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ABSTRACT: A core-orthogonalization method is developed so that time-dependent close-coupling calculations can be
carried out for the electron-impact ionization of many-electron atoms and molecules. Calculations using both the pseudo-
potential and core-orthogonalization methods are found to be in reasonable agreement for the electron-impact ionization
of the Li atom. Calculations using the core-orthogonalization method are also carried out for the electron-impact ionization
of the Li

2
 diatomic molecule. The time-dependent close-coupling calculations are found to be lower at the Li

2
 cross

section peak than distorted-wave calculations.

I. INTRODUCTION

Studies of the electron-impact ionization of diatomic molecules at low incident energies probe the quantal dynamics
of two continuum electrons moving in the non-spherical Coulomb field of the molecular core. To date, non-perturbative
theoretical methods which treat correlation effects for the two slow moving continuum electrons have been limited
to the ionization of H+

2
 and H

2
. The R-matrix with pseudostates method has produced total cross sections for the

electron-impact ionization of H
2
 [1] that are in good agreement with H

2
 experiments [2, 3] in the near threshold

region. The time-dependent close-coupling method has produced total cross sections for the electron-impact ionization
of H+

2
 [4] and H

2
 [5] that are in good agreement with H+

2
 experiments [6] and H

2
 experiments [2, 3] over a wide

energy range. More recently [7, 8], the time-dependent close-coupling method has been used to calculate energy
and angle differential cross sections for the electron-impact ionization of H

2
 and compared with three-body distorted-

wave calculations and experiment.

To make time-dependent close-coupling calculations for the electron-impact ionization of diatomic molecules
beyond H+

2
 and H

2
, we need a method that prevents excitation of filled subshells during the time evolution of the

close-coupled equations. For the electron-impact ionization of atoms beyond H and He, we developed a
pseudopotential method and used it to make successful time-dependent close-coupling calculations for the electron-
impact ionization of the 2s subshell of Be+(1s22s) [9]. Since then the pseudopotential method has made possible
time-dependent close-coupling calculations of electron-impact single and double ionization cross sections for a
wide variety of neutral atoms and atomic ions [10].

In this article we develop a core-orthogonalization method for time-dependent close-coupling calculations of
the electron-impact ionization of atoms and molecules. Our first application is to the electron-impact ionization of
the 2s subshell of Li(1s22s), where we compare with previous pseudopotential method results [11, 12]. Our second
application is to the electron-impact ionization of the 2sσ subshell of Li

2
(1sσ22pσ22sσ2). To check the time-dependent

close-coupling results for Li
2
, we adapt a previously developed configuration-average distorted-wave method [13]

to make calculations using the same ionized subshell orbital and core scattering potential as used in the time-
dependent close-coupling calculations.
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The rest of the article is organized as follows: formulation of the core-orthogonalization time-dependent close-
coupling method for atoms is given in Section IIA, formulation of the core-orthogonalization time-dependent close-
coupling method for molecules is given in Section IIB, electron-impact ionization cross sections for Li are presented
in Section IIIA, electron-impact ionization cross sections for Li

2
are presented in Section IIIB, and a brief summary

is given in Section IV. Unless otherwise stated, all quantities are given in atomic units.

II. THEORY

(A) Time-Dependent Close-Coupling Method for Atoms

The Hamiltonian for electron scattering from an atom with one active electron is given

2
2

1 2
1 1 2

1 1
( , ) ( ) ,

2 | |=

 
= − ∇ − + +  − 

∑ 
 i HX i

i i

Z
H r r V r

r r r (1)

where Z is the atomic number and V
HX

(r) is a Hartree with local exchange potential. The total wavefunction is
expanded in coupled spherical harmonics for each LS total symmetry:
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where 1 2 3

1 2 3

l l l
m m mC is a Clebsch-Gordan coefficient and ˆ( )lmY r is a spherical harmonic. Upon substitution into the time-

dependent Schrodinger equation, we obtain the following set of time-dependent close-coupled equations [10]:
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The total one-body operator is given by:
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and the two-body operator is given by:
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where r
<
 = min (r

1
, r

2
), r

>
 = max (r

1
, r

2
), and standard 3j and 6j symbols are used.

The initial condition for the solution of the time-dependent close-coupling equations is given by:

1 2 0 1 2,1 2 1 2 ,( , , 0) ( ) ( ) ,′ ′= = δ δLS
l l nl k l l l l lP r r t P r G r (6)

where P
nl
(r) is a bound radial orbital and the Gaussian radial wavepacket, G

k0l
(r), has a incident energy of

2
0 .
2

k
 The

bound radial orbitals are obtained by diagonalization of the Hamiltonian:
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A Hartree-Fock atomic structure code [14] is used to calculate the bound radial orbitals of the next higher ion
stage needed to construct the V

HX
(r) potential.

In the past, to prevent collapse of the radial wavefunctions,
1 2 1 2( , , )LS
l lP r r t , into closed inner subshells during time

propagation of the close-coupled equations, we have replaced the Hartree with local exchange potential, V
HX

(r),
with a pseudopotential, V

PP
 (r) [9]. For example, for electron-impact ionization of the 2s subshell of Li(1s22s), a

pseudopotential is needed for l = 0 to prevent collapse into the 1s core orbitals.

Alternatively, the radial wavefunctions,
1 2 1 2( , , )LS
l lP r r t , may be orthogonalized to the core orbitals at each time

step. For example, for electron-impact ionization of the 2s subshell of Li(1s22s), the 1
00 1 2( , , )SP r r t  radial wavefunction

is orthogonalized at each time step according to:

1
00 1 2( , , )SP r r t = 1

00 1 2( , , )SP r r t

1
1 1 1 1 1 00 1 2( ) ( ) ( , , )S

s sP r dr P r P r r t′ ′ ′− ∫ (8)

1
1 2 2 1 2 00 1 2( ) ( ) ( , , )S

s sP r dr P r P r r t′ ′ ′− ∫
1

1 1 1 2 1 2 1 1 1 2 00 1 2( ) ( ) ( ) ( ) ( , , ).S
s s s sP r P r dr dr P r P r P r r t′ ′ ′ ′ ′ ′+ ∫ ∫

On the other hand, the 1
01 1 2( , , )PP r r t  radial wavefunction is orthogonalized at each time step according to:

1
01 1 2( , , )PP r r t = 1

01 1 2( , , )PP r r t

1
1 1 1 1 1 01 1 2( ) ( ) ( , , ).P

s sP r dr P r P r r t′ ′ ′− ∫ (9)

We note that
1 2 1 2( , , )LS
l lP r r t  radial wavefunctions with l

1
≠ 0 and l

2
≠ 0 do not need to be orthogonalized.

Probabilities for the electron-impact excitation and ionization processes are obtained by time propagating the

close-coupled equations and then projecting the
1 2 1 2( , , )LS
l lP r r t → ∞ radial wavefunctions onto fully antisymmetric

spatial and spin wavefunctions constructed from bound, P
nl
(r), and continuum, P

kl
(r), radial orbitals. The probabilities

are then used to obtain total, energy differential, and energy and angle differential cross sections as a function of
incident electron energy [10].

(B) Time-Dependent Close-Coupling Method for Molecules

The Hamiltonian for electron scattering from a homonuclear diatomic molecule with one active electron is given
by:

2
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i i i
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∑ ∑ 
 
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where Z is the charge on each nucleus, R is the internuclear distance, and V
HX

(r, θ) is a Hartree with local exchange
potential. The total wavefunction is expanded in rotational functions for each MS total symmetry:

1 2

1 2

1 2

1 1 2 2
1 2 2

, 1 2 1 2

( , , , , )
( , , ) ( ) ( ),
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θ θ
Ψ = Φ φ Φ φ

θ θ∑ 
(11)

where Φ(φ) =
2

ime φ

π
 and M = m

1
 + m

2
. Upon substitution into the time-dependent Schrodinger equation, we obtain

the following set of time-dependent close-coupled equations [10]:
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The total one-body operator is given by:
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where K(r) and ( , )K r θ are kinetic energy operations. The two-body operator is given by:
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where | |qPλ (cos θ) is an associated Legendre function.

The initial condition for the solution of the time-dependent close-coupling equations is given by:

1 2 0 1 21 1 2 2 1 1 2 2 , ,( , , , , 0) ( , ) ( , ) ,MS
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where P
nlm

(r, θ) is a bound radial and angular orbital and G
k0l0m

(r, θ) is a Gaussian radial and angular wavepacket

with incident energy
2
0

2

k
 and incident angular momentum l

0
. The bound radial and angular orbitals are obtained by

diagonalization of the Hamiltonian:
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A self-consistent field molecular structure code [15, 16] is used to calculate the bound radial and angular
orbitals of the next higher ion stage needed to construct the V

HX
(r, θ) potential.

To prevent collapse of the radial and angular wavefunctions,
1 2 1 1 2 2( , , , , )MS

m mP r r tθ θ , into closed inner subshells

during time propagation of the close-coupled equations, we use the core-orthogonalization method. For example,

for electron-impact ionization of the 2sσ subshell of Li
2
(1sσ22pσ22sσ2), the 1

00 1 1 2 2( , , , , )P r r tΣ θ θ  radial and angular

wavefunction is orthogonalized at each time step according to:

1 1
00 1 1 2 2 00 1 1 2 2( , , , , ) ( , , , , )P r r t P r r tΣ Σθ θ = θ θ

1
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1
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On the other hand, the 1
01 1 1 2 2( , , , , )P r r tΠ θ θ  radial and angular wavefunction is orthogonalized at each time step

according to:

1
01 1 1 2 2( , , , , )P r r tΠ θ θ = 1

01 1 1 2 2( , , , , )P r r tΠ θ θ

1
1 1 1 1 1 1 1 1 01 1 1 2 2( , ) ( , ) ( , , , , )s sP r dr d P r P r r tΠ

σ σ′ ′ ′ ′ ′ ′− θ θ θ θ θ∫ ∫ (18)

1
2 1 1 1 1 2 1 1 01 1 1 2 2( , ) ( , ) ( , , , , ).Π

σ σ′ ′ ′ ′ ′ ′− θ θ θ θ θ∫ ∫p pP r dr d P r P r r t

We note that
1 2 1 1 2 2( , , , , )MS

m mP r r tθ θ  radial and angular wavefunctions with m
1

≠ 0 and m
2

≠ 0 do not need to be

orthogonalized.



M. S. Pindzola, J. A. Ludlow and F. Robicheaux

72 International Review of Atomic and Molecular Physics, 2 (1), January-June 2011

Probabilities for the electron-impact excitation and ionization processes are obtained by time propagating the

close-coupled equations and then projecting the
1 2 1 1 2 2( , , , , )MS

m mP r r tθ θ → ∞ radial and angular wavefunctions onto

fully antisymmetric spatial and spin wavefunctions constructed from bound, P
nlm

(r, θ), and continuum, P
klm

(r, θ),
radial and angular orbitals. The probabilities are then used to obtain total, energy differential, and energy and angle
differential cross sections as a function of incident electron energy and internuclear distance [10].

III. RESULTS

(A) Electron-Impact Ionization of Li

Time-dependent close-coupling (TDCC) calculations, using the core-orthogonalization method outlined in
Section IIA, were carried out for the electron-impact ionization of the 2s subshell of Li(1s22s) at an incident energy
of 15.0 eV. The Hartree with local exchange potential is given by:

1

3
2

1

24 ( )
( ) 2 ( ) ,

2
l

HX s

dr r
V r P r

r>

′ α ρ ′= −  π ∫ (19)

where

2
1

2

2 ( )
( )

4
sP r

r
r

ρ =
π

(20)

and the P
1s

(r) bound radial orbital is found from an atomic structure calculation [14] for Li+(1s2). Diagonalization of
the l = 0 Hamiltonian of Eq. (7) with α

0
 = 0.58, on a 512 point radial mesh with a mesh spacing of ∆r = 0.10, yields

an ionization potential for the 2s subshell of Li(1s22s) of 5.39 eV, in agreement with experimental results [17].
Diagonalization of the l = 1 Hamiltonian of Eq. (7) with α

1
 = 0.22 yields an ionization potential for the 2p subshell

of Li(1s22p) of 3.54 eV, again in agreement with experimental results [17]. For l ≥ 2 the Hamiltonian of Eq.(7) is
diagonalized with α

l
 = 0.0.

Partial cross section results obtained by propagating the
1 2 1 2( , , )LS
l lP r r t  radial wavefunctions using Eq. (3), on a

(512)2 point numerical lattice with ∆r
1
 = ∆r

2
 = 0.10, are presented in column 3 of Table I. The number of l

1
l
2
 coupled

channels ranged from 4 for L = 0 to 20 for L = 5.

The TDCC results using the core-orthogonalization method are found to be in reasonable agreement with
previous TDCC results using the pseudopotential method [12], as presented in column 4 of Table I. Using an
LS distorted-wave method [12] for L = 6 to L = 50 we “topped up” both TDCC calculations. The
TDCC orthogonalization total cross section is 322 Mb, while the TDCC pseudopotential total cross section is
337 Mb. We note that the previous TDCC pseudopotential calculations [12] used a 300 point radial mesh with
∆r = 0.30.

(B) Electron-Impact Ionization of Li2

Time-dependent close-coupling calculations, using the core-orthogonalization method outlined in Section IIB, were
carried out for the electron-impact ionization of the 2sσ subshell of Li

2
(1sσ22pσ22sσ2) at an incident energy of 10.0

eV. The Hartree with local exchange potential is given by:

V
HX

(r, θ) = 0 01
0,2,4

(cos ) (cos )
k

k k
k

k

r
dr d P P

r
<
+

= >

′ ′ ′θ θ θ∑ ∫ ∫

( )2 2 2
1 2 22 ( , ) 2 ( , ) ( , )s p sP r P r P rσ σ σ′ ′ ′ ′ ′ ′× θ + θ + θ (21)
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1

324 ( , )
,

2

rα ρ θ −  π 

where

( )2 2 2
1 2 2

2

2 ( , ) 2 ( , ) ( , )
( , )

2 sin
s p sP r P r P r

r
r

σ σ σθ + θ + θ
ρ θ =

π θ (22)

and the P
1sσ(r, θ), P

2pσ(r, θ), and P
2sσ(r, θ) bound radial and angular orbitals are found from a molecular structure

calculation [15, 16] for Li+
2
 (1sσ22pσ22sσ) at the equilibrium internuclear distance of R = 5.0 for Li

2
(1sσ22pσ22sσ2).

Diagonalization of the m = 0 Hamiltonian of Eq. (16) with α = 1.10, on a 240 point radial mesh with ∆r = 0.20 and

a 32 point angular mesh with ,32
π∆θ =  yields an ionization potential for the 2sσ subshell of Li

2
(1sσ22pσ22sσ2) of

5.11 eV, in agreement with experimental results [17].

Partial cross section results obtained by propagating the
1 2 1 1 2 2( , , , , )MS

m mP r r tθ θ  radial and angular wavefunctions

using Eq.(12), on a (240 × 32)2 numerical lattice with ∆r
1
 = ∆r

2
 = 0.20 and ∆θ

1
 = ∆θ

2
 = ,32

π  are presented in

column 3 of Table II. The number of m
1
m

2
 coupled channels was 5 for M = 0, 6 for M = 1, and 5 for M = 2. The

results presented in Table II sum over the cross sections for S = 0 and S = 1. Separate calculations are required for
each incident angular momentum l0 as found in Eq.(15). Since partial cross sections for –M are assumed equal to
those for +M, the results presented in Table II for M ≠ 0 are twice the individual M result.

Configuration-average distorted-wave (CADW) calculations [13] were carried out for the electron-impact
ionization of the 2sσ subshell of Li

2
(1sσ22pσ22sσ2) at an incident energy of 10.0 eV. We used the same Hartree with

local exchange potential found in Eq. (21) on the same ∆r = 0.20 radial and ,32
π∆θ =  angular mesh to generate the

P
2sσ(r, θ) bound orbital and all the P

klm
(r, θ) distorted waves. CADW partial cross sections are presented in column

4 of Table II.

As found in Table II, all of the TDCC partial cross section results are lower than the CADW partial cross
section results. To obtain total cross sections for both the TDCC and CADW methods a constant extrapolation of

the partial cross sections was made for M ≥ 3, while a fitting function of the form: F(l) =
2 pI

b Eal e
−

 was used
to extrapolate the partial cross sections for l

0
≥ 6. The TDCC cross section is estimated at 730 Mb, while the

CADW cross section is estimated at 890 Mb. The reduction due to electron correlation effects found in
the TDCC calculations is in keeping with previous reductions seen in the electron-impact ionization of neutral
atoms [10].

CADW calculations were also carried out for the electron-impact ionization of the 2sσ subshell of

Li
2
(1sσ22pσ22sσ2) at an incident energy of 10 eV using a ∆r = 0.10 radial and 64

π∆θ =  angular mesh. Diagonalization

of the m = 0 Hamiltonian of Eq.(16) with α = 0.63 yields an ionization potential for the 2sσ subshell of
Li

2
(1sσ22pσ22sσ2) of again 5.11 eV. CADW partial cross sections for the new radial and angular mesh are presented

in column 5 of Table II. Overall the agreement between the CADW partial cross sections on the two different
meshes is reasonably good. The largest disagreements are at the larger values of M and l

0
, where the finer radial and

angular mesh should better represent the P
klm

(r, θ) distorted-waves. An extrapolation for M ≥ 3 and l
0

≥ 6 yields a
total CADW cross section estimate of 820 Mb.
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Table I
Partial Ionization Cross Sections for the Electron-impact Ionization of the 2s subshell of Li(1s22s) at an

Incident Energy of 15.0 eV (1.0 Mb = 1.0 × 10–18 cm2)

L S TDCC TDCC
orthogonalization pseudopotential

(present) (reference [12])

0 0 4.2 Mb 3.6 Mb

0 1 1.6 Mb 1.7 Mb

1 0 11.9 Mb 12.7 Mb

1 1 18.1 Mb 18.1 Mb

2 0 30.9 Mb 34.0 Mb

2 1 12.1 Mb 12.2 Mb

3 0 24.0 Mb 27.0 Mb

3 1 14.6 Mb 15.4 Mb

4 0 30.1 Mb 32.8 Mb

4 1 15.1 Mb 16.8 Mb

5 0 24.0 Mb 25.2 Mb

5 1 22.2 Mb 24.2 Mb

Table II
Partial Ionization Cross Sections for the Electron-impact Ionization of the 2s Subshell of

Li
2
(1s22p22s2) at an Incident Energy of 10.0 eV (1.0 Mb = 1.0 × 10–18 cm2)

M l
0

TDCC CADW CADW

(r = 0.20,  = 32
π ) (r = 0.20,  = 32

π ) (r = 0.10,  = 64
π )

0 0 18.7 Mb 24.5 Mb 23.6 Mb

0 1 9.1 Mb 24.2 Mb 24.4 Mb

0 2 11.7 Mb 17.4 Mb 17.7 Mb

0 3 22.3 Mb 31.0 Mb 30.9 Mb

0 4 16.9 Mb 21.4 Mb 19.4 Mb

0 5 11.5 Mb 13.2 Mb 11.1 Mb

1 1 28.5 Mb 41.6 Mb 41.7 Mb

1 2 32.1 Mb 45.8 Mb 49.8 Mb

1 3 32.2 Mb 40.7 Mb 40.1 Mb

1 4 30.6 Mb 39.0 Mb 35.8 Mb

1 5 23.0 Mb 25.5 Mb 22.5 Mb

2 2 26.4 Mb 33.8 Mb 34.5 Mb

2 3 33.4 Mb 48.9 Mb 47.8 Mb

2 4 27.4 Mb 34.0 Mb 30.5 Mb

2 5 22.3 Mb 24.9 Mb 21.7 Mb

We note that the TDCC calculations for the electron-impact ionization of Li
2
 are much more computationally

intensive than CADW calculations. The CADW calculations on the ∆r = 0.2 radial and 32
π∆θ =  angular mesh

took 10 core-hours on an IBM IDataPlex system at NERSC, while the CADW calculations on the ∆r = 0.1 radial
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and 64
π∆θ =  angular mesh took 50 core-hours. On the other hand, the TDCC calculations on a ∆r

1
 = ∆r

2
 = 0.20

and 1 2 32
π∆θ = ∆θ =  numerical lattice took 105 core-hours on the IBM computer. With a 16 fold increase in the

number of lattice points and a factor of 4 reduction in the time step, TDCC calculations on a ∆r
1
 = ∆r

2
 = 0.10 and

1 2 64
π∆θ = ∆θ =  numerical lattice becomes quite a computational challenge.

In previous work [18], we reported CADW calculations for the electron-impact ionization of Li
2
 over a wide

energy range. The calculations were carried out on a ∆r = 0.10 – 0.30 variable radial and 1 64
π∆θ =  angular mesh.

The P
2sσ(r, θ) radial and angular orbital for ionization was found from a molecular structure calculation [15, 16] for

Li
2
(1sσ2 2pσ22sσ2). The P

1sσ(r, θ), P
2pσ(r, θ), and P

2sσ(r, θ) radial and angular orbitals needed for the calculation of
the Hartree-local exchange potential of Eq.(21) were found from a molecular structure calculation [15,16] for
Li+

2
 (1sσ22pσ22sσ). All of the P

klm
(r, θ) distorted-waves were generated with the Hartree local exchange potential

with α = 1.0. A total cross section slightly below 700 Mb was found at an incident energy of 10 eV. We attribute the
lower cross section, in comparison to the CADW results of Table II, as due to the use of a different P

2sσ(r, θ) radial
and angular orbital in the first-order ionization matrix elements. The P

2sσ(r, θ) radial and angular orbital from

diagonalization of the Hamiltonian of Eq.(16) on a ∆r = 0.20 radial and 32
π∆θ =  angular mesh has a mean radius

< r > = 4.26, while the P
2sσ(r, θ) radial and angular orbital from diagonalization of the Hamiltonian of Eq. (16) on a

∆r = 0.10 radial and ,64
π∆θ =  angular mesh has a mean radius < r >= 4.29. On the other hand, the P

2sσ(r, θ) radial

and angular orbital taken directly from a molecular structure calculation [15, 16] interpolated onto a ∆r = 0.10 –

0.30 variable radial and 64
π∆θ =  angular mesh has a mean radius < r > = 3.89, making it harder to ionize.

IV. SUMMARY

In conclusion, we have developed a core-orthogonalization method so that nonperturbative time-dependent close-
coupling calculations can now be made for the electron-impact ionization of diatomic molecules with interior
closed subshells. The core-orthogonalization method, when used in TDCC calculations for the electron-impact
ionization of Li, produced cross sections in reasonable agreement with previous pseudostate TDCC results. The
core-orthogonalization method, when used in TDCC calculations for the electron-impact ionization of Li

2
, produced

cross sections lower than CADW results, in keeping with previous electron correlation effect reductions seen in the
electron-impact ionization of atoms.

In the future, we plan to apply the time-dependent close-coupling method to the calculation of the electron-
impact ionization of diatomic molecules, including furthur studies of Li

2
 and new studies of C

2
 and CO. Besides

total cross sections, energy and angle differential cross sections can be extracted using the fully propagated

1 2 1 1 2 2( , , , , )MS
m mP r r tθ θ → ∞ radial and angular wavefunctions. We also note that the core-orthogonalization method

now allows the electron-impact ionization of the inner subshells of both atoms and molecules that possess outer
closed subshells.
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