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ABSTRACT: We review recent advances in the classical studies of the two-Coulomb-center (TCC) systems consisting
of two nuclei of charges Z and Z” and an electron in a circular or a helica state centered on the internuclear axis. These
systems represent diatomic Rydberg quasimolecules encountered, e.g., in plasmas containing more than one kind of
multicharged ions. Diatomic Rydberg quasimolecules are one of the most fundamental theoretical playgrounds for
studying charge exchange. Charge exchange and crossings of corresponding energy levels that enhance charge exchange
are strongly connected with problems of energy losses and of diagnogtics in high temperature plasmas; besides, charge
exchange is one of the most effective mechanisms for population inversion in the soft x-ray and VUV ranges. The
classical approach is well-suited for Rydberg quasimolecules. First, we considered diatomic Rydberg quasimolecules
subjected to a static electric field parallel to the internuclear axis. We found the appearance of an additional (fourth)
term, which was absent at the zero field, and which had a V-type crossing with the lowest term. We also found X-type
crossings (absent at the zero field) which significantly enhance charge exchange. Second, we studied effects of the
electron screening in plasmas on diatomic Rydberg quasimolecules. We found that the screening stabilizes the nuclear
motion for Z = 1 and destabilizes it for Z > 1. We also found that a so-called continuum lowering in plasmas was
impeded by the screening, creating the effect similar to that of the magnetic field and opposite to that of the electric
field. The continuum lowering plays a key role in calculations of the equation of state, partition function, bound-free
opacities, and other collisiona atomic transitions in plasmas. Third, we considered diatomic Rydberg quasimolecules in
a laser field. For the situation where the laser field is linearly-polarized along the internuclear axis, we found an analytica
solution for the stable helical motion of the electron valid for wide ranges of the laser field strength and frequency. We
also found resonances, corresponding to a laser-induced unstable motion of the electron, that result in the destruction of
the helica states. For the case of a circularly-polarized field, polarization plane being perpendicular to the internuclear
axis, we found an analytical solution for circular Rydberg states valid for wide ranges of the laser field strength and
frequency. For this case we demonstrated also that there is a red shift of the primary spectral component. We showed
that both under the linearly-polarized laser field and under the circularly-polarized laser field, in the electron radiation
spectrum in the addition to the primary spectral component at (or near) the unperturbed revolution frequency of the
electron, there appear satellites. Under a laser field of a known strength, in the case of the linear polarization the
observation of the satellites would be the confirmation of the helical electronic motion in the Rydberg quasimolecule,
while in the case of the circular polarization the observation of the red shift of the primary spectral component would be
the confirmation of the specific type of the phase modulation of the electronic motion. Conversdly, if the laser field
strength is unknown, both the relative intensities of the satellites and the red shift of the primary spectral component
could be used for measuring the laser field strength. Fourth, we considered TCC systems consisting of a proton, muon
and an dectron. We found that a muonic hydrogen atom can attach an electron, with the muon and electron being in
circular states. The technique of the separation of rapid and dow subsystems was used, where the muon represented the
rapid subsystem and the electron the slow subsystem. We showed that the spectral lines emitted by the muon experience
a red shift compared to the corresponding spectral lines in a muonic hydrogen atom. Observing this red shift should be
one of the ways to detect the formation of such muonic-electronic negative hydrogen ions. Studies of muonic atoms and
molecules, where one of the electrons is substituted by the heavier lepton u-, have several applications, such as
muon-catalyzed fusion, a laser-control of nuclear processes, and a search for strongly interacting massive particles
proposed as dark matter candidates and as candidates for the lightest supersymmetric particle.
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1. INTRODUCTION: TWO-COULOMB CENTER SYSTEMSREPRESENTING DIATOMIC RYDBERG
QUASIMOLECULES

Charge exchange and crossings of corresponding energy levels that enhance charge exchange are strongly connected
with problems of energy losses and of diagnostics in high temperature plasmas—see, e.g., [1.1, 1.2] and references
therein. Besides, charge exchange was proposed as one of the most effective mechanisms for population inversion
in the soft x-ray and VUV ranges [1.3-1.6]. One of the most fundamental theoretical playgrounds for studying charge
exchangeis the problem of eectrontermsinthefied of two stationary Coulomb centers (TCC) of charges Z and Z*
separated by a distance R. It presents fascinating atomic physics. the terms can have crossings and quasicrossings.

The crossings are dueto the fact that that the well-known Neumann-Wigner general theorem on the impossibility
of crossing of terms of the same symmetry [1.7] isnot valid for the TCC problem of Z’ # Z —as shown in paper [1.8].
Physically it is here a consequence of the fact that the TCC problem allows a separation of variables in the dliptic
coordinates[1.8]. Asfor the quasicrossings, they occur when two wells, corresponding to separated Z- and Z’-centers,
have states W and ¥, characterized by the same energies E = E/, by the same magnetic quantum numbers m = nv,
and by the sameradial dliptical quantum numbers k =k’ [1.9-1.11]. In this situation, the eectron has a much larger
probability of tunneling from one wdl to the other (i.e., of charge exchange) as compared to the absence of such
degeneracy.

Theserich features of the TCC problem also manifest in a different areaof physics such as plasma spectroscopy
asfollows. A quasicrossing of the TCC terms, by enhancing charge exchange, can result in unusual structures (dips)
in the spectral line profile emitted by a Z-ion from a plasma consisting of both Z- and Z’-ions, as was shown
theoretically and experimentally [1.12-1.17]. From the experimental width of these dips it is possible to determine
rate coefficients of charge exchange between multicharged ions, which is a fundamental reference data virtually
inaccessible by other experimental methods [1.17].

Before year 2000, the paradigm was that the above sophisticated features of the TCC problem and its flourishing
applications wereinherently quantum phenomena. But then inyear 2000, papers[1.18, 1.19] were published presenting
a purely classical description of both the crossings of energy levels in the TCC problem and the dips in the
corresponding spectral line profiles caused by the crossing (via enhanced charge exchange). These classical results
were obtained analytically based on first principles without using any model assumptions.

Intheclassical studiesthe TCC systems represent diatomic Rydberg quasimol ecules encountered, e.g., in plasmas
containing more than one kind of multicharged ions. Naturally, the classical approach is well-suited for Rydberg
guasimolecules.

Later applications of the results from [1.18, 1.19] included a magnetic stabilization of Rydberg quasimolecules
[1.20], a problem of continuum lowering in plasmas (which plays a key role in calculations of the equation of state,
partition function, bound-free opacities, and other collisional atomic transitions in plasmas) [1.21], and the study of
the classical Stark effect for Rydberg quasi-molecules ([1.22] and section 2).

Inthesestudies aparticular attention was given to circular Rydberg states. Circular states of atomic and molecular
systems are an important subject in its own right. They have been extensively studied both theoretically and
experimentally for several reasons (see, eg., [1.18-1.20, 1.24-1.37] and references therein): (a) they have long
radiative lifetimes and highly anisotropic collision cross sections, thereby enabling experiments on inhibited
spontaneous emission and cold Rydberg gases, (b) these classical states correspond to quantal coherent states,
objects of fundamental importance, (c) a classical description of these states is the primary term in the quantal
method based on the 1/n-expansion, and (d) they can be used in developing atom chips.

As examples of experimental studies of Rydberg states, werefer to paper [1.23] where such studies madein the
last three decades have been enumerated [1.23]. In particular, Day and Ebd [1.38] predicted theoretically in 1979
that probability of a wake eectron being captured by fast-moving ions traversing a solid to a state with large
principal (n) and angular momentum (1) quantum numbersis quite high and much of the timethe electron is captured
into circular Rydberg states (I = n — 1) distributed over a narrow band near n__ . Note here that | = n — 1 defines
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circular orbits, whereas thefull qualification of circular Rydberg states (CRS) requires|m |=1=n-1. Day and Ebel
proposed existence of an “optical window” in ion velocity as a possible explanation for non-observability of the
CRS in beam-foil spectroscopy work. Also, the CRS are both long lived with respect to radiative transitions and
short lived with respect to collisions, hence their observation requires a wide aperture and very good vacuum. Pegg
et al., in 1977 [1.39] observed a strong cascade tails in the decay curves of Cu®* in a beam-foil interaction and
attributed it to the successive decay of long-lived CRS or “yrast states’. Note that CRS can radiate only to the next
lower state, which leads to a chain of successive yrast transitions till they reach the ground state. Recently, from the
study of the time-resolved beam-foil X-ray spectra of projectile or projectile-like ions of 2p, 2s — 1stransitions in
H-like Fe, Ni, Cu, and Zn at different delay times (in the range 250-1600 ps). Nandi identified, in each case, asingle
circular Rydberg and/or an dliptic Rydberg state cascading successively to the 2p or 2s levd.

Coming back to the ground-breaking theoretical papers [1.18, 1.19], it should be emphasized that the analysis
there was not confined to circular orbits of the eectron. Paper [1.19] presented a detailed study of helical Rydberg
states of these diatomic Rydberg quasimolecules. For the stable motion, the eectron trgjectory was found to be a
helix on the surface of a cone, with the axis coinciding with the internuclear axis. In this helical state, the eectron,
while spiraling on the surface of the cone, oscillates between two end-circles which result from cutting the cone by
two parallel planes perpendicular toits axis (Fig. 1.1).

Figure 1.1: Sketch of the helical motion of the electron in the ZeZ’-system at the absence of the magnetic field. We stretched the
trajectory along the internuclear axisto make its details better visible

Let us now reiterate how classical energy terms of diatomic Rydberg quasimolecules were obtained in paper
[1.19]. (The meaning of “classical energy terms’ is clarified below.) They were obtained by considering the
Hamiltonian of the particlein a circular state in the cylindrical coordinates:

2 '
HoLlp, P z z

2 o 2
+—+p; - —
2°° PZ ’ \/22+p2 \/(R—Z)erp2

where (p, ¢, ) are the cylindrical coordinates with the z-axis being the internuclear axis and (pp, Py p, are the
corresponding canonical momenta, Z and Z” arethechargesat z=0 and z= R. Since ¢ is cyclic, p, = const = L and
inthecircular statep, = p, = 0, so (1.1), which is the particle energy, can be written as

(1.1)
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L2 z

Z
E= - - (1.2)
2p? \/Zz+p2 \/(R—Z)2+p2
which, using the scaled quantities defined below,
z p L Z' ER
wW=—, V=—, [(=——, b=—, =—— 1.3
E JZR Z © Z (13)
takes the form
2

! b ‘ (1.4)

(c,:\/w2 +V2 +\/(1—W)2+V2 22

In equilibrium, the derivatives of £ by both scaled coordinates (w, v) must vanish, so by taking the partial
derivatives of (1.4) by each coordinate we obtain two more equations. The partial derivative of (1.4) by w set equal
to zero yieds

2 \N2/3(1_ W)4/3 _ b2/3vv2

- p2/3 _ W2’3(l— W)—2/3

(1.5)

and the partial derivative of (1.4) by v set equal to zero yields

2 =v4( 1 b j (1.6)

(VVz +V2)3/2 + ((1—W)2 +V2)3/2

Equation (1.5) determines the points (w, v) wherethe equilibrium is located. For b > 1, the equilibrium value of
vexistsfor 0 <w<w, and for w, <w< 1; for b <1, it existsfor 0 <w<w, andw, <w< 1. Here weintroduced the
quantitiesw, = 1/(1 + b¥2) and w, = b/(1 + b). For definiteness, we shall consider the cases of b>1 (or 2’ > Z). There
are no equilibrium pointsfor w<0or w> 1 (i.e, for z< 0 or z> R): the zcomponent of the total Coulomb attraction
force of the two centers has no balancing force at those points.

Solving (1.5) for v and substituting it into (1.6) and (1.4) and then solving (1.6) for ¢ and substituting it into
(1.4), we obtain & (w, b)-the scaled energy depending on the scaled internuclear coordinate w for a given ratio of the
charges of the nucle b.

If we scale theinternuclear distanceRasr = (Z/L?) R, and given e = — ER/Z from (1.3), the energy of the eectron
can be represented in the form E = — (Z?/L?) ¢, where we define e, = e/r. The scaling of E to e, includes no more R
and includes L, just like the scaling of Rto r. Next, from the scaled quantities (1.3) we have /2 = L?/(ZR) and from
earlier in this paragraph, r = ZR/L?, therefore, r = 1/¢2; with ¢2 taken from (1.6) and with v substituted from (1.5) we
obtainr (w, b). Thus, for any L > 0 and any b > 0, the dependence ¢,(r), which represents the classical energy terms
for this system, can be presented in a parametric form & (w, b), r (w, b) via the parameter w for a given b. Here we
give the explicit form of this dependence:

o — b W2+ /2 b((Ll-w)?+ p/2
81_((W2 + p)3/2 + ((_’]_—W)Z + p)SIZJ((WZ n p)3/2 + ((]_—W)Z + p)3/2J @7

-1
r=p?2 [ ! b J (1.8)

(WZ + p)3/2 + ((1—W)2 + p)3/2
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where we have defined the quantity p

/3 413 _ 2/3
pZVZZWZZ/s(l—W) - b*Pw? (19)
b _W2/3(1_W)—2/3

The plot of the energy terms given by (1.7) and (1.8) for b = 3 is given below. The same plot, with different
ranges on both axes, is given in paper [1.19].

-,
0||||||1. ..... Ly

_gl

=10t

Figure 1.2: Classical energy terms: the dependence of the scaled classical energy €, on the scaled internuclear distance r given by
eq.(1.7) and (1.8) for b=3

At this point it might be useful to clarify the relation between the classical energy terms — ¢ (r) and the energy
E. The former is a scaled quantity related to the energy as specified above:

E=—(Z/L)?¢,. Theprojection L of the angular momentum on the internuclear axis is a continuous variable. The
energy E depends on both ¢, and L. Therefore, while the scaled quantity e, takes a discrete set of values, the energy
E takes a continuous set of values (as it should be in classical physics).

It turns out that the form of the parametric dependence can be significantly simplified and some of the properties
of it can be found analytically by introducing a new parameter

1/3
y=(l- j (1.10)

w

Inthis case, w= 0 will correspond toy = +-- andw = 1 will correspond toy = 0, thus+y > 0 in the allowed regions.
The pointsw, = 1/(1 + b*?) and w, = b/(1 + b) defining the allowed regions 0 <w < w,, w, <w < 1 (here we assume
b > 1) will correspond toy, = b¥® and y, = 1/b"® (notice that 0 < w < w, corresponds to +ee >y >y andw, <w< 1
corresponds to y, >y > 0). The energy terms ¢, (r) will take the following parametric form:

07 =y (y (v° - 2) + b?3(2y° - 1))
2(y° -2)%(y° -1)

2/3,2 6 3/2
O Ll et | (1.12)

'Y(b2/3 _ Y4)2

€ (y, b) = (1 11)
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The parametric plot of (1.11) and (1.12) with the parameter y varied from 0 to 1/b"® and from b*¢ to +< for b=3
will yield the same graph asin Fig. 1.2.

The crossing of the top two terms corresponds to the point where r (y, b) has a minimum or ¢ (y, b) has a
maximum for a given b. Thus, taking the derivative of either function by y and setting it equal to zero will yield a
solution for they ontheinterval v > 1 corresponding to the crossing. The equation for y obtained from differentiating
r(y) is a 6th-power polynomial and cannot be solved analytically; however, the equation for y obtained from
differentiating ¢,(y) can be solved analytically for v. Below isthe critical value y, corresponding to the crossing.

_ pv3 (b-1"° 13 ¢ (Vb Y2
o= b7+ Ci— (B + 1+ (B -*) (1.13)

Substituting (1.13) into (1.12), we can obtain analytically the value of r corresponding to the crossing.

In the following chapters we consider the same system subjected to external potentials of various nature, as
well as other configurations, such as a quasimolecule consisting of a proton, an electron and a muon. Atomic units
(7 =e=m,= 1) are used throughout the whole study.

2. ENHANCEMENT OF CHARGE EXCHANGE AND OF IONIZATION BY A STATIC ELECTRIC
FIELD

2.1. Introduction

In papers[1.18, 1.20, 1.21] the study wasfocused at Circular Rydberg States (CRS) of the TCC system (theanalysis
in paper [1.19] went beyond CRS). CRS of atomic and molecular systems, with only one dectron, correspond to
[m|=(n—1) >> 1, wheren and m are the principal and magnetic eectronic quantum numbers, respectively. They
have been extensively studied [2.1-2.4] both theoretically and experimentally for several reasons listed in section 1.

While the authors of paper [1.20] studied analytically the effect of a magnetic field (along the internuclear axis)
on CRS of the TCC system, in the present chapter we study the effect of an dectric field (along the internuclear axis)
on CRS of the TCC system. We provide analytical results for strong fields, aswell as numerical results for moderate
fields. We show that the dectric field leads to the following consequences.

First, it leads to the appearance of an extra energy term: thefourth classical energy term - in addition to the three
classical energy terms at zero field. Second, but more importantly, the eectric field creates additional crossings of
these energy terms. We show that some of these crossings enhance charge exchange while other crossings enhance
the ionization of the Rydberg quasi-molecule.

2.2. Calculations of the Classical Stark Effect for a Rydberg Quasi-Molecule in a Circular State

We consider a TCC system, where the charge Z is at the origin and the Oz axis is directed to the charge Z’, which is
at z= R A uniform dectric field F is applied along the internuclear axis — in the negative direction of Oz axis. We
study CRS where the electron moves around a circle in the plane perpendicular to the internuclear axis, the circle
being centered at this axis.

Two quantities, the energy E and the projection L of theangular momentum on the internuclear axis are conserved
in this configuration. We use cylindrical coordinates to write the equations for both.

E=%(p2+p2(p2+22)—£———FZ (2.1)
r r

L=p%p (22)

where p is the distance of the electron from the internuclear axis, ¢ is its azimuthal angle, z is the projection of the
radius-vector of the electron on the internuclear axis, r and r” are the distances of the eectron from the particleto Z
and Z', respectively.
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Thecircular motionimpliesthat dp/dt = O; as the motion occurs in the plane perpendicular to the z-axis, dz/dt = 0.
Further, expressing r and r’ through p and z, and taking de/dt from (2.2), we have:

2 ’
E= LZ _Zz Z -Fz (2.3
2p \/p2+22 \/p2+(R—Z)2
With the scaled quantities
' 2
w=Z v=P p-f o ER,_ L PR X (2.4)
R R z z JZR z L
our energy equation takes the form below:

2
S S N . (25)

\/W2 +V2 \/(1—W)2 +V2 2v

We can seek the equilibrium points by finding partial derivatives of & by the scaled coordinates w, v and setting
them equal to zero. This will give the following two equations.

b(1-w) w

f+ (A=w)Z +v?)72 - (WP +12)%2

(2.6)

1 b
2 =v* + 2.7
((w2 +vA)¥2  (1-w)? +v2)3’2J @7
From the definitions of the scaled quantities (4), ¢2 = 1/r and E = — (Z/R) €. Sincer = ZR/L?,

=—(2Z/L)? elr, wherer = 1/¢? can be obtained by solving (2.7) for ¢. Substituting ¢ into the energy equation, we
get the three master equations for this configuration.

o, 1 b w2+ p/l2  b(A-w)?+ p/2
a=P ((wﬁ P2 @ wE s p)”j((wﬁ P2 @-wE s 2 fWJ 29
f=p2 . b N (2.9)
W+ p)¥? (@-w)?+p)*?
b(1-w) w (2.10)

@ wE s P2 WP+ )

where E = — (Z/L)?e, and p = V2. Thus, ¢, is the "true" scaled energy, whose equation for E does not include R. The
scaled energy €, and internuclear distancer in (2.8) and (2.9) now explicitly depend only on the coordinates w and
p (besides the constants b and f). Therefore, if we solve (2.10) for p and substitute it into (2.8) and (2.9), we will
have the parametric solution ¢,(r) with the parameter w.

Our focus is at crossings of energy terms of the same symmetry. In the quantum TCC problem, "terms of the
same symmetry" means terms of the same magnetic quantum number m [1.8 — 1.11]. Therefore, in our classical
TCC problem, we fixed the angular momentum projection L and study the behavior of the classical energy at
L = const > O (theresults for L and — L are physically the same).

Equation (2.10) does not allow an exact analytical solutionfor p. Therefore, wewill usean approximate analytical
method.
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Figure 2.1 shows a contour plot of (2.10) for ardatively weak field f = 0.3 at b = 3, with w on the horizontal axis
and p on the vertical. The plot has two branches. The left branch spans fromw=0to w=w,. Theright one actually
has a small two-valued region between somew = w, and 1 (w, < 1). Indeed, at w= 1, therearetwo values of p: p=0
and p =f-23—1. Thus, thetwo-valued region exists only for f < 1.

S n

w

N

-
T

Figure 2.1: Contour plot of (2.10) for a relatively weak fidd f = FR¥Z=03atb=2/2=3

Theright branchtouchesthe abscissa at w= 1 and at somew = w,,. Analytical expressionsfor w, and w, are given
in Appendix 2A. The quantity w, is a solution of the equation

f 2/5(2W3 _1)3/5 — W§/5 _ b2/5(1_ W3)2/5 (2 11)

The method, by which w, was found from (2.11), is presented in Appendix 2B.

Figure 2 shows a contour plot of (2.10) for areatively strong field f =20 at b = 3. It is seen that thereisno two-
valued region.

0.10p 9
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w

Figure 2.2: Thesameasin Fig. 2.1, but for arelatively strong field f = FR%Z = 20

From now on we consider the situation where the radius of the electronic orbit isrelatively small, meaning that
p << 1. Physically this corresponds to strong filds f > f .~ 10.
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p= Lb ~ WA (2.12)
_’_7
(1-w)?
for the left branch (0 <w<w,) and
2/3
p= bgl_w) —(1-w)? (2.13)
= f
VV2

for the right branch (1 < w < w,). Substituting these results into (2.8) and (2.9), we get approximate solutions for
energy terms—eg, (r) in both regionsin a parametric form, w being the parameter. Now we plot classical energy terms
—eg,(r) by varying the parameter w over both regions, using the appropriate formula for each one.

Figure 2.3 shows classical energy terms at b = 3 for f = 20. Figure 2.4 presents classical energy te'msat b = 3
for f=5.

-€3
] e — r
16— 20— _30—%0
-5}
=10}
-15¢
-20L

Figure 2.3: Classical energy termsat b= 3 for f = 20

-4}

=10t

Figure 2.4: Classical energytermsat b=3for f=5
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We al so sol ved the same problem numerically. By comparison we found that the approximate analytical solution
is accurate for fields f = 5 and above.

-1k

-10t

Figure 2.5: Classical energy termsat b= 3 for f =2

=10t

Figure 2.6: Classical energy termsat b= 3 for f=0.1
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-2t
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Figure 2.7: Classical energy terms at b = 3 at the absence of the electric field

130 \ International Review of Atomic and Molecular Physics, 4 (2), July-December 2013



Applications of the Classical Two-Coulomb-Center Systems to Atomic/Molecular Physics
Figures 2.5 and 2.6 show the numerically obtained classical energy termsat b =3for f =2andf=0.1, respectively.
For comparison, Fig. 2.7 shows the classical energy terms at b = 3 at the absence of the dectric fidd (it had been
previously presented in papers[1.18, 1.19] and is the same as Fig. 1.2).

The dectric field causes several important new features compared to the zero-field case. While at f = 0 thereare
three classical energy terms, the eectric field brings up the fourth classical energy term. Indeed, let us take as an
examplethe case of f =5 at b = 3 presented in Fig. 2.4. There are four energy terms that we label as follows:

#1 — the lowest term;

#2 — the next term up (which has a V-type crossing with term 1);
#3 — the next term up;

#4 — the highest term (which has a V-type crossing with term 3).

We will use this labeling also while discussing all other plots (except the plot in Fig. 2.7 for f = 0): terms 1 and
2 will bethose having the V-type crossing at the lower energy, terms 3 and 4 will be those having the V-type crossing
at the higher energy, At f = 0 term 2 is absent, but it appears at any non-zero value of f — no matter how small.
Actually, as f approaches zero, this term behaves like — f/r, which iswhy it disappears at f = 0.

The existence of this additional term can be explained physically as follows. When f = 0, equilibrium of the
orbital plane to the right of Z’ (i.e,, for w > 1) does not exist, so that the values of w, and w, reduce to the ones
presented in papers [1.18, 1.19] and the right branch of p (w) asymptotically goes to infinity when w goes down to
w,. When an infinitesimal field f appears, the right branch flips over positive infinity and ends up on the abscissa at
W, — o, thus enabling the wholeregion w> 1 for equilibrium. As the field grows, w,, decreases. Physically, theforce
from the dectric field at w > 1 balances out the Coulomb attraction of the Z — 2’ system on the left — the situation not
possiblefor f = 0. This term is obtained by varying the parameter w from 1 to w,.

We emphasize that the above examples presented for Z'/Z = 3 represent a typical situation. In fact, for any pair of
Zand Z' # Z, at the presence of the dectric fidd, there are four classical energy terms of the same symmetry for CRS.

Another important new feature caused by the electric field is X-type crossings of the classical energy terms. This
kind of crossings and their physical consequences are discussed in the next section.

2.3. X-Type Crossings of Classical Energy Terms and T heir Physical Consequences

Figure 2.8 shows a magnified version of the energy teems 2, 3, and 4 at b = 3 for f = 2. Figure 2.9 shows a further
magnified version of the energy teems 2 and 4 at b = 3 for f = 2. Compared to Fig. 2.5 for thesame b and f, in
Figs. 2.8 and 2.9 we decreased the exhibited energy range, but increased the exhibited range of the internuclear
distancesr.
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Figure 2.8: Magnified plot of the classical energy teems 2, 3, and 4 at b= 3 for f =2
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Figure 2.9: Further magnified plot of the classical energy terems2and 4 at b=3 for f =2

Itisseenthat term 2 hasthe X-typecrossing withterm 3 at r = 7.8 and the X-typecrossngwithterm4 at r =32. The
situation where there are two X-type crossings exists in alimited range of the eectric fidds. For example, for b = 3:

e two X-typecrossings exist at 1.31 < f < 2.4,
e thereareno X-typecrossingsat f < 1.31;
o thereisoneX-type crossing at f > 2.4 (the crossing of terms 2 and 3).

To reveal physical consequences of the X-type crossings, let us first discuss the origin of all four classical
energy termsfor arbitrary Z'/Z # 1. At r — «, term 3 corresponds to the energy of a hydrogenlikeion of the nuclear
chargeZ . = min(Z, Z), slightly perturbed by the chargeZ = max(Z', Z), as shown in [1.18, 1.19].

Atr — oo, term 4 corresponds to a near-zero-energy state (where the eectron is almost free), as shown in [1.18,
1.19]. If theratio Z'/Z is of the order of (but not equal to) unity, this term at r — - can be described only in the
terminology of eliptical coordinates (rather than parabolic or spherical coordinates), meaning that even at r —
the eectronis shared between the Z- and Z’-centers. However, inthe case of Z” >> Z, this term can be asymptotically
considered as the Z’-term, as shown in [1.18, 1.19]. It has the V-type crossing with term 3, which asymptotically is
the Z-term (since Z . = Z for Z' > Z). Likewisg, inthe case of Z' << Z, term 4 can be asymptotically considered as
the Z-term, as shown in [1.18, 1.19]. It has the V-type crossing with term 3, which asymptotically is the Z’-term
(sinceZ , =Z forZ <2).

Atr — oo, term 1 corresponds to the energy of a hydrogenlike ion of the nuclear charge Z_ slightly perturbed
by thechargeZ . , asshownin[1.18, 1.19]. Asfor theterm 2, at r — < it has properties similar to term 4, but with
theinterchangeof Z _ and Z . . In particular, in the case of Z' >> Z, this term can be asymptotically considered as
the Z-term, having the V-type crossing with term 1, which asymptotically isthe Z-term (since Z__ = Z' for Z > Z).
In the case of Z' << Z, term 2 can be asymptotically considered as the Z’-term, having the V-type crossing with
term 1, which asymptotically isthe Z-term (sinceZ __ = Zfor Z' < 2).

Thus, when Z and Z’ differ significantly from each other, the V-type crossings occur between two classical
energy termsthat can beasymptotically labeled as Z- and Z'-terms. Thissituation classical ly depi cts charge exchange,
asexplained in papers[1.18, 1.19]. Indeed, say, initially at r — «, the dectron was a part of the hydrogenlikeion of
the nuclear charge Z . . As the charges Z and Z' come relatively close to each other, the two terms undergo a V-type
crossing and the electron is shared between the Z- and Z’-centers. Finally, as the charges Z and Z” go away from each
other, the electron ends up as a part of the hydrogenlike ion of the nuclear charge Z_.

So, the first distinction caused by the electric field is an additional, second V-type crossing leading to charge
exchange — compared to the zero-fidd case where there was only one such crossing. However, the second V-type
crossing (the crossing of terms 1 and 2) occurs at the internuclear distancery, << ry,, wherer,, is the internuclear
distance of the first V-type crossing (the crossing of terms 3 and 4). Therefore the cross-section of the charge
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exchange corresponding to the second V-type crossing is much smaller than the corresponding cross-section for the
first V-type crossing.

Now let us discuss the X-type crossing from the same point of view. When Z and Z'differ significantly from each
other, the X-type crossing of terms 2 and 4 is the crossing of terms that can be asymptotically labded as Z- and
Z’-terms. Thus, this situation again classically depicts charge exchange. The most important is that this crossing
occurs at the internuclear distance ry, >> ry, >> ry,. Therefore, the cross-section of charge exchange due to this
X-type crossing is much greater than the corresponding cross-sections of for the V-type crossings. This is the most
fundamental physical consequence caused by the eectric fidd: a significant enhancement of charge exchange.

When Z and Z’-differ significantly from each other, the X-type crossing of terms 2 and 3 is the crossing of terms
having the same asymptatic labeling: either both of them are Z-terms or both of them are Z’-terms. Therefore this
second X-typecrossing (at r =ry,) does not correspond to charge exchange—rather it represents an additional ionization
channd. Indeed, say, initially at r — -, the éectron resided on term 3 of the hydrogenlike ion of the nuclear charge Z.
Asthe distance between the charges Z and Z’ decreasestor = ry,, theelectron can switch toterm 2, which asymptotically
corresponds to a near-zero-energy state (of the same hydrogenlike ion of the nuclear charge Z) where the eectron
would be almost free. So, as the charges Z and Z' go away from each other, the system undergoes theionization. Thus,
another physical consequence caused by the dectric fied is the appearance of the additional ionization channd. This
should have been expected since the dectric fidd promotes the ionization of atomic and molecular systems.

2.4. Conclusions

We studied the effect of an dectric fidd (along theinternuclear axis) on circular Rydberg states of the two Coulomb
centers system. We provided analytical results for strong fields, aswell as numerical results for moderate fields. We
showed that the dectric field had the following effects.

Thefirst effect is the appearance of an extra energy term: the fourth classical energy term — in addition to the
three classical energy terms at zero field. This term exhibits a V-type crossing with the lowest energy term. The two
highest energy terms continue having a V-type crossing like at the zero field. In the situation where the charges
Z'differ significantly from each other, both V-type crossings correspond to charge exchange.

The second effect is the appearance of a new type of crossings — X-type crossings. One of the X-type crossings
(existinginalimited range of the dectric field strength) correspondsto charge exchange at a much larger internuclear
distance compared to the V-type crossings. Therefore the cross-section of charge exchange dueto this X-typecrossing
is much greater than the cross-section of charge exchange due to V-type crossings. Thus, the eectric fidd can
significantly enhance charge exchange. We bdieve that this is the most important result of the present chapter.

Theother X-typecrossing does not correspond to charge exchange. I nstead, it represents an additional ionization
channel.

APPENDIX 2A
THE LIMITSw, AND w, ON THE GRAPH OF p(w) IN Eq. (2.10)

The analytical results for the quantities w, and w,, obtained using the software Mathematica, have the following
form.

For w; :

w3 @Ju_wg

6 af f f
N l 63(b+1) b+ f-D? a 4brf-D
12 ~ f f f
\/f\/(b+f D’ & 2b+f-D a
af f f
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where
a1=§/54bf +(b+ f —1)° +6,/3bf \/b3+3b2(f ~D)+(f -1)3+3bL+ f(f +7))
For w,:
_ 2
szﬁ \/§+ M+E+M+1+
6 a,f f f
_ _ 2
.| 6x2@(b 1 (o ff+1) _%+4(bf+1)+2
_ a
¢ (b-f+2) +@+2(b+1)+1 7)
a,f f f
where

a, =§/(f ~1)%+302(f —1)—b® ~30(L+ f ( +16)) + 6,/30f /(b +1)° —3f (1+b(b— 7))+ 3F *(b+1) - f3

APPENDIX 2B
FINDING THE LOWER LIMIT w, OF THE TWO-VALUED REGION ON
THE GRAPH OF p(w) IN Eg. (2.10)

Defining a function

b(1-w) 3 w
@-w?+p¥2 W+ p)¥?’

F(pw)="f+ (2.B.1)

we can rewrite (2.10) as F (p, w) = 0. Fromthegraph it is seen that at w,, dw/dp = 0. Since F (p, w) =0, dF/dp=0as
well. On the other hand, F (w, p) = F(w(p), p) =0 and

d= OF dw OF
_or WL O

- — =0 (2B.2)
dp ow dp op
from where we get
dw__0oFiop 2B3)
dp  oF/ow o

Setting the right side of (2.B.1) and (2.B.3) to zero, we obtain the system of two equations, solving which for w
will give us the point on the contour plot of F(p, w) = O where the derivative dw/dp vanishes, i.e., the desired point.
Excluding p from the system, we reduce the equation to

f2/5(2W3 _1)3/5 =W§/5 _b2/5(1_ W3)2/5 (284)

where w was renamed to w, for clarity. Thisis (2.11) of this chapter.
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3. EFFECT OF PLASMA SCREENING ON CIRCULAR STATES OF DIATOMIC RYDBERG
QUASIMOLECULESAND THEIRAPPLICATION TO CONTINUUM LOWERING IN PLASMAS

3.1. Introduction

In the previous chapters we studied analytically CRS of the two-Coulomb-center system, the system (denoted as
ZeZ’) consisting of two nucle of charges Z and Z’, separated by adistance R, and onedectron—seealso[1.18—1.20,
1.24,1.25, 1.34, 3.1]. Energy terms of these Rydberg quasimolecules were obtained for a field-free case, aswell as
under an dectric fidd or under a magnetic fied.

The Rydberg quasimolecules of this type naturally occur in high density plasmas of several types of ions, where
a fully-stripped ion of the charge Z’ is in the proximity of a hydrogenlike ion of the nuclear charge Z (or where a
fully-stripped ion of the charge Z is in the proximity of a hydrogenlike ion of the nuclear charge Z’). Thereforein the
present chapter we study the effects of plasma screening on CRS of these Rydberg quasimolecul es — the effects not
taken into account in the previous works. We provide analytical results for weak screening, as well as numerical
results for moderate and strong screening. We show that the screening leads to the following consequences.

The screening causes an additional energy term to appear — compared to the absence of the screening. This new
term has a V-type crossing with the lowest energy term. The internuclear potential is also affected by the screening,
destabilizing the nuclear motion for Z > 1 and stabilizing it for Z = 1.

We also study the effect of plasma screening on continuum lowering (CL) in the ionization channel. CL was
studied for over 50 years — see, e.g., books/reviews [3.2 — 3.6] and references therein. Calculations of CL evolved
fromion sphere models to dicenter model s of the plasma state [3.4, 3.7 — 3.12]. One of such theories—a percolation
theory [3.4, 3.9] — calculated CL defined as an absolute value of energy at which an electron becomes bound to a
macroscopic portion of plasma ions (a quasi-ionization). In 2001 the value of CL in the ionization channd was
derived analytically, which was disregarded in the percolation theory: a quasimolecule, consisting of the two ion
centers plus an dectron, can get ionized in a true sense of this word before the eectron would be shared by more
than two ions [1.21]. It was aso shown in [1.21] that, whether the electron is bound primarily by the smaller or by
the larger out of two positive charges Z and Z’, makes a dramatic qualitative and quantitative difference for this
ionization channd. Theresultsin [1.21] wereaobtained for circular states of the corresponding Rydberg quasimolecules.

In the present chapter we show that the screening decreases CL in the ionization channd, making CL vanish as
the screening factor increases.

3.2. Calculation of the Effect of Plasma Screening and Classical Energy Terms for a Rydberg Quasimolecule
in a Circular State

Plasma screening of a test charge is a wdl-known phenomenon. For a hydrogen atom or a hydrogen-like ion (an
H-atom, for short), it is effected by replacing the pure Coulomb potential by a screened Coulomb potential which
contains a physical parameter — the screening length a. For example, the Debye-Hiickel (or Debye) interaction of
an electron with the dectronic shielded field of an ion of charge Z is U (R) = — (Ze?/R) exp (— R/a), where
a=(KT/ (4ne’N )2~ 1.304 x 10*(10%/N_)¥?T V2%, whereN_(cn) and T (K) aretheelectron density and temperature,
respectively.

We study a two-Coulomb center (TCC) system with the charge Z placed at the origin, and the Oz axis isdirected
at thecharge Z’, whichis at z = R, the system being submerged in a plasma of a screening length a. We consider the
circular orbits of the dectron which are perpendicular to the internuclear axis and centered on the axis.

Two quantities, the energy E and the projection L of theangular momentum on theinternuclear axis are conserved
in this configuration. We use cylindrical coordinates to write the equations for both:

Ezé(pz+p2¢2+22)_£e—r/a_£,e—r’/a (31)
r r
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L=p’¢ 32

wherer and r” are distances from the eectron to Z and Z'. The circular motion implies that dp/dt = 0; as the motion
occurs in the plane perpendicular to the z-axis, dz/dt = 0. Further, expressing r and r” through p and z, and taking
de/dt from (3.2), we have:

2 ’
E— I—Z_ z e—«/p2+zzla_ z e—«/p2+(R—z)2/a (3.3)
2p \/p2 +7° p? +(R-2)?
With the scaled quantities
2 '
wekope(of b s B LR @
R R z z JZR a L2

our energy equation takes the form below:

o e—)u/wz+p N be—k«/(l—w)2+p _ﬁ
\/vv2+ p \/(1—W)2+ p 2P

(3.5)

We can seek the equilibrium points by finding partial derivatives of e by the scaled coordinates w, p and setting
them equal to zero. This will give the following two equations.

we WP 1 b(1— w)e @AW P 1
+A|= > + A (3.6)
Wp w2+ p @-w)?+p 1-w)?+p
52 e—}n/wz+ p 1 be‘”(l’ w)? + p 1
—= + M|+ +A (3.7)
PP wW+p | Jwlip @-w?+p | Ja-w?+p
From the definitions of the scaled quantities (3.4), /2= 1/r and E = —(Z/R)e. Sincer = ZR/L?, E = —(Z/L)?¢/r,

wherer = 1/¢? can be obtained by solving (3.7) for ¢. Thus, the scaled energy without explicit dependence on Rise/r,
which we shall denote ¢,. Using this, equations (3.5), (3.6) and (3.7) can be transformed into the following three
master equations for this configuration.

2
., | PO+ MW e P fa-wwi e p)  w@-w)?+p) p 38
(1-w) (W + p)*? 1+ aW+p  1+aJ@-wl+p 2

o 1-w) (W2 n p)3/2 e)u/wz +p

39
p*(L+ AW + p) (39)
W(L+ AW + p)e P b-w)(L+ hy(A-w)? + p)e N 010

(W + p)*? (@-w)? + p)¥?

136 \ International Review of Atomic and Molecular Physics, 4 (2), July-December 2013



Applications of the Classical Two-Coulomb-Center Systems to Atomic/Molecular Physics

The quantities £, and r now depend only on the coordinates w and p (besides the constant A). Therefore, if we
resolve (3.10) for p and substitute it to (3.8) and (3.9), we obtain the parametric solution for the energy terms e,(r)
with the parameter w for the given b and A.

Equation (3.10) does not allow an exact analytical solutionfor p. Therefore, wewill usean approximate analytical
method.

Below is the contour plot of this equation for b =3 and A = 0.1.

0.20¢

0.15}

0.2 0.4 0.6 0.8 1.0 1.2

Figure 3.1: Contour plot of equation (3.10) for b=3 and A=10.1

Asin[1.19] and Section 2, the plot has two branches, the left one spanning fromw = 0 to w = w,, and the right
one from the asymptote w = w, to w = 1. w, is a solution of the equation

A-w)2(1+aw) e 2% — b2 1+ A (1- 2w,)) (3.12)

intheinterval 0 <w, < 1, and w, does not depend on A and equals b/(1 + b) —thesame asin [1.19] for A = 0 —the
"default” case described in Section 1. As A increases, w, and the p-coordinate of the maximum of the left branch
increase, but the general shape of both curves is preserved. Below is the plot for areatively strong A = 2.
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Figure 3.2: Contour plot of equation (3.10) for b=3 and A =2
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An approximation was made for small values of A. Approximating (3.10) in the first power of A, we obtain the
expression involving only the second and higher powers of A. Therefore, an attempt was made using the value of
p(w) for A = 0 presented in [1.19], which we shall denote as p,; it is the same as the quantity in (1.5). Further, taking
the higher powers of A into account, we obtained the next-order approximation for p(w):

2
p(W) = Py +"—62 a-w {1+ 1 2w) {W LSS W)ZISJ J (3.12)

w23 _ b2’3(1— W)z/s
where

W23 (1— w)*3 — p?32

© p23_ \/\/2’3(1— W)—2/3 (3.13)

Po

the zero-A value asin (1.5).

Equation (3.11) can be approximated by substituting 1 + A (1 — 2w,) in place of exp (A (1 — 2w,)), which will
render it a 4"-degree polynomial in w,. The analytical expression for it is given in Appendix 3.A.

Substituting (3.12) into (3.8) and (3.9), we obtain the approximate parametric solution for theenergy terms—e, (r)
by running the parameter won 0 <w < w, and w, <w < 1. Empirically, by comparison with the numerical results, it
was found that using the value of p from (3.13) onthe 0 <w < w, range and from (3.12) onthew, <w < 1 rangegives
the best approximate results. Below are the approximate terms for b = 3 and different values of A.
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Figure 3.3: Approximate classical energy termsfor b=3at A =0.1
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Figure 3.4: Approximate classical energy termsfor b=3 at A = 0.2
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Figure 3.5: Approximate classical energy termsfor b=3at A = 0.3

A numerical solution has also been made. It confirmed that the analytical solution was a good approximation for
A < 0.3. Bdow are the terms plotted for sdected arbitrary values of A.
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Figure 3.6: Numerical classical energy termsfor b =3 at A = 0.2
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Figure 3.7: Numerical classical energy termsfor b=3at A =0.5
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Figure 3.8: Numerical classical energy termsfor b=3atA=1
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Figure 3.9: Numerical classical energy termsfor b=3at A =2

Figure 3.10: Numerical classical energy termsfor b=3at A =3

140 \ International Review of Atomic and Molecular Physics, 4 (2), July-December 2013



Applications of the Classical Two-Coulomb-Center Systems to Atomic/Molecular Physics
Thefollowing reminder should bemade. Theabove plots represent “ classical energy terms’ of the same symmetry.
(In physics of diatomic molecules, the terminology “ energy terms of the same symmetry” means the energy terms of
the same projection of the angular momentum on the internuclear axis.) For a given Rand L, the classical energy E
takes only several discrete values. However, asL varies over a continuous set of values, so doesthe classical energy
E (as it should be in classical physics).

3.3. Crossings of the Energy Terms

Several properties of these energy terms have been studied. We note that in case of small or moderate A, we observe
four terms, both pairs of which have a VV-type crossing. As an example, we shall take the plot of thetermsfor A = 0.2
and number the lowest term 1 and the highest term 2; the remaining terms will be numbered 3 and 4, from the lower
one to the higher one. Therefore, terms 1 and 2 and terms 3 and 4 undergo V-type crossings, to which we shall refer
as V12 and V34. Using a small-A approximation by choosing (3.13) as the p (w) solution for the parametric energy
terms (essentially, a zero-A approximation), we can substitute (3.13) into (3.9), which will give it the form below.

(1_2w>3/2Jb2f3_(Wf'3
1-w
= (3.14)

413\2
WAl 2’3 — [1— Wj
w
For agiven b, the terms 3 and 4 are produced by varying w between 0 and w,. The V34 crossing occurs at the
value of wwherer (w) has aminimum [1.19]. Therefore, setting the derivative dr/dw to zero, we obtain the equation

whose solution for w in the range 0 < w < w, gives us the point on the parametric axis which produces the V34
crossing.

w31 - w)3wWA3 + bY3(1- w)¥3) =b?3 (1 - 4w+ 22w? — 36w° +18w*) (3.15)

This equation has no dependence on A and is therefore equivalent to the Coulomb-potential case described in
Section 1. Therefore, an analytical solution exists for (3.15), which is shown in (1.13). Going back to the
w-parametrization, we obtain the analytical solution of (3.15):

1

[(ml)”%(@_l)“jfz

W3y = (3. 16)

v

1+ {b’“ + (b_];)ﬂs
b

Substituting it into (3.9) and using the numerical solution for p of (3.10), we obtain the semi-anal ytical dependence
r..(A) for agivenb. Beow isthe plot for b = 3.

I'v34

Figure 3.11: Semi-analytical plot of r, (&) for b=3

International Review of Atomic and Molecular Physics, 4 (2), July-December 2013 / 141



N. Kryukov and E. Oks

Sincethe plot in Fig. 3.11 was obtained using a zero-A approximation for the point of the V34 crossing, we also
graphed this dependence numerically point by point. The graph below for the same b shows that in relation to
terms 3 and 4, this approximation works well even for moderate values of A.

I'v34

4.5¢

Figure 3.12: Numerical plot of r, () for b=3

The energy of the V34 crossing can be obtained semi-analytically by substituting the numerical solution for p
of (3.10) into (3.8), and by further substituting (3.16) into theresulting formula. It could be seenthat as A grows, the
energy of the crossing grows and at a relatively large A becomes positive. A numerical graph can also be madein a
fashion similar to Fig. 3.12. A visual comparison shows a good similarity between the two. Below, a numerical
graphisgivenfor b= 3.
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Figure 3.13: Numerical plot of —¢, ,,(A) for b= 3

Aswe see, theenergy of the V34 crossing becomes positive after A = 2.96, has amaximum, and later asymptotically
approaches zero. For b = 4/3, the V34 crossing reaches zero energy at A = 2.13.

The shape of theterms 3 and 4 is also affected by the screening. Term 3, whose energy increases as r increases,
becomes nearly horizontal at energy — 0.5 at a certain value of A; at further A, its energy decreaseswithr. For b = 3,
this value of A is about 1.1; for b = 4/3, it is about 0.7. The plots are shown below.

For V,, crossing, the small-A approximation is not applicable since this crossing is not observed at A = 0.
Therefore, only numerical methods were used. A situation of particular interest is the behavior of term 1 at very
small r, becauseasr — 0 it corresponds to the energy of the hydrogenic ion of the nuclear chargeZ + 2’ [1.25]. The
point with the smallest r is the V,, crossing. A comparison was made of the dependence of the electronic energy on
the screening parameter A between [1.25] and the limiting case r — 0 in our situation. Since in the paper mentioned
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Figure 3.14: Classical energy termsfor b= 3 at A = 1.1; term 3isnearly congtant at energy —g = -0.5
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Figure 3.15: The same asFig. 3.14 for b=4/3 at A= 0.7

above, the calculation was performed for a single Coulomb center Z, we had to re-scale the quantities to make a
valid comparison. The lectronic energies arerelated as el = (1 + b)?¢{°“?, where OCC stands for “ one Coulomb
center”. Sincethe scaling for the screening parameter in the OCC case did not include R (the internuclear distance),
the scaling factor between the screening parameter includes r: A9 = r (1 + b) A9, Taking this into account, we
can plot the energy dependence on A for the limiting caser — 0.
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Figure 3.16: Plot of the energy of the electron versus the scaled screening factor for b = 3in thelimitr — 0
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Below is the dependence obtained in [1.25] for OCC:

(M?/Z%)E
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-0.3
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Figure 3.17: Plot of the energy of the electron in a OCC system versusthe scaled screening factor

3.4. The Effect of the Plasma Screening on the I nternuclear Potential

Another aspect of this problem worth studying is the internuclear potential. Previoudly its properties were studied
for the same systemwith A = 0 and a magnetic field parallel to theinternuclear axis[1.20]. Particul arly, the magnetic
field created a deep minimum in the internuclear potential, which stabilized the nuclear motion and transformed a
Rydberg quasi-moleculeinto areal molecule. Herewe shall investigate the effect of the screening on the internuclear
potential. Its form in atomic units is

=~ iE (3.17)

=—-a (3.18)

whereU, = (Z/L)?u, .. By plotting its dependence on r, we found out that in cases of Z > 1 the screening tends to

int

flatten the minimum, producing the effect opposite to the one of the magnetic field. Compare the plots of u_ (r) in
thecaseof Z=2,b=2for A=0and A =0.3.
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Figure 3.18: The plot of the scaled internuclear potential ver sus the scaled internuclear distancefor Z=2,2’=4,A=0
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Figure 3.19: The plot of the scaled internuclear potential ver sus the scaled internuclear distance for Z =2, 2’ =4, A =0.3

The screening increases the potential of the point of intersection of the two branches; the upper branch, which
has a very shallow minimum at A = 0O, loses it as A increases.
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Figure 3.20: The plot of the scaled internuclear potential ver sus the scaled internuclear distancefor Z=1,2"=2,A=0
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Figure 3.21: Theplot of the scaled internuclear potential ver sus the scaled internuclear distancefor Z=1,2’=2,A=0.3
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A completely different behavior was observed for Z = 1. A small A creates a degp minimum in the upper branch
of the potential. For comparison, we present the plots of the potential inthecaseof Z=1,b=2for A=0andA =0.3.

The figures above reveal the case of the screening stabilization of the nuclear motion for the case of Z = 1 and
destabilization for Z > 1.

3.5. The Effect of the Plasma Screening on the Continuum L owering

Our analysis of the stability of the eectronic motion shows results similar to those obtained previously in [1.18,
1.19]. Namely, term 3 corresponds to a stable motion while term 4 - to an unstable motion. So, the crossing point of
terms 3 and 4 corresponds to the transition from the stable motion to the unstable motion, leading the el ectron to the
zero energy (i.e., to the free motion) along term 4, which constitutes the i onization of the molecule.

Therefore, we arrive at the following. For the ionization of the hydrogenlike ion of the nuclear charge Z
perturbed by the charge Z__, it is sufficient to reach the scaled energy ¢_(b) = & (w,,, (b), b) < 0. At that point, the
eectron switches to the unstable motion and the radius of its orbit increases without a limit. This constitutes CL by
the amount of Z <1/R> | &(w,,,(b), b) |, where <1/R> is the value of theinverse distance of the nearest neighbor ion
from the radiating ion averaged over the ensemble of perturbing ions.

Thus, obtaining CL in the ionization channd requires calculations of the scaled energy ¢ at the crossing point
W, of terms 3 and 4.

CL for the “default” (A = 0) TCC system was studied in [1.21]. Particularly, the scaled CL energy
A, (b) = e(w,,,(b), b) = AE/(Z < 1/R>) was graphed on a double-logarithmic scale, where ¢ is defined in (1.3) and
W,,, is given by (3.16). The graph is given below; “Ig x” stands for “log,, X".
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Figure 3.22: Theplot of the CL energy versusb on a double logarithmic scale for A =0

We have made several plots of ¢_(b) for severa values of A. A numerical value for w,,, was taken to increase
precision.
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Figure 3.23: The plot of the CL energy versusb on a double logarithmic scale for A = 0.1
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Figure 3.24: The plot of the CL energy versusb on a double logarithmic scale for A = 0.5
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Figure 3.25: Theplot of the CL energy versusb on a double logarithmic scale for A = 2

From the figures above we can see that the plasma screening decreases the value of CL in the ionization channd.
Also, starting from about A = 1.7, we observe the “cutoff ” value of b > 1, below which e, becomes negative, i.e., the
electron energy at W, becomes positive. This means that there is no more CL in this ionization channel — instead,
the continuum becomes higher than for the isolated hydrogen-likeion of the nuclear charge Z. This effect cannot be
observed in the logarithmic graphs above because the cutoff value of energy (zero) correspondstolg e, = —oe. Below
we made the standard, non-logarithmic plots of ¢_(b) for selected values of A at which this effect is observed.
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Figure 3.26: The plot of the CL energy versusb for A =2
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Figure 3.27: Theplot of the CL energy versusbfor A =3

International Review of Atomic and Molecular Physics, 4 (2), July-December 2013 / 147



N. Kryukov and E. Oks

InFig. 3.27 we can seethat thereisnoCL forb=2andb=3 at A = 3.

In Appendices 3B and 3C we present the effects of the dectric and magnetic fields on CL. The effect of the
magnetic field was observed to decrease the value of CL, similar to the case above, whilethe dectric fied increases
the value of CL, promoting ionization.

3.6. Conclusions

We studied the effects of the plasma screening on the classical energy terms of the eectron in the fied of two
Coulomb centers. We provided analytical results for the small values of the screening factor and numerical results
for the medium values.

We found that the plasma screening leads to the appearance of the fourth energy term — in addition to the three
classical energy terms with no screening. This term exhibits a V-type crossing with the lowest energy term. The two
highest energy terms continue having a V-type crossing like at the zero fied.

We studied the effect of the screening on the internuclear potential. We found that the nuclear motion was
stabilized by screening for Z = 1 and destabilized for Z > 1.

The effect of the screening on the continuum lowering was studied as well. The plasma screening decreases the
value of CL in the ionization channd, similar to the effect of the magnetic field [1.20].

APPENDI X 3A
THEANALYTICAL EXPRESSION FORTHE LIMIT w, IN Eq. (3.11)
INTHE SMALL-AAPPROXIMATION

L L 2 2 _ _
_-b 5x+1_3\/(( b-52+3° 4A°+bh-3+b-1 1 oz p g

8\ 2 1612 32 Y
—144 (- A =DA% (4A% + b -3k +b—1) —9(~51% —bA + A) (=A% + 3L + 2) (412 + bL -3\ + b —1)
+27(- A —1)(=50% —bA + 1)? + 5402 (—1% + 3L + 2)% + ((2(4A% + bA — 3\ + b —-1)3
—144 (- A =DA% (4A% + b -3k +b—1) —9(~51% —bA + A) (~A% + 3\ + 2) (412 + bL -3\ + b —1)
+27(- A —1)(=50% —bA + 1) + 5402 (=12 + 3L + 2)?)2— 4(A* + 5br® — b?A2 +11bA2 — 202 + 2b%A
—2b +b? - 20+ 2)*)) ~ (W/3)) + (A* + 503 + bZA? + 11bA? — 202 + 207 — 2bA + b2 - 2b + 1)/
(32230 2(2(4)% + bL - 3\ + b —1)° —144(-1 - DA (41% + b —3h + b—1)

—9(=502 —bA+ ) (~A% + 30 + 2) (4A2 +bL —3h + b —1) + 27 (= A —1) (=512 — b\ + 1)?
+ 5402 (-A% + 3L+ 2%+ ((2(402 + b — 3L +b—1)3 —144 (- L — DA% (4A2 + bA - 3L + b —1)

—9(=502 —bA+ A) (A2 + 30 + 2) (4A2 +bL —3h + b —1) + 27 (= L —1) (=512 — b\ + 1)?

+540% (=02 + 3L+ 2)2)2 -4 (A2 + 50A3 + bPA? + 1102 — 202 + 2b2) — 2bA + b% - 2b+ 13)) A (1/3)))
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APPENDIX 3B
THE EFFECT OF THE ELECTRIC FIELD ON CONTINUUM LOWERING

Using the value of the scaled energy of the dectron in the TCC system given in (2.5) with the substitution of the
numeric or approximate solution for p from (2.10) into (2.5) and (2.7) and the further substitution of ¢ from (2.7)
into (2.5), we obtain the dependence of the scaled energy on the scaled coordinate w in the situation considered in
Section 2, where the dectric field was paralld to the internuclear axis. Then we numerically find the point on the
w-axis corresponding to the V34 crossing for a given value of the scaled dectric field f and substitute it into the
formula for the scaled energy, obtaining the critical energy, which is the value of CL.

Below are a few logarithmic plots (Ig e_ versus g b) made for selected values of f.
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Figure 3.B1: Theplot of the CL energy versusbfor f = 0.1
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Figure 3.B2: Theplot of the CL energy versusbfor f=1
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Figure 3.B3: Theplot of the CL energy versusb for f = 10

CL increases as the dectric field increases. This is expected because the dectric field promotes ionization.
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APPENDIX 3C
THE EFFECT OF THE MAGNETIC FIELD ON CONTINUUM LOWERING

In the case of the magnetic field B paralld to the internuclear axis, the default energy given in (1.2) will acquire an
additional term

2 2
oL+ sz (3.C.1)

where Q = B/(2c) is the Larmor frequency. We apply the same method as we used in the beginning of each chapter
to find the energy dependent on one spatial parameter. Substituting the scaled quarntities as defined in (3.4) and
defining » = QL3/Z?, taking the derivatives by wand p and setting them equal to zero, solving for p and ¢, substituting
them back into the formula for energy, and further substituting the parameter v as given in (1.10), we arrive at the
following expressions of the scaled energy € = —ER/Z: and the scaled internuclear distancer:

(7 =2y +b73(22 1) \/(ys )77 -1 . (023~ Q){(D—{— \/Q)Z . (2 + D52 (0732 — )2
i)

2/(° - (0P +D%(0"%* - Y0’ 9" ] #e2

(y3 + 1)4(b2/3'\{2 _ 1)2
y4(b2’3 _ Y4)2 (032 n (Y3 + 1)5/2(b2/3Y2 —1)3/2J
y3(y3 _1)3/2

I =

(3.C.3)

To find the point of the V34 crossing, we take the derivative of r by y and set it equal to zero. The numerical
solution for this equation determines the value of vy corresponding to the minimum of r(y) for given b and ®, which
corresponds to the crossing. Substituting it to the expression for the energy in (3.C.2), we obtain ¢ (b, ®) — the
dependence of CL on b for a given .

Below we present several double-logarithmic plots, similar to thosein Section 3.5 and Appendix 3B, for sdected
values of .
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Figure 3.C1: Theplot of the CL energy versus b on a double-logarithmic scale for @ = 0.5
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Figure 3.C2: Theplot of the CL energy versusb on a double-logarithmic scale for ® = 1
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Figure 3.C3: Theplot of the CL energy versusb on a double-logarithmic scale for @ = 2

From the graphsin Figs. 3.C1 — 3.C3 it is seen that the effect of the magnetic field on CL is similar to the effect
of the plasma screening — it decreases CL. The “ cutoff " values of b, below which thereis no CL for a given @, are
also observed as w becomes large. For example, for @ = 2.8 CL at b = 2 vanishes, so the values of b corresponding
toCL startat b>2. At ® = 4.3, CL startsat b > 3. (SeeFigs. 3.C4 and 3.C5 below.)
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Figure 3.C5: Theplot of the CL energy versusb for m = 4.3

4. HELICALAND CIRCULAR STATESOFDIATOMIC RYDBERG QUASIMOLECULESINALASER
FIELD

4.1. Introduction

In the previous works [1.18-1.20, 1.24, 1.25, 1.28, 1.34] and the previous chapters, analytical studies of circular
Rydberg states of two-Coulomb-center systems consisting of two nuclei of charges Z and Z’, separated by a distance
R, and one electron were carried out. Energy terms of these Rydberg quasimolecules for afied-free case[1.18, 1.19]
were obtained, as wdl as under a static dectric field ([1.24] and Section 2) or under a static magnetic field [1.20],
and crossings of the energy terms were studied — the crossings that enhance charge exchange in these systems.
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The analysis was not confined to circular orbits of the electron. For example, paper [1.19] studied in detail
helical Rydberg states of these Rydberg quasimolecules. In order to make those results more transparent, we briefly
outline here the scheme of that analysis. In cylindrical coordinates (z, p, ¢) with the z-axis along the internuclear
axis, using the axial symmetry of the problem, the z- and p-motions can be separated from the ¢-motion. The
¢@-motion can be then determined from the calculated p-motion. Equilibrium points of the two-dimensional motion
in the zp-space were studied and a condition distinguishing between two physically different cases, where the
effectivepotential energy ether has a two-dimensional minimum in the zp-spaceor has a saddle point inthe zp-space,
was explicitly derived. In particular, it turned out that the boundary between these two cases corresponds to the
point of crossing of the upper and middle energy terms (out of the three energy termsin this system). For the stable
moation, the trajectory was found to be a hdix on the surface of a cone, with axis coinciding with the internuclear
axis. Inthis helical state, the eectron, while spiraling on the surface of the cone, oscillates between two end-circles
which result from cutting the cone by two paralld planes perpendicular to its axis (Fig. 1.1).

In the present chapter we study such Rydberg quasimolecules under a laser field. For the situation where the
laser field is linearly-polarized along the internuclear axis, we found an analytical solution for the stable helical
moation of the dectron valid for wide ranges of the laser field strength and frequency. We also found resonances,
corresponding to a laser-induced unstable motion of the electron, that result in the destruction of the helical states.
For the situation where such Rydberg quasimolecules are under a circularly-polarized field, polarization plane being
perpendicular to the internuclear axis, we found an analytical solution for circular Rydberg states valid for wide
ranges of the laser fidd strength and frequency. We showed that both under the linearly-polarized laser field and
under the circularly-polarized laser fidd, in the ectron radiation spectrum in the addition to the primary spectral
component at (or near) the unperturbed revolution frequency of the electron, there appear satellites. We found that
for the case of the linearly-polarized laser field, the intensities of the satellites are proportional to the squares of the
Bessel functions qu(s), (=1, 2 3, ...), where s is proportional to the laser field strength. As for the case of the
circularly-polarized field, we demonstrated that there is a red shift of the primary spectral component — the shift
linearly proportional to the laser fidd strength.

4.2. Analytical Solution for the Case of a Linearly-Polarized Laser Field

We consider the case where the laser is polarized paralle to theinternuclear axis and oscillates sinusoidally with the
frequency ®. The angular momentum L is conserved here due to ¢-symmetry. The corresponding Hamiltonian is

2 2 2 '
+
HoP P L 2 Z + ZF cos ot 4.2)

2 292 \/p2+z2 _\/p2+(R—Z)2

Below wescale all frequencies using thefactor (R¥/2)Y2: for example, the scaled laser frequency isp = o (R¥/2)Y2.
We also use scaled coordinates as in papers [1.18, 1.19] and the other chapters

W=E, v=F (4.2

where Ris the internuclear distance. The origin is at the location of charge Z.

Without the electric field, in the vicinity of the equilibrium the motion in zp-space corresponds to a
two-dimensional harmonic oscillator [1.19]. Its scaled eigen-frequencies are

0, = 12 3 1 * 3w 4.3
T V)T 2 ) (- w)? + V)
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where the equilibrium value of v connected to w as follows —as in (1.5) and in [1.18, 1.19]:

b= \/vv2’3(1— W)4/3 _ 232 4

h2/3 _ W2/3(1— W)—2/3
The mation occurs on the axes (w/, V'), which are the original axes (w, V) rotated by an angle o, givenin [1.19].

The dependence of the angle o. on the scaled coordinate w can be expressed in the most compact form by introducing
the notation asin (1.15):

/3
1
Y= (V—v - j (4.5
In the y-representation it has the form
1 \/(b2’3y2 1) (Y4 _ bz/s)

2 y(07° +7)

The scaled eigen-frequencies w_ and . are the scaled frequencies of small oscillations about the equilibrium
along the coordinates w', v' accordingly.

Asweintroducethe oscillating electric field, these oscillations become forced, with theforces F cos ¢, cos ot on
w and F sin o. cos wt on V. Therefore, the deviations from equilibrium on (w, V) are(see, eg., textbooks[4.1, 4.2])

f cosa , fsna
SV\/ZﬁCOSHT, oV =ﬁCOSu’E (47)

Oy o, —H
whereu = o (R¥/Z)¥2 and 1 = t (Z/R®)Y2. Now werevert to the original coordinates (w, v) and obtain the equations of
moation in the linearly-polarized oscillatory eectric field in the vicinity of the equilibrium: the electron follows the
circular path corresponding to the case with no eectric fied with deviations from equilibrium depending on the

scaled time T:

fcosPa fsin®a
dw= f >—— t—5 5 |COSuT,
o_—H o, —H
(4.8)
: 1 1
ov=f dnacoso| — - > | cospt
w

o- — uz (93 -
From (4.8) it is seenthat the strength and frequency of thelaser field affect the amplitudes of theforced oscillations
on w- and v-axes; in fact, these amplitudes are proportional to the field strength f. The frequencies of the forced
oscillations on the axes are equal to that of the laser fidd, instead of w_ and ..

Since the Hamiltonian from (4.1) does not depend on ¢, the corresponding momentum is conserved:
0, =02 32 | _ congt (4.9)
¢ dt '

We can re-write (4.9) in the scaled notation as

do l

- 4.10
dt  V2(q) (410
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where ¢ = L/(ZR)"2 is the scaled angular momentum. Substituting in (4.10) v (t) = v, + dv(t), where v (w) is the
equilibrium value of the scaled radius v of the electron orbit from (4.4) and év (t) is given by (4.8), we obtain

do (¢ 20
—r——-—0V(t 4.11
d v (1) (4.11)

which after the integration with respect to time yields:

1 20 : 1 1 :

(p(t)z—r——fsmacosa( - Jsmur (4.12)
Voo uvg o —p? ol —p?

From (4.12) it is seen that the -motion is a rotation about the internuclear axis with the scaled frequency //\V2,

slightly modulated by oscillations of the scaled radius of the orbit v at the laser frequency p (i.e., at the laser

frequency o in the usual notation).

Thus, from (4.8) and (4.12) it is clear that the eectron is bound to a conical surface which incorporates the
original circular orbit. In Fig. 4.1 below the three-dimensional actual trajectory isplottedfor b=3,f=1, u=1at
w=0.2.

&.5

Figure 4.1: The actual trajectory of the electron in the linearly-polarized laser field for b=3,f =1, p =1 at w = 0.2. The zaxis
isalong theinternuclear axis

The expression for ¢ (1) from (4.12), i.e., ¢ (t (Z/R®)Y?), enters the following Fourier-transform that determines
the amplitude of the power spectrum of the eectron radiation

1% Z
A (A) =§£ ot cos[At —(p[t \/%n (4.13)

where A is the radiation frequency measured, e.g., by a spectrometer. The sinusoidal modulation of the phase ¢ is
analogous to the situation where hydrogen spectral lines are modified by an external monochromatic field at the
frequency , the latter problem being solved analytically by Blochinzew as early as in 1933 [4.3] (a further study
can befound, eg., in book [4.4]).

From Blochinzew’s results it follows for our case in the dectron radiation spectrum, this helical motion should
manifest as follows. The most intense emission would be at the frequency Q = de/dt of the rapid ¢-motion. In
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addition, there will be satellites at the frequencies Q + qw, whereq =1, 2, 3, ..., whose rdative intensities Iq are
controlled by the Bessd functions Jq(s):

2

Iy =J32(9), s=2—€fsina005a( 21 S - 1 ZJ
Y% o’ -p? ol -p

(4.14)

The oscillatory motion of the electron in the zp-space with the laser frequency o should lead also to the radiation
at this frequency. However, since o << €2, this spectral component would be far away from the primary spectral line
and its satdlites.

From (4.8) it isalso seen that there are resonances when thelaser frequency is equal to one of the eigen-frequencies
of the motion in the zp-space, i.e., when either u = @, or u = w_. It turns out that these conditions yield three
resonance points on the w-axis for the laser field frequency u below a certain critical value u, or five resonance
points for u > p_— see the figures below.
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Figure 4.2: Eigen-freguencies of the motion in the zp-space m. (solid curves) and @_ (dashed curves) versusw, i.e., versusthe scaled

z-coordinate of original circular Rydberg state. The scaled laser frequency p is shown by the horizontal straight line.
Theplot isfor b= 3 and p = 4. Three resonant points are seen
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Figure 4.3: Sameasin Fig. 4.2, but for b =3 and p = 9. Fiveresonant points are seen

For instance, in the case of b = 3, for u = 8, we observe resonances at the following five values of w: 0.02883,
0.1106, 0.2497, 0.9852, 0.9878. Thecritical value corresponds to the minimum of w.(w) for agiven bin theinterval
0 <w<w, at the equilibrium point (the equilibrium scaled coordinate v being expressed viaw by (4.4)). Calculating
the derivative of . with respect to wand setting it equal to zero, we find the point of the minimum. The value of .
at this point will be equal to thecritical value of the scaled laser frequency 1. For example, for b =3 at w= 0.17642

(the minimum of o. in Figs. 4.2 and 4.3) this critical valueis u_ = 7.5944. Astheratio of nuclear charges b increases,
o does also the critical value i of the scaled laser frequency.
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These resonances correspond to a laser-induced unstable motion of the electron that result in the destruction of
the helical states. This is illustrated in Fig. 4.4 showing the three-dimensional actual trajectory of the electron (for
various directions of itsinitial velocity) for a resonance casewhereb=3,f=1, u =8, andw=0.111 (w=0.111is
one of the three values of w, at which the laser frequency p coincides with the eigen-frequency m.). A striking
difference is seen compared to the stable hdical motion depicted in Fig. 4.1: the resonance destroyed the helical
State.

Figure 4.4: Theactual trajectory of the electron (for variousdirections of itsinitial velocity) in thelinearly-polarized laser field for
aresonance casewhereb =3, f =1, p =8, and w = 0.111. The zaxisis along the internuclear axis

4.3. Analytical Solution for the Case of a Circularly-Polarized Laser Field

Now we consider the case of a circular polarization of the laser field, polarization plane being perpendicular to the
internuclear axis. The laser field varies as

F=F(e cosomt + g, sin ot) (4.15)

wheree, and e aretheunit vectors along thex- and y-axes, F is theamplitude and o isthefrequency. The Hamiltonian
for the dectron in this configuration will take the following form.

2 ’
ol P>+ pl y P 2 Z +Fp cos (e — ) (4.16)
2 p \/p2+22 \/p2+(R—Z)2

where we introduced ¢, = ot. As in [1.19], we consider ¢-motion to be the rapid subsystem, i.e. de/dt is much
greater than the laser frequency o and the frequencies of z- and p-motion. The canonical equations for the ¢-motion
obtained from (4.16) are

do oH B,
Al _Te 4.17
dt  op, p? (4-17)
dp, oH _
—=——=Fpsin(p- 4.18
m o P (¢ — o) (4.18)
Combining (4.17) and (4.18), we get
d?p F . (4.19)
— Y =—9n —
dtz o ((P (PO)
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After a substitution ¢ — ¢, = 0 + m, (4.19) becomes
2
P0__F o (4.20)
dt? p
which is the equation of motion of a mathematical pendulum of length p in gravity F. Its two possible modes are

libration and rotation; since 6 is the rapid coordinate, we have the case of rotation. The solution for 6(t) is
well-known and can be expressed in terms of Jacobi amplitude:

Ot 4F

Here we denoted do/dt at t = 0 as Q. For rapid rotations, the change in the angular speed on 6 is insignificant
compared to theinitial speed and do/dt = Q.

The expression for 6(t) enters the following Fourier-transform that determines the amplitude of the power
spectrum of the eectron radiation:

ala2E =1jdtcos at-ot, 2 (4.22)

pQ U pQ
Figure 4.5 shows as an example the power spectrum of the electron radiation spectrum (i.e., A?) versus the
dimensionless radiation frequency A/Q for the case where 4F/(pQ2) = 0.1. It is seen that the most intense component
in the spectrum is at the frequency A approximately equal to, but slightly less than . It is also seen that the laser

modulation of the primary frequency of the ectron rotation results in a series of relatively small satellites of the
primary spectral component.
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Figure 4.5: The power spectrum of the electron radiation P (in arbitrary units) versus the dimensionless radiation frequency A/Q
for the case where 4F/(pQ) = 0.1. Here Q is the frequency of the electron radiation at the absence of the laser field.
A certain width is assigned to all spectral components to display a continuous spectral line profile

The red shift of the primary spectral component can be calculated analytically as follows. Since ¢-motion is
rapid, we can average the Hamiltonian in (4.16) with respect to time. Integrating (4.20) with the initial condition
do/dt = Q, we get

2
Q% - (@J A gn2? (4.23)
dt p 2
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By averaging this equation with respect to time, we obtain

2
Q° - <@> _F (4.24)
dt p

Thus, the ¢-momentum term in the Hamiltonian (4.16) becomes

P2\ L/(doy\ L, (. oF
<p—>p <(EJ>“)Q ) )

The last term in the Hamiltonian from (4.16) vanishes after the time averaging so that the time-averaged
Hamiltonian depends only on p- and z-coordinates and their corresponding momenta. The result is the following
quasi-stationary Hamiltonian with no explicit time dependence:

zZ__ Z +1p292—pF (4.26)
247 \/p2+(R—Z)2 2

1
H =2 (B +p0)-
P
Introducing the scaled quantities

w=—, v=—, f=—— o= — (4.27)

and using the Hamilton equations, we abtain the following two differential equations of motion:

— W B b(1-w)
W= W22 (A—w)2 +v2)2 (4.28)
o 1 B b 2|
V_V((Wervz)s/z (A= w2 D)2 +to J f (4.29)

(the dot above the letter indicates the differentiation by the scaled time t = t (Z/R®)Y?).

In this section we consider these Rydberg quasimolecules in circular (not helical) states, so that the plane of the
eectron orbit has a stationary position on the internuclear axis. Therefore, the right-hand side of (4.28) vanishes and
the relationship between w and v becomes the same as given by (4.4). This makes the scaled radius of the orbit v a
constant as well.

Since the angular momentum is L = Qp? for a stationary circular orbit, the averaging of the ¢-momentum in
(4.25) is equivalent to changing L for L(1 — Fp*/L?). Using scaled units and therelationship L = Qp?, wefind out that
the case of the circularly-polarized laser field is equivalent to a field-free case, but with an effective frequency Q
given by the substitution:

Q->Q1-x(yf) (4.30)
where

,YG(,Y3 _1)3/2(,Y4 _ b2/3)3/2
(,Y3 + 1)1]12(b2/3,y2 _ 1)3

k()= (4.31)

The quantity Qxk(y) fis thered shift of the primary spectral component. Thisresult isvalid aslong as therdative
correction k() f to the unperturbed angular frequency Q of the ectron remainsrelatively small. Figures 4.6 and 4.7
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Figure 4.6: Dependence of the unperturbed angular frequency Q of the electron (solid curve, two branches) and of the correction
Qx(y) f for f = 1 (dashed curve) on the scaled coordinate w along the internuclear axis of the Rydberg quasimolecule

Figure 4.7: Thesameasin Fig. 4.6, but with better visible details in the region of the right branch of Q(w)

illustrate the situation for the case wherethe ratio of the nuclear chargesis b = 2. On the horizontal axisisthe scaled
coordinate w, i.e., the scaled coordinate along the internuclear axis of the Rydberg quasimolecule. The solid curve,
having two branches, shows the unperturbed angular frequency € of the eectron. The dashed curve shows the
correction Qk(y) f. It is seen that the correction remains relatively small for the entire left branch of Q and for a
significant part of the right branch of Q. (Figures 4.6 and 4.7 differ only by the range of the vertical scale, so that
Fig. 4.6 allows to see more clearly the region where the solid and dashed curves intersect and the region of validity
of theresults for theright branch of Q.) Physically, the Ieft branch corresponds to the situation where the eectronis
primarily bound by the charge Z. The region of the right branch, where the correction is reatively small, physically
corresponds to the situation where the dectron is primarily bound by the charge Z'.

4.4, Conclusions

While studying diatomic Rydberg quasimol ecules under alaser fidd that is linearly-polarized along the internuclear
axis, we found an analytical solution for the stable helical motion of the eectron valid for wide ranges of the laser
fied strength and frequency. Namely, the linearly-polarized laser field makes the motion in the zp-space to be
forced oscillations at the frequency of the laser field. We also found resonances, corresponding to a laser-induced
unstable motion of the dectron, that result in the destruction of the hdlical states. For the situation where such
Rydberg quasimolecules are under a circularly-polarized field, polarization plane being perpendicular to the
internuclear axis, we found an analytical solution for circular Rydberg states valid for wide ranges of the laser fidd
strength and freguency.

We showed that both under the linearly-polarized laser field and under the circularly-polarized laser field, in the
eectron radiation spectrum in the addition to the primary spectral component at (or near) the unperturbed revolution
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frequency of the electron, there appear satellites. We found that for the case of the linearly-polarized laser fidd, the
intensities of the satdlites are proportional to the squares of the Bessel functions Jg(s), (9=1,2,3, ...), wheresis
proportional to the laser fidd strength. As for the case of the circularly-polarized field, we demonstrated that there
is ared shift of the primary spectral component — the shift linearly proportional to the laser field strength.

Under a laser fidd of a known strength, in the case of the linear polarization the observation of the satellites
would be the confirmation of the helical electronic motion in the Rydberg quasimolecule, while in the case of the
circular polarization the observation of the red shift of the primary spectral component would be the confirmation of
the specific type of the phase modulation of the eectronic motion described by (4.21). Conversdly, if the laser field
strength is unknown, both the relative intensities of the satellites and the red shift of the primary spectral component
could be used for measuring the laser field strength.

Finally it should be noted that in paper [4.5] we generalized the above study by replacing the proton in upe
guasimolecule by a fully-stripped ion of a nuclear chargeZ > 1. We showed that in this case, just asin the above case
of Z = 1, the muonic motion can represent a rapid subsystem while the electronic motion can represent a slow
subsystem. For this to be valid, the ratio of the muonic and eectronic angular momenta should be dightly greater
than in the case of Z = 1. We demonstrated that the binding energies of the muon for Z > 1 are much greater than for
Z =1 at any finite value of the nucleus-dectron distance. Finally we showed that the red shift of the spectral lines
emitted by the muon (compared to the spectral lines of the corresponding muonic hydrogenlike ion of the nuclear
charge Z) decreases as Z increases. However, the relative red shift remains within the spectral resolution of available
spectrometers at least up to Z = 5. Observing this red shift should be one of the ways to detect the formation of the
quasimolecules pZe.

5. ATTACHMENT OFAN ELECTRON BY MUONIC HYDROGENATOMS: CIRCULAR STATES

5.1. Introduction

Studies of muonic atoms and molecules, where one of the eectrons is substituted by the heavier lepton u-, have
several applications. The first one is muon-catalyzed fusion (see, e.g., [5.1-5.3] and references therein). When a
muon replaces the electron either in the dde-molecule (D), which becomes the ddp-mol ecule, or in the dte-molecule,
which becomes the dtu-molecule, the equilibrium internuclear distance becomes about 200 times smaller. At such
small internuclear distances, the fusion can occur with a significant probability, which has been observed in ddu or
even with a higher ratein dtu [5.1-5.3]. The second application is alaser-control of nuclear processes. This has been
discussed in the context of theinteraction of muonic molecul eswith superintenselaser fields[5.4]. Another application
isasearch for strongly interacting massive particles (SIMPs) proposed as dark matter candidates and as candidates
for the lightest supersymmetric particle (see, e.g., [5.5] and references therein). SIMPs could bind to the nuclei of
atoms, and would manifest themselves as anomalously heavy isotopes of known elements. By greatly increasing the
nuclear mass, the presence of a SIMP in the nucleus effectively diminates the well-known reduced mass correction
in a hydrogenic atom. Muonic atoms are better candidates (than electronic atoms) for observing this effect because
the muon’'s much larger mass (compared to the eectron) amplifies the reduced mass correction [5.5]. This may be
detectable in astrophysical objects [5.5].

Another line of research is studies of the negative ion of hydrogen H -, which can be also denoted as epe-system
(dectron-proton-electron), constitute an important line of research in atomic physics and astrophysics. It has only
one bound state — the ground state having a relatively small bound energy of approximately 0.75 eV. This
epe-system exhibits rich physics. Corrdations between the two eectrons are strong already in the ground state.
With long-range Coulomb interactions between all three pairs of particles, the dynamics is particularly subtle in a
range of energies 2 — 3 eV on dther side of the threshold for break-up into proton + eectron + electron at infinity
[5.6]. There are strong correlations in energy, angle, and spin degrees of freedom, so that perturbation theory and
other similar methods fail [5.6]. Experimental studies of H - provided a testing ground for the theory of correated
multielectron systems. Compared to the helium atom, the structure of H - is even more strongly influenced by
intereectron repulsion because the nuclear attraction is smaller for this system [5.7]. In addition to the above
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fundamental importance, therich physics of H - is also important in studies of the ionosphere’s D-layer of the Earth
atmosphere, the atmosphere of the Sun and other stars, and in development of particle acceerators [5.6].

In this chapter we combine the above two lines of research: studies of muonic atoms/molecules and studies of
negative hydrogen ion. Namely, we consider whether a muonic hydrogen atom can attach an dectron and become a
muonic negative hydrogen ion, i.e. upe-system. Specifically, we study a possibility of circular states in such system.
We show that the muonic motion can represent a rapid subsystem, while the eectronic motion can represent a slow
subsystem — the result that might seem counterintuitive.

First, we find analytically classical energy terms for the rapid subsystem at the frozen slow subsystem, i.e., for
the quasimol ecule where the muon rotates around the axis connecting the immobile proton and the immobil e eectron.
The meaning of classical energy termsis explained below. We demonstrate that the muonic motion is stable. We also
conduct the analytical reativistic treatment of the muonic motion.

Then we unfreeze the slow subsystem and analyse a slow revolution of the axis connecting the proton and
eectron. We derive the condition required for the validity of the separation into the rapid and slow subsystems.

Finally we show that the spectral lines, emitted by the muon in the quasimolecule ppe, experience a red shift
compared to the corresponding spectral lines that would have been emitted by the muon in a muonic hydrogen atom
(in the pp-subsystem). Observing this red shift should be one of the ways to detect the formation of such muonic
negative hydrogen ions.

As for physical processes leading to the formation of muonic-dectronic negative hydrogen ions, one of the
processes could be the following:

e+ up — pe

(which sometimes might be followed by the decay pupe — u + pe). Such formation of the upe-systems was discussed,
e.g., in paper [5.8], wherethese systems were called resonances. The theoretical approach based on the separation of
rapid and slow subsystems requires in this case the muon to bein a state of a high angular momentum. Luckily, the
experimental methods to create muonic hydrogen atoms up (necessary for the above reaction) lead to the muon
being in a highly-excited state (see, e.g., review [5.9] and paper [5.10]). We also mention paper [5.11] whereit has
been shown, in particular, that the distribution of the muon principal quantum number in muonic hydrogen atoms
peaks at larger and larger values with the increase of the energy of the muon incident on eectronic hydrogen atoms.

1)

<0
®

Figure5.1: A muon rotating in a circle perpendicular to and centered at the axis connecting the proton and the eectron

5.2. Analytical Solution for Classical Energy Terms of the Rapid Subsystem

We consider a quasimolecule where a muon rotates in a circle perpendicular to and centered at the axis connecting
a proton and an dectron — see Fig. 5.1. As we show below, in this configuration the muon may be considered the
rapid subsystem while the proton and el ectron will be the slow subsystem, which essentially reduces the problem to
the two stationary Coulomb center problem, where the effective stationary “nucle” will be the proton and dectron.
The straight line connecting the proton and dectron will be called here “internuclear” axis. We use the atomic units
in this study.

Because of the difference of muon and eectron masses, the muon-proton separation is much smaller than the
electron-proton separation. Therefore, it should be expected that the spectral lines, emitted by this system, would be
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relatively closeto the spectral lines emitted by muonic hydrogen atoms. In other words, the presence of the eectron
should result in a relatively small shift of the spectral lines (compared to muonic hydrogen atoms); however, this
shift would be an important manifestation of the formation of the quasimolecule upe.

A detailed classical analytical solution of thetwo stationary Coulomb center problem, where an electron revolves
around nucle of charges Z and Z’, has been presented in papers[1.18, 1.19]. We base our resultsin part on theresults
obtained therein.

The Hamiltonian of the rotating muon is

2
1 P z zZ'
H=oo | 4P+ [~ — (5.1)
p \/ Z+p \/ (R=-2°+p

where mis the mass of the muon (in atomic units m = 206.7682746), Z and Z’ are the charges of the effective nucle

(inour case, Z=1and Z’ = —-1), Risthedistance between the effective nuclei, (p, ¢, 2) arethe cylindrical coordinates,
inwhich Zis at theoriginand Z' isar z= R, and (pp, Py p,) arethe corresponding momenta of the muon.

Since ¢ is a cyclic coordinate, the corresponding momentum is conserved:
|p, |=const =L (5.2

With this substituted into (5.1), we obtain the Hamiltonian for the z- and p-motions

2 2
P; + B,
H,, =z P > ® +Ug (z,p) (5.3)
where an effective potential energy is
L? z z
Uerr (2,p) = - - (5.4)
° 2mp? \/Zz+p2 \/(R—Z)2+p2
Becausein acircular state p, = p, = 0, thetotal energy E(z, p) = U, (z p).
WithZ =1, Z’ = -1 and the scaled quantities
z p L mR
w=—, v=—, g¢=-ER /(=—, r=—- 5.5
R R JmR L? 59)
we obtain the scaled energy e of the muon:
2
1 1 ‘ (5.6)

(c,z\/vv2 +V? _\/(1—W)2+V2 G

The equilibrium condition with respect to the scaled coordinate w is de/ow = 0; the result can be brought to the
form:

(@-w)?+v)¥? w-1
W2 +v2)¥2 w

Sincetheleft-hand side of (5.7) is positive, theright-hand side must also be positive: (w— 1)/w> 0. Consequently,
the allowed ranges of w hereare——~ <w< 0 and 1 <w< + <. This means that equilibrium pasitions of the center of
the muon orbit could exist (judging only by the equilibrium with respect to w) ether beyond the proton or beyond
the dectron, but there are no equilibrium positions between the proton and eectron.

(5.7)
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Solving (5.7) for vZ and denoting v2 = p, we obtain:
p(w) = w?3(w-2)23 w3 + (w-1)%3) (5.8)
The equilibrium condition with respect to the scaled coordinate v is de/dv = 0, which yields

e P — : 5.9
W+ D)2 (A-w)P+ )2 (5.9

Since the |eft-hand side of (5.9) is positive, the right-hand side must be also positive. This entails the relation
W2+ p < (1 —w)? + p, which simplifiesto 2w—1 < 0, which requires w < 1/2.

Thus, the equilibrium with respect to both wand v is possible only in therange —— < w < 0, while in the second
range, 1 <w < + <o (derived from the equilibrium with respect to w only) there is no equilibrium with respect to v.

From the last two relations in (5.5), we find r = 1//2; thus

Y G S 1 -
W+ p)¥?  (@-w)?+ p)¥?

where p is given by (5.8). Therefore, the quantity r in (5.10) is the scaled “internuclear” distance dependent on the
scaled internuclear coordinate w.

(5.10)

Now we substitute the value of ¢ from (5.9), as well as the value of p from (5.8) into (5.6), obtaining £(w) — the
scaled energy of the muon dependent on the scaled internuclear coordinate w. Since E = — /R and R = rL%/m, then
E = — (m/L?e, where e, = e/r. The parametric dependence g, (r) will yield the energy terms.

The form of the parametric dependence ¢,(r) can be significantly simplified by introducing a new parameter
v = (1-2/w)¥3, aswas shown in Section 1 starting from (1.10). Theregion—e <w< 0 correspondsto 1 <y <. The
parametric dependence will then have the following form:

1-7)*1+v%)?

5= 20—y + )2+ y? +v) &40
2 43/2
r(y) =% (5.12)

Classical energy terms given by the parametric dependence of the scaled energy €, = (L%/m) E on the scaled
internuclear distance r = (m/L?) R are presented in Fig. 5.2.

-€3
0.0 r
5 10 15 20

-0.5¢L

Figure 5.2: Classical energy terms: the scaled energy —e, = (L%m) E versusthe scaled internuclear distancer = (m/L?) R.
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Fig. 5.2 actually contains two coinciding energy terms: there is a double degeneracy with respect to the sign of
the projection of the muon angular momentum on the internuclear axis. We remind thereaders that L is the absolute
value of this projection — in accordance to its definition in (5.2).

The minimum value of R, corresponding to the point where the term starts, can be found from (5.12). The term
starts at w = —eo, Which corresponds to y = 1; taking the value of (5.12) at this point, we find

33/2 L2
4 m
With the value of m = 206.7682746, (5.13) yields R = 0.00628258 L2.

The following note might be useful once again. The plot in Fig. 5.1 represents two degenerate classical energy
terms of “the same symmetry”. (In physics of diatomic molecules, the terminology “energy terms of the same
symmetry” means the energy terms of the same projection of the angular momentum on the internuclear axis.) For
agiven Rand L, theclassical energy E takes only one discrete value. However, as L varies over a continuous set of
values, so does the classical energy E (as it should bein classical physics).

Riin = (5.13)

The revolution frequency of the muon Q is

L L L
mp?> mR% mR%p
in accordance with the previously introduced notation p = v = (p/R)?. Since R = Lr/m (see (5.5)), then (5.14)

becomes Q = (M/L3) f, wheref = 1/(pr?). Using (5.12) for r (y) and (5.8) for p(w) with the substitution w= 1/(1 —+3),
wherey > 1, we finally obtain:

Q= (5.14)

1+7%)°(1-7*)?

515
@+v%+v%)° 619

QT";f(y), f(y) =

wheref(y) is the scaled muon revol ution frequency. Fig. 5.3 shows the scaled muon revolution frequency f = (L3¥m) @
versus the scaled internuclear distancer = (nVL?)R.

0-0===3 10 15 20

Figure 5.3: The scaled muon revolution frequency f = (L3m) Q versus the scaled internuclear distance r = (m/L?)R

It is seen that for amost all values of the scaled internuclear distance r = (nV/L?)R, the scaled muon revolution
frequency f = (L¥m) Q is very closetoits maximumvaluef =1, corresponding to large values of R. (The quantity
f . can beeasily found from (15) given that large values of R correspond toy >> 1 and that thislimit yieldsf _ =1.)
In other words, for almost all values of R, the muon revolution frequency Q is very close to its maximum value
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Qrox = (5.16)
In Sect. 5.3, wewill compare the muon revolution frequency with the corresponding frequency of the eectronic
motion and derive the condition of validity of the separation into rapid and slow subsystems.

To analyse the stability of the muon motion, corresponding to the degenerate classical energy terms, while
considering a classical circular motion of a charged particle (which was the dectron in [1.19]) in the fidd of two
stationary Coulomb centers, using the same notation as in this chapter, it was shown [1.19] that the frequencies of
small oscillations of the scaled coordinates w and v of the circular orbit around its equilibrium position are given by

1 1 3w
0= /1_Wi6 (5.17)

Q=W + p)(@-w)*+ p) (5.18)
These oscillations are in the directions (W, V') obtained by rotating the (w, v) coordinates by the angle o

where

dW =dwcoso +dvsina, V' =—3wsina +3dvCcosa (5.19

where the “$” symbol stands for the small deviation from equilibrium. The angle o is determined by the following
relation:

0= Larctg = 20Vp. (520
2 wl-w)+p

Thequantity Q in (5.18) isalways positive sinceit contains the squares of the coordinates. From (5.17) it is seen
that the condition for both frequencies to bereal is

1 _ 3w
>
1-w Q

(5.21)

For the frequency m_to bereal, (5.17) requires Q = 3w(1 —w). For any w < 0 (which isthe allowed range of w),
this inequality is satisfied: the left-hand side is always positive while the right-hand side is always negative.

For the frequency . to be real, the following function F(w) must be positive (in accordance with (5.17) and
(5.18)):

F(w) = (W2 + p)(1-w)? + p) - 9w’ (1—w)? (5.22)
After replacing w by y = (1 — Y/w)¥3, (5.22) becomes

D21+ 4% +v%)
y*-1*

Since the allowed range of w < O corresponds to y > 1, it is seen that F(y) is always positive.

F(y)= O (5.23)

Thus, the corresponding classical energy terms corresponds to the stable motion.
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5.3. Electronic Motion and the Validity of the Scenario

Now we unfreeze the slow subsystem and analyse a slow revolution of the axis connecting the proton and eectron,
the eectron executing a circular orbit. In accordance with the concept of separating rapid and slow subsystems, the
rapid subsystem (the revolving muon) follows the adiabatic evolution of the slow subsystem. This means that the
slow subsystem can betreated as a modified “rigid rotator” consisting of the eectron, the proton, and the ring, over
which the muon charge is uniformly distributed, all distances within the system being fixed (see Fig. 5.1).

The potential energy of the eectron in atomic units (with the angular-momentum term) is

Eo= 4 = (5.24)

where M is the ectronic angular momentum. Its derivative by R must vanish at equilibrium, which yieds

dE, M? 1 R-z
= L= = 5.25
dR R R (p*+(R-2%)%? 529
which gives us the value of the scaled angular momentum
M
(=— 5.26
e \/ﬁ ( )
corresponding to the equilibrium:
2=1 1-w (5.27)

(@-w) + p)*?

where the scaled quantities w, p of the muon coordinates are defined in (5.5). Using the muon equilibrium condition
from (5.7) with v2 denoted as p, we can represent (5.27) in the form

/@221_{_*
T (W)

After replacing w by y = (1 — 1/w)¥3, we obtain

feW)=Jl—a‘YFVl+Y+V2 (5.29)

(5.28)

(1_ v+ ,YZ)S/Z

The electron revolution frequency is w = M/R? = /_(y)/R¥2 given that M = 7 (y)R"? in accordance with (5.26).
Since R= L?r (y)/m (see (5.5)) with r (y) given by (5.12), then from o = /_(y)/R®¥2 we obtain

3/2
_m L) (5.30)
Lr=5(y)
From (5.15) and (5.30) we find the following ratio of the muon and eectron revolution frequencies:
3/2
Q 1 f(Mrr@ (5.31)

® \/E Le(y)
wheref(y) is givenin (5.15).
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In addition to the above relation R = L°r (y)/m, the same quantity R can be expressed from (5.26) asR = M?/¢%(y).
Equating the right-hand sides of these two expressions, we obtain the equality L2r(y)/m = M?/¢2(y), from which it
follows:

L Jm

L__Nm (5.32)

m
M Ze()yr ()

The combination of (5.31) and (5.32) represents an analytical dependence of the ratio of the muon and electron
revolution frequencies Q/w versus the ratio of the muon and electron angular momenta L/M via the parameter v as
the latter varies from 1 to «. This dependence is presented in Fig. 5.4.

Q/
30¢

25}
20t
15¢

10t

o /M
20 25 30 35 40

Figure 5.4: The ratio of the muon and eectron revolution frequencies Q/® versus the ratio of the muon and electron angular
momenta L/M

For the separation into the rapid and slow subsystems to be valid, the ratio of frequencies /o should be
significantly greater than unity. From Fig. 5.4 it is seen that this requires the ratio of angular momenta L/M to be
noticeably greater than 20.

There is another validity condition to be checked for this scenario. Namely, the revolution frequency Q of the
muon must also be much greater than the inverse lifetime of the muon /T, where T, =2.2 us=0.91 x 10" a.u..
QT >> 1. Since for aimost all values of R, the muon revolution frequency €2 is very close to its maximum value
Q = mL3 as shown in Sect. 5.2, then the second validity condition can be estimated as (n/L3)T,>> 1, from
which it follows

L<<L,, = (mT,)V=26600 (5.33)

(we remind that m = 206.7682746 in atomic units). So, the second validity condition is fulfilled for any practically
feasible value of the muon angular momentum L.
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Thus, for theratio of angular momenta L/M noticeably greater than 20, wedeal herewith amuonic quasimolecule
where the muon rapidly rotates about the axis connecting the proton and eectron following aratively slow rotation
of this axis.

5.4. Red Shift of Spectral lines Compared to Muonic Hydrogen Atoms

The muon, rotating in a circular orbit at the frequency (R), should emit a spectral line at this frequency. The
maximum value Q__ = nVL2 corresponds to the frequency of spectral lines emitted by the muonic hydrogen atom
(by the pup-subsystem). For the equilibrium value of the proton-electron separation — just as for almost all values of
R — the frequency € is slightly smaller than € __ . Therefore, the spectral lines, emitted by the muon in the
quasimolecule upe, experience ared shift compared to the corresponding spectral lines that would have been emitted
by the muon in a muonic hydrogen atom. The relative red shift § is defined as follows

o O

(5.34)

where A and A, are the wavelength of the spectral lines for the quasimolecule pupe and the muonic hydrogen atom,
respectively. Using (5.15), the relative red shift can be represented in the form

§(y) = ——— (5.35)

f(v)
wheref(y) is givenin (5.15).

The combination of (5.35) and (5.32) represents an analytical dependence of the relative red shift 6 on theratio
of the muon and eectron angular momenta L/M via the parameter v as the latter varies from 1 to . Figure 5.5
presents the logarithmic dependence (in the figures below, “Log &” stands for “log,, §") of & on L/(m¥2 M)”. In this
form the dependence is “universal”, i.e., valid for different values of the mass m: for example, it is valid also for the
quasimolecule ttpe where there is a pion instead of the muon. Figure 5.6 presents the dependence of & on L/M

Log
_1l 0 [

-1.5} \

-2.0¢

-5-01----5----5--..4....é....éLI(ﬁM)

Figure 5.5 Universal dependence of the reative red shift & of the spectral lines of the quasimolecule ppe (or pe) on L/(mY2M),
which istheratio of the muon and electron angular momenta L/M divided by the square root of the mass m of themuon
or pion
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Figure 5.6: Dependence of the relative red shift & of the spectral lines of the quasimolecule ppe on the ratio of the muon and
electron angular momenta L/M

specifically for the quasimolecule ppe.

It is seen that is the relative red shift of the spectral lines is well within the spectral resolution AX__/A of
available spectrometers: AL /A ~ (10 — 107°) as long as the ratio of the muon and eectron angular momenta
L/M < 80. Thus, this red shift can be observed and this would be one of the ways to detect the formation of such
muonic negative hydrogen ions.

Figure 5.7 presents the dependence of the relative red shift 5 on the ratio of the muon and electron revolution

Log &
-1.8¢
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Figure 5.7: Dependence of the relative red shift & on theratio of the muon and electron revolution frequencies Q/®

170 \ International Review of Atomic and Molecular Physics, 4 (2), July-December 2013



Applications of the Classical Two-Coulomb-Center Systems to Atomic/Molecular Physics
frequencies Q/w. It is seen that the reative red shift decreases as the ratio of the muon and electron revolution
frequencies increases, but it remains well within the spectral resolution AL, /A of available spectrometers.

5.5. Conclusions

We studied whether a muonic hydrogen atom can attach an eectron, the muon and the eectron being in circular
states. We showed that it is indeed possible for a muonic hydrogen atom to attach an electron and to become a
muonic negative hydrogen ion. We demonstrated that in this case, the muonic motion can represent arapid subsystem
while the electronic motion can represent a ow subsystem — the result that might seem counterintuitive. In other
words, the muon rapidly revolves in a circular orbit about the axis connecting the proton and e ectron while this axis
slowly rotates following a relatively slow eectronic motion.

We used a classical analytical description to find the energy terms of such a system, i.e,, dependence of the
energy of the muon on the distance between the proton and eectron. We found that there is a double-degenerate
energy term. We demonstrated that it corresponds to a stable motion. We also conducted the analytical relativistic
treatment of the muonic motion, which is presented in Appendix 5A. It was found that the relativistic corrections are
relatively small. Their relative valueis ~ 1/(cL)? ~ 0.5 x 10#/L? (we remind the readers that here c = 137.036 is the
speed of light in atomic units).

Then we unfroze the slow subsystem and analysed a slow revolution of the axis connecting the proton and
eectron. The slow subsystem can be treated as a modified “rigid rotator” consisting of the eectron, the proton, and
the ring, over which the muon charge is uniformly distributed, all distances within the system being fixed. We
derived the condition required for the validity of the separation into the rapid and slow subsystems.

Finally we showed that the spectral lines, emitted by the muon in the quasimolecule upe, experience a red shift
compared to the corresponding spectral lines that would have been emitted by the muon in a muonic hydrogen atom
(in the up-subsystem). The relative values of this red shift, which is a “molecular” effect, are significantly greater
than the resolution of available spectrometers and thus can be observed. Observing this red shift should be one of
the ways to detect the formation of such muonic negative hydrogen ions.

APPENDI X 5A
RELATIVISTIC TREATMENT OF THE MUONIC MOTION

The Hamiltonian of the rotating muon is

2 ’
p—;’ _Zz Z — mc? (5.A.1)
p \/Zz+p2 \/(R—z)erp2

Since ¢ is a cyclic coordinate, the corresponding momentum is conserved:

2.2 2 2
Hzc\/mc +p;+ P, +

‘ p(p‘ =const=L (5.A.2)

With this substituted into (5.A.1) and taking into account that ina circular state, p, = p,= 0, we obtain the energy
of themuon in acircular state

2 '
E=c |mc?+ o % Z mc? (5.A.3)

p \/22+p2 _\/(R—Z)2+p2 )

WithZ =1, Z’ = -1 and the scaled quantities
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we obtain the scaled energy e of the muon:

__r ! me2R| 1= s L (5.A.5)
8_\/Wz+v2 \/(1—W)2+V2 s o

The equilibrium condition with respect to the scaled coordinate w is de/ow = 0, which yields

p(W):VV2/3(W_1)2/3(\N2/3+(W_1)2/3) (5A6)
wherep =2

The equilibrium condition with respect to the scaled coordinate v is de/dv = 0, which yields:

2 _ p° / ﬁ 1 _ 1
e = M2R 1+ 0 ((W2+ p)3/2 ((l—W)2+ p)SIZJ (5.A.7)

From therelation beforelast in (5.A.4), wefind R = L/(mc/). Substituting thisin (5.A.7), we can solveit for ¢
and obtain:

c’L? 1 17"
(=] — >~ (5.A.8)
p 1 1 p
W+ p)¥? (@-w)?+ p)*?
From thelast two relationsin (5.A.4), wefind r = 1/(mc/); thus
S 1|l 1 1

r= - ~-= (5.A.9)
\/ ((wﬂ +p)¥? (-w?+ p)”J

where p is given by (5.A.6). Therefore, the quantity r in (5.A.9) is the scaled “internuclear” distance dependent on
the scaled internuclear coordinatew for a given absolute value of theangular momentum projection on theinternuclear
axisL.

Now we substitute R = L/(mc/) and the value of ¢ from (5.A.8), as well as the value of p from (5.A.6) into
(5.A.5), obtaining £ (w, L) — the scaled energy of the muon dependent on the scaled internuclear coordinate w for a
given value of the angular momentum L. SinceE = —¢/Rand R=rL, then E= —¢ /L wheree, = ¢/r. The parametric
dependence E(R), where E = —¢./L and R = Lr will yield the energy terms for a given value of L.

After introducing the parameter y = (1 — 1/w)Y3, the parametric dependence takes the following form:

E(y,L)=—mc?| 14 = ‘ e 5.A.10
(v,L)=-mc { +\/06—T{0\/1+y+yz 0]] ( )
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L2 qcs—t

Ry, L=——"7— (5.A.11)
M yyl+y

where quantities ¢ and t are defined as follows:

2 4 Y
o= 1”—+2V |1z (5.A.12)
1+y cL

The revolution frequency of the muon is

wz”f(ﬁit L]ﬁir (5.A.13)
0.008)
.
0.006
0.004
0.002
o.oool o o o 0 o L ‘e R

0.0 0.2 0.4 0.6 O. 1.0

Figure 5.A1: Theratio B of the muon velocity to the speed of light versusthe “internuclear” distance R (a.u.) for L = 1 (the upper
curve) and L = 3 (the lower curve)

Let us check the degree of the relativity of the muon motion. Figure 5.A.1 shows the ratio 3 of the muon
velocity to the speed of light versus the “internuclear” distance Rfor L =1 and L = 3. It is seen that for all values of
R=n?(n=1, 2,3, ...), thisratiois practically equal to some constant value__ . Itiseasy tofindthat B__ = 1/(cL)
=1/(137.036 L) —sincec = 137.036 in a.u.

Itis interesting to compare the above 3 with the corresponding average value of B, for the electron motionin
hydrogen atoms: 3, = 1/(cn). So, B, ., for the muon motion differs from 3, for the e ectron motion in hydrogen atoms
only by the substitution of the principal quantum number n of the dectron by the angular momentum quantum
number L of the muon.

Thus, evenfor L =1 (for which 3 __ is the highest), the muon motion is only weakly-relativistic. Thereativistic
correction to the average frequency of the muon radiation is ~ 1/(cL)? (a.u.), where ¢ = 137.036. Thus, the relative
correctionisinsignificant even for L ~ 1 and it rapidly diminishes as L grows: for example, itis~ 10 for L = 3 and
~107for L =15.
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6. CONCLUSIONSOFTHE REVIEW

Inthis work we studied classically two-Coulomb-center systems consisting of two nucle of charges Z and Z’ and an
eectron in the fidd of these nuclel in a circular or a helical state . These systems represent diatomic Rydberg
guasimolecul es encountered, e.g., in plasmas containing more than one kind of multicharged ions. Diatomic Rydberg
guasimolecules are one of the most fundamental theoretical playgrounds for studying charge exchange. Charge
exchange and crossings of corresponding energy leves that enhance charge exchange are strongly connected with
problems of energy losses and of diagnostics in high temperature plasmas; besides, charge exchange is one of the
most effective mechanisms for population inversion in the soft x-ray and VUV ranges. The classical approach is
well-suited for Rydberg quasimolecules.

Section 1 presented a history of classical studies of diatomic Rydberg quasimolecules. In these studies one of
the goals was to find the energy terms of this system — the dependence of the energy of the electron on theinternuclear
distance. There were three energy terms found, two of them crossing; the crossing had a V-shape.

In Section 2, we considered diatomic Rydberg quasimolecules subjected to a static dectric field parallel to the
internuclear axis. Firgt, it led to the appearance of the fourth energy term, which was absent at the zero fidd. This
term had a V-crossing with the lowest energy term. Second — more importantly — the dectric field caused additional
crossings and these crossings had an X-shape. The X-crossings occurred at much larger internuclear distances than
the V-crossings, and one of them was found to significantly enhance charge exchange.

In Section 3, diatomic Rydberg quasimolecules were considered in a plasma of a given screening length, which
altered the original potential of either nucleus by an exponential factor (see (3.1)). Asin the previously mentioned
case, the screening led to the appearance of the fourth energy term having a V-type crossing with the lowest energy
term. More importantly, it was found that the screening stabilizes the nuclear motion for Z = 1 and destabilizes it for
Z > 1. We also found that a so-called continuum lowering in plasmas was impeded by the screening, creeting the
effect similar to that of the magnetic field and opposite to that of the dectric field. The continuum lowering plays a
key rolein calculations of the equation of state, partition function, bound-free opacities, and other collisional atomic
transitions in plasmas.

In Section 4, diatomic Rydberg quasimolecules were studied in a laser field. For the situation where the laser
fieldislinearly-polarized along the internuclear axis, wefound an analytical solution for the stable helical motion of
the dectron valid for wide ranges of thelaser field strength and frequency. We also found resonances, corresponding
to a laser-induced unstable motion of the dectron, that result in the destruction of the hdlical states. For the case of
a circularly-polarized field, polarization plane being perpendicular to the internuclear axis, we found an analytical
solution for circular Rydberg states valid for wide ranges of the laser field strength and frequency. For this case we
demonstrated also that there is a red shift of the primary spectral component. We showed that both under the
linearly-polarized laser fidd and under the circularly-polarized laser fidd, in the electron radiation spectrum in the
addition to the primary spectral component at (or near) the unperturbed revolution frequency of the eectron, there
appear satellites. Under alaser field of a known strength, in the case of thelinear polarization the observation of the
satellites would be the confirmation of the hdical eectronic motion in the Rydberg quasimolecule, while in the case
of thecircular polarizationtheobservation of thered shift of the primary spectral component would bethe confirmation
of the specific type of the phase modulation of the electronic motion. Conversely, if the laser fied strength is
unknown, both the relative intensities of the satellites and the red shift of the primary spectral component could be
used for measuring the laser fied strength.

In Section 5, a system consisting of a proton, muon and an eectron was studied. It was found that a muonic
hydrogen atom can attach an dectron, with the muon and eectron being in circular states. The technique of the
separation of rapid and slow subsystems was used, where the muon represented the rapid subsystem and the eectron
the slow subsystem. The energy terms of the rapid muon in the field of the two slow (quasi-static) proton and
eectron were found — a double-degenerate energy term, which corresponds to stable motion. By analysing the slow
subsystem, we derived the validity conditions for separation of rapid and slow subsystems. Finally we showed that
the spectral lines emitted by the muon experience a red shift compared to the corresponding spectral lines in a
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muonic hydrogen atom. Observing this red shift should be one of the ways to detect the formation of such
muonic-electronic negative hydrogen ions. Studies of muonic atoms and molecules, where one of the eectrons is
substituted by the heavier Iepton -, have several applications, such as muon-catalyzed fusion, a laser-control of
nuclear processes, and asearch for strongly interacting massive particles proposed as dark matter candidates and as
candidates for the lightest supersymmetric particle. Additionally, analytical reativistic treatment of the muonic
motion was conducted, which showed that the relativistic corrections are reatively small.
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