeed, say, initialy at r — oo, the electron resided on term 3 of the hydrogenlike ion of the
nuclear charge Z. Asthe distance between the charges Z and Z' decreasestor =r,,, the electron can switch to term
2, which asymptotically correspondsto anear-zero-energy state (of the same hydrogenlikeion of the nuclear charge
Z) where the electron would be almost free. So, as the charges Z and Z' go away from each other, the system
undergoes the ionization. Thus, another physical consequence caused by the electric field is the appearance of the
additional ionization channel. This should have been expected since the electric field promotes the ionization of
atomic and molecular systems.
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4., CONCLUSIONS

We studied the effect of an electricfield (along theinternuclear axis) on circular Rydberg states of the two Coulomb
centerssystem. We provided analytical resultsfor strong fields, aswell asnumerical resultsfor moderate fields. We
showed that the electric field had the following effects.

Thefirst effect is the appearance of an extra energy term: the fourth classical energy term— in addition to the
three classical energy termsat zero field. Thisterm exhibitsaV-type crossing with the lowest energy term. The two
highest energy terms continue having a V-type crossing like at the zero field. In the situation where the charges
Zand Z' differ significantly from each other, both V-type crossings correspond to charge exchange.

The second effect is the appearance of a new type of crossings — X-type crossings. One of the X-type crossings
(existinginalimited range of the electric field strength) correspondsto charge exchange at amuch larger internucl ear
distance compared to the V-type crossings. Therefore the cross-section of charge exchange due to this X-type
crossing is much greater than the cross-section of charge exchange dueto V-type crossings. Thus, the electric field
can significantly enhance charge exchange. We believe that thisisthe most important result of the present paper.

The other X-type crossing does hot correspond to charge exchange. Instead, it represents an additional ionization
channel.

Appendix A. The limits w, and w, on the graph of p(w) in Eq. (10)
The analytical results for the quantities w, and w,, obtained using the software Mathematica, have the following form.
For w;:

1
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Appendix B. Finding the Lower Limit w, of the Two-valued Region
on the Graph of p(w) in Eqg. (10)
Defining a function
F(p, w) =f + b(1 - w)/((1 - w)? + p)¥? — w/(W? + p)¥?2, (B.1)
we can rewrite Eq. (10) as F(p, w) = 0. From the graph it is seen that at w,, dw/dp = 0. Since F(p, w) = 0, dF/dp = 0 as well. On the other
hand, F(w, p) = F(w(p), p) =0 and
dF/dp = 0F/dw dw/dp + dF/dp = 0, (B.2)
from where we get
dw/dp =— (0F / ap) / (OF / ow). (B.3)
Setting the right side of Egs. (B.1) and (B.3) to zero, we obtain the system of two equations, solving which for w will give us the point on

the contour plot of F(p, w) = 0 where the derivative dw/dp vanishes, i. e., the desired point. Excluding p from the system, we reduce the
equation to

£25 (2w, — 1)% = w25 — b2 (1 — w,)?5 (B.4)

where w was renamed to w, for clarity. Thisis Eq. (11) of the main text.
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