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ABSTRACT: A so-called Two Centers Problem (TCP) has the following two mathematically equivalent, but physically
different embodiments. The first one is the motion of an electron in the field of two stationary Coulomb centers of
charges Z and Z� separated by a distance R, which is one of the most fundamental problems in quantum mechanics.
The second one is the motion of a planet in the gravitational field of two stationary stars of generally different
masses, which is one of the most fundamental problems in celestial mechanics. At least, two groups of authors
claimed that for the TCP they derived a super-generalized Runge-Lenz vector, whose projection on the internuclear
(or interstellar) axis is conserved. In the present paper, first, we show that their claims are incorrect: the projection of
their super-generalized Runge-Lenz vector is not conserved. Second, we derive a correct super-generalized Runge-
Lenz vector whose projection on the internuclear/interstellar axis does conserve. Third, since in the literature
there are several expressions for the separation constant for the TCP – the expressions not having the form of a
projection of any vector on the internuclear/interstellar axis – we provide relations between those expressions and
our result.
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1. INTRODUCTION

A so-called Two Centers Problem (TCP) has the following two mathematically equivalent, but physically different
embodiments. The first one is the motion of an electron in the field of two stationary Coulomb centers of charges
Z and Z� separated by a distance R, which is one of the most fundamental problems in quantum mechanics (see, e.g.,
[1, 2]). The second one is the motion of a planet in the gravitational field of two stationary stars of generally
different masses, which is one of the most fundamental problems in celestial mechanics (see, e.g., [3, 4]). The
geometrical symmetry of the TCP dictates the conservation of the energy and of the projection of the angular
momentum on the internuclear (or interstellar) axis. It is also well-known that the TCP possesses a higher than
geometrical symmetry and that there should be an additional integral of the motion . The existence of the additional
integral of the motion is intimately connected with the fact that the TCP allows the separation of variables in the
elliptical coordinates – the fact shown as early as in 1760 by Euler [5] (see also [6, 7]).

In the limit of large R, the problem of two Coulomb centers reduces to the problem of a hydrogenic ion
of the nuclear charge Z in the uniform electric field F = Z�� / R2, which is another fundamental problem in
quantum mechanics (the corresponding celestial problem reduces to the problem of the one-center Kepler
system in the uniform gravitational field). This simpler quantal problem also possesses higher than
geometrical symmetry (connected with the fact that this problem allows the separation of variables in the
parabolic coordinates). The corresponding integral of the motion is known as a projection of a generalized
Runge-Lenz vector on the internuclear axis. The generalized Runge-Lenz vector A for this simpler problem,
introduced by Redmond in 1964 [8], and its projection Az on the axis Oz||F can be represented in the forms,
respectively

A = A0 + (r × F) × r/2,          Az = A0z – (x2 + y2)F/2 (1)
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(atomic units are used throughout the paper). Here A0 is the well-known Runge-Lenz vector for one isolated Coulomb
center*/:

A0 = p × L – Zr/r. (2)

We note that the corresponding expressions in Redmond’s paper [8] differed from Eqs. (1), (2) by factor – 1/Z.

After Redmond introduced the generalized Runge-Lenz vector for the asymptotic case of the TCP, the challenge
was to find out whether a super-generalization of the Runge-Lenz vector is possible for the general (non-asymptotic)
TCP. At least, two groups of authors claimed that they accomplished this task. Namely, Krivchenkov and Liberman
in 1968 [13] and Gurarie in 1992 [14] presented expressions for a super-generalized Runge-Lenz vector and claimed
that its projection on the internuclear (or interstellar) axis is conserved.

In the present paper, first, we show that their claims are incorrect: the projection of their super-generalized
Runge-Lenz vector is not conserved (despite the fact that in the limit of large R, their expressions reduce to Redmond’s
result). Second, we derive a correct super-generalized Runge-Lenz vector whose projection on the internuclear/
interstellar axis does conserve. Third, since in the literature there are several expressions for the separation constant
for the TCP – the expressions not having the form of a projection of any vector on the internuclear/interstellar axis
– we provide relations between those expressions and our result.

2. SUPER-GENERALIZED RUNGE-LENZ VECTOR

2.1. Krivchenkov and Liberman [13] considered the TCP described by the Hamiltonian (or the Hamilton function):

H = p2/2 – Z1/r1 – Z2/r2 + Z2/R (3)

The charge Z1 was placed at the origin and Z2 at z = R. They presented the following expression for a super-
generalized Runge-Lenz vector:

A(KL) = p × L – Z1r1 / r1 + Z2r2 / r2 + Z2 (4)

In the limit of large R, it reduces to Redmond’s result from Eq. (1).

We calculated the Poisson bracket [A(KL), H] of the projection of this vector on the internuclear axis with the
Hamiltonian from [13]. Surprisingly, the result was not zero:

[A(KL), H] = – (2Z1/r1
3) r × L · ez – (2Z2/r2

3) R (xpx + ypy) (5)

Thus, the projection of Krivchenkov-Liberman’s vector on the internuclear axis does not conserve – contrary to
their claim.

Gurarie [14] considered the TCP described by the Hamilton function:

H = p2/2 – Z1/r1 – Z2/r2 (6)

where Z1 and Z2 are placed into z = a and z = –a, respectively (atomic units are also used here). He presented the
following expression for a super-generalized Runge-Lenz vector:

A(G) = p × L – Z1 (r – a ez)/|r – a ez| – Z
2
 (r + a ez)/|r + a ez| (7)

In the limit of large R, it reduces to Redmond’s result from Eq. (1).

We calculated the Poisson bracket [A(G), H] of the projection of this vector on the interstellar axis with the
Hamiltonian from [14]. Surprisingly, again the result was not zero:

[A(G), H] = – 2a (xpx + ypy)(Z1/|r – a ez|
3 – Z2/|r + a ez|

3) (8)

*/ Vector A
0
 is also called Laplace-Runge-Lenz vector. It is interesting to note that none of these three scientists was the first to introduce

this vector. Historically, it was introduced as early as in 1710 by Hermann [9, 10] and Bernoulli [11] and therefore is also called Hermann-
Bernoulli vector or Ermanno-Bernoulli vector (different just by the spelling of the first author’s name, who is the same person in both cases)
– more details on this history can be found in [12].
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Thus, the projection of Gurarie’s vector on the interstellar axis does not conserve – contrary to his claim.

2.2. For deriving a correct expression for the super-generalized Runge-Lenz vector, we started from the
Hamiltonian/Hamilton function given by Eq. (3) and followed the first few steps from Krivchenkov-Liberman’s
paper [13], arriving at the same expression in the elliptical coordinates, as they did, for the additional conserved
quantity:

A = 1/R 1/(w2 – v2) ((w2 – 1)(1 – v2)(pw
2 – pv

2) – ((w2 – 1)/(1 – v2) –
– (1 – v2)/(w2 – 1)) p�

2) – Z(1 + wv)/(w + v) + Z’ (1 + v)(w – 1)/(w – v) (9)

Then, using the relation between the elliptical coordinates and the Cartesian coordinates

x = (R/2) ((w2 – 1)(1 – v2))1/2 cos �, y = (R/2) ((w2 – 1)(1 – v2))1/2 sin �, z = (R/2)wv, (10)

we obtained from Eq. (9) the following: the super-generalized Runge-Lenz vector, whose projection on the internuclear
axis is really conserved, has the form

 A = p × L – L2 / R ez – Zr / r – Z' (R – r) / |R – r| + Z' ez,  ez
 = R / R. (11)

The Poisson bracket of the projection of the vector from Eq. (11) on the internuclear axis

 Az = p × L · ez – L2/R – Zz/r – Z’ (R – z)/|R – r| + Z� (12)

with the Hamilton function from Eq. (3) vanishes indeed.

In the limit of large R, the expression from Eq. (12) reduces to the following asymptotic form

(Az)as = p × L · ez – L2/R – Zz/r + (1/2)(x2 + y2)Z’/R2. (13)

Here the direction of the z-axis is chosen from the charge Z to the charge Z’ . Compared to Redmond’s result
from Eq. (1), there is an extra term in Eq. (13): – L2/R. At the first glance, this might seem puzzling. However, the
Poisson bracket of – L2/R with the Hamilton function from Eq. (3) yields a term of the order of 1/R3. Thus, the
Poisson bracket of Aas from Eq. (13) with the Hamilton function from Eq. (3), being calculated up to (including)
terms of the order of 1/R2, vanishes. This resolves what might have seemed as the puzzle.

2.3. In the literature there are several expressions for the separation constant for the TCP – the expressions not
having the form of a projection of any vector on the internuclear/interstellar axis. Below we provide relations
between those expressions and our result.

In 1949, Erikson and Hill [15] presented the following expression for the separation constant:

� = L�  L�� + 2a (Z1 cos �1 – Z2 cos �2) (14)

We found that it is related to our result from Eq. (12) as follows:

� = R (Z’ – Az). (15)

In Landau-Lifshitz’s book of 1960 [7], there is the following expression for the separation constant:

� = �2 (p�
2 + p�

2 / �2) – M2 + 2m�(�1 cos �1 + �2 cos �2). (16)

We found that it is related to our result from Eq. (12) as follows:

� = R (Az – Z�). (17)

In 1967, Coulson and Joseph [16] presented the following expression for the separation constant:

B = L2 + a2 pz
2 + 2aq1 z/r1 – 2aq2 z/r2. (18)

We found that it is related to our result from Eq. (12) as follows:

B = R (Z� – Az) + R2H/2 (19)

where H is the Hamiltonian.
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In the book by Komarov, Ponomarev, and Slavyanov published in 1976 [2], the following expression for the
separation constant was presented:

� = L2 + R2 pz
2/4 + RZ1 z/r1 – RZ2 z/r2 – R2H/2. (20)

We found that it is related to our result from Eq. (12) as follows:

��= R(Z��– A
z
). (21)

3. CONCLUSIONS

We showed that the expressions for a super-generalized Runge-Lenz vector presented for the TCP by Krivchenkov
and Liberman [13] and by Gurarie [14] are incorrect. Its projection on the internuclear (or interstellar) axis is not
conserved – contrary to their claims.

We derived a correct super-generalized Runge-Lenz vector, whose projection on the internuclear/interstellar
axis does conserve. We also analyzed the asymptotic form of the projection in the limit of large R.

Finally, since in the literature there are several expressions for the separation constant for the TCP – the expressions
not having the form of a projection of any vector on the internuclear/interstellar axis – we provided relations
between those expressions and our result.

The correct super-generalized Runge-Lenz vector for the TCP that we derived should be of a general theoretical
interest since the TCP is one of the most fundamental problems in physics. It can also have practical applications:
for example, it can be used as a necessary tool while applying to the TCP the robust perturbation theory for degenerate
states (based on the integrals of the motion) developed by Oks and Uzer [17].
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