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ABSTRACT: Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications
(here and below by “hydrogen atoms” and “hydrogen spectral lines” we mean atoms and spectral lines of hydrogen,
deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic
field B experience a Lorentz electric field E

L
 = v � B/c in addition to other electric fields. Since the velocity v has a

distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines.
Compared to previous studies of this contribution, we cover the following new aspects. First, we consider magnetized
plasmas containing a low-frequency electrostatic turbulence. We derive analytically distributions of the total electric
field and the corresponding Stark profiles of hydrogen lines. Second, for non-turbulent magnetized plasmas we derive
analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain formulas for the principal quantum
number n

max
 of the last observable hydrogen line in the spectral series. These formulas differ very significantly from the

corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where
T is the atomic temperature. Third, we discuss the Lorentz-Doppler broadening of highly-excited hydrogen lines and
produce new analytical results. We demonstrate that our findings lead to a significantly revised interpretation of the
previous and future experimental data in magnetic fusion and the observational data in solar physics.

PACS Numbers: 32.70.Jz, 32.60. + i, 52.25.Xz, 52.55.Jd, 96.60.-j.

1. INTRODUCTION

Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and
below by “hydrogen atoms” and “hydrogen spectral lines” we mean atoms and spectral lines of hydrogen, deuterium,
and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field
B experience a Lorentz electric field EL = v � B/c in addition to other electric fields. Since the velocity v has a
distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. In
1970, Galushkin [1] considered a joint effect of Lorentz and Doppler broadenings (including also Zeeman splitting)
and produced many interesting analytical results. He noted, in particular, that Lorentz and Doppler broadenings
cannot be accounted for via a convolution, but rather they intertwine in a more complicated manner.

In the intervening decades other authors also contributed to the subject [2-6]. However, first, the scope of papers
[1-6] was limited to some spectral lines originating from levels of the principal quantum number n = 2, 3, or 4,
namely Ly�, H�, and H� lines of hydrogen in [1-3, 5, 6] and Ly� of C VI in [4]. Second, electrostatic turbulence,
which frequently occurs in various kinds of laboratory and astrophysical plasmas [7, 8] and which affects transport
phenomena in magnetized plasmas [9], was not taken into account in [1-6].

In the present paper we cover the following new aspects. First, we consider magnetized plasmas containing a
low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the
anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the
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total electric field and the corresponding Stark profiles of hydrogen lines. Second, for non-turbulent magnetized
plasmas we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions
for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions
differ very significantly from the corresponding Inglis-Teller result [10] and constitute a new diagnostic method
allowing to measure the product T1/2B, where T is the atomic temperature. Third, we discuss the Lorentz-Doppler
broadening of highly-excited hydrogen lines and produce new analytical results. We demonstrate that our findings
lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the
observational data in solar physics.

2. TOTAL ELECTRIC FIELD DISTRIBUTIONS IN TURBULENT MAGNETIZED PLASMAS AND THE
CORRESPONDING STARK PROFILES OF HYDROGEN LINES

At the absence of a magnetic field, there is only one type of a low-frequency electrostatic turbulence: ion acoustic
waves – frequently called ionic sound. The corresponding oscillatory electric field is a broadband field, whose
frequency spectrum is below or of the order of the ion plasma frequency

�
pi

 = (4�e2 N
i 
Z2/m

i
)1/2 = 1.32 � 103 Z (Ni 

m
p /mi

)1/2, (1)

where N
i
 is the ion density, Z is the charge state; m

p
 and m

i
 are the proton and ion masses, respectively. In the

“practical” parts of this and subsequent equations, CGS units are used unless specified to the contrary.

In magnetized plasmas in addition to the ionic sound, propagating along the magnetic field B, two other types of
low-frequency electrostatic turbulence are possible. One is electrostatic ion cyclotron wave, whose wave vector is
nearly perpendicular to B. Its frequency is close to the ion cyclotron frequency

�
ci
 = ZeB/(m

i 
c) = 9.58 � 103 ZB (mp /mi

)1/2 (2)

or to its harmonics (Bernstein modes). Another type is lower hybrid oscillations having the wave vector perpendicular
to B. Its frequency is

� = 1/[(�
ci
 �ce)

 – 1 + (�
pi

)– 2]1/2, (3)

where �
ce

 is the electron cyclotron frequency

�
ci
 = eB/(m

e
c) = 1.76 � 107 B. (4)

From Eq. (3) it is seen that � < �
pi

 always. This means that frequencies of both ionic sound and lower hybrid
oscillations are below or of the order of the ion plasma frequency �

pi
.

Usually hydrogenic radiators perceive oscillatory electric fields, associated with a low-frequency plasma
turbulence as quasistatic. More details on this can be found in review [11], Sect. 5.

The average turbulent electric field < Et > can significantly exceed the average ion microfield < Ei > in weakly
coupled (a.k.a. ideal) plasmas. These are plasmas where there is a large number of ions n

D
 in the sphere of the Debye

radius:

n
D
 = [T

e
3/(36��Ne 

e6)]1/2 = 1377 [T
e
3/N

e
)]1/2 >> 1 (5)

(here T
e
 is the electron temperature in Kelvin). In these plasmas the ion microfield can be described by the Holtsmark

distribution [12] characterized by the so-called Holtsmark field

E0 = 2.603 eN
e
2/3 = 1.25 � 10–9 N

e
2/3. (6)

In this case the most probable ion field is

E
i max = 1.608 E0. (7)

The energy density of the turbulent field < Et
2 >/(16� Ne

T
e
) can reach values ~ 0.1, so that the ratio < Et >/E

i max can
be as high as
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< Et >/E
i max ~ n

D
1/3 >> 1, (8)

where n
D
 is given by Eq. (5). For example, for edge plasmas of tokamaks, such as a low-density discharge in Alcator

C-Mod [13], where N
e
 ~ 3 � 1013 cm–3 and T ~ 5 � 104 K, one can get < Et >/E

i max ~ 20. We note that such a strong
low-frequency electrostatic turbulence had been detected via a spectroscopic diagnostic, e.g., in tokamak T-10 [14].

The average Lorentz field

< EL > = Bv
T /c = 4.28 � 10–3 B[T (K)]1/2 (9)

(v
T
 is the atomic thermal velocity) also can exceed the most probable ion microfield E

i
 when the magnetic field B

exceeds the following critical value:

B
c
 = 4.69 � 10–7 N

e
2/3/[T(K)]1/2, (10)

(in Eqs. (9) and (10), B is in Tesla and the atomic temperature T is in Kelvin). For example, in the solar chromosphere
the typical plasma parameters are N

e
 ~ 1011 cm–3 and T ~ 104 K (except solar flares where N

e
 can be higher by two

orders of magnitude) – see, e.g., [15, 16]. In this case from Eq. (10) we get B
c
 = 0.2 Tesla. A more accurate estimate

for this example can be obtained by taking into account that non-thermal velocities vnonth in the solar chromosphere
can be ~ several tens of km/s, so that the total velocity vtot = (v

T
2 + v2

nonth)
1/2 ~ (15 – 30 ) km/s. Then E

L
 = E

i max already
at B ~ 0.05 Tesla, while B can reach 0.4 T in sunspots.

Another example is edge plasmas of tokamaks. For a low-density discharge in Alcator C-Mod [13], where
N

e
 ~ 3 � 1013 cm–3 and T ~ 5 � 104 K, we get B

c
 = 4 Tesla, while the actual magnetic field was 8 Tesla.

For completeness we analyze the ratio of the Zeeman width of hydrogen lines ��
Z
 to the corresponding

“halfwidth” of the n-multiplet due to the Lorentz broadening ��
L

��
Z
 = eB/(2 me 

c), ��
L
 = 3n (n – 1) �Bv

T /(2 me 
ec), ��

Z /��L
 = 5680/[n (n – 1)T1/2], (11)

where n is the principal quantum number of the upper level involved in the radiation transition and the atomic
temperature T is in Kelvin. For example, for the typical temperature at the edge plasmas of tokamaks T ~ 5 � 104 K,
Eq. (11) yields ��

Z /��L = 25.4/[n (n – 1)]: so that the Lorentz width exceeds the Zeeman width for hydrogen lines
of n > 5, while Balmer lines up to n = 16 were observed, e.g., at Alcator C-Mod [13]. Another example: for the
typical temperature in the solar chromosphere T ~ 104 K, Eq. (11) yields ��

Z /��L
 = 56.8/[n (n – 1)]. So, the Lorentz

width exceeds the Zeeman width for hydrogen lines of n > 8, while Balmer lines up to n ~ 30 were observed [15, 16].

Thus, we encounter the situations where the two primary broadening mechanisms of hydrogen lines are
low-frequency electrostatic turbulence and the Lorentz broadening. In these situations, the shape of hydrogen lines
is controlled by the distribution W (E) of the total electric field E = E

t
 + E

L
.

In magnetized plasmas the distribution of the turbulent field W
t
(E

t
) should be axially symmetric, the axis of

symmetry being along the magnetic field. It is Sholin-Oks’ distribution [17] of the following form

W
t
(E

t
, cos �) dE

t d (cos �) = [4/(�E2
par)]

1/2(E
t
2/E2

perp) exp [– E
t
2/E2

perp – cos2 � (Et
2/E2

par – E
t
2/E2

perp)] dE
 
d (cos �), (12)

where Epar and Eperp are the root-mean-square values of the turbulent field components parallel and perpendicular to
B, respectively; � is the angle between E and B.

The Lorentz field E
L
 is confined in the plane perpendicular to B where it has the following distribution

W
L
(E

L
) dE

L
 = (2E

L /E
2
LT

) exp (– EL
2/E2

LT
) dE

L
, E

LT
 = v

T
B/c, v

T
 = (2T/M)1/2. (13)

Here E
LT

 is the average Lorentz field expressed via the thermal velocity v
T
 of the radiating atoms of mass M. The

distribution W
L
 actually reproduces the shape of the two-dimensional Maxwell distribution of atomic velocities in

the plane perpendicular to B. This is because the absolute value of the Lorentz field E
L
 = v � B/c is E

L
 = v

R
B/c, where

v
R
 is the component of the atomic velocity perpendicular to B.
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The distribution W (E) of the total electric field E = E
t
 + E

L
 is a convolution of the distributions from Eqs. (12)

and (13). In the general case the resulting formula is too cumbersome. Therefore below we focus at two practically
important particular cases.

The first case is where the distribution of the turbulent field has the shape of a very prolate spheroid, so that
essentially it’s the following one-dimensional distribution along B:

W
t1(Et

) dE
t
 = (2/�)1/2(1/Epar) exp [– Et

2/(2 E
2
par)] dE

t
. (14)

This situation is typical for the ion acoustic turbulence. The corresponding convolution with the Lorentz field
distribution has the form

1
0

2 2 1/2 2 2 1/2
1

0

( , cos ) (cos ) (cos ) ( )

( ) [cos /( ) ] [ ( ) ]

L L L

t t t t t L t L

W E dE d dE d dE W E

dE W E E E E E E E

�

�

� � � �

� � � � � � �

�

� (15)

After using the two �-functions to perform the two integrations, the result reduces to the following:

W1(E, cos �) dE
 
d (cos �) = dE

 
d (cos �) W

L (E | sin � |) Wt1 (E cos �) E
 
/ | sin � |. (16)

Based on the total field distribution from Eq. (16), the profiles S (��) of hydrogen lines can be calculated as
follows.

S (��) = S� (��) + S� (��), (17)

S� (��) =
1

1
( , ) 0

[ /( | |)] (cos ) (cos ) [ /( | |), cos ]J k X d f W k X�� �� � ��
� � �

� � �� �� � , (18)

S� (��) =
1

1
( , ) 0

[ /( | |)] (cos ) (cos ) [ /( | | ), cos ]J k X d f W k X�� �� � ��
� � �

� � �� �� � . (19)

Here

k = 3� /(2 me 
e), X�� = n� (n1 – n2)� – n� (n1 – n2)�, (20)

where n1, n2 are the parabolic quantum numbers, and n is the principal quantum numbers of the upper (subscript �)
and lower (subscript �) Stark sublevels involved in the radiative transition; J�� is the relative intensity of the
corresponding Stark component. In Eq. (18) the summation is performed over �-components, in Eq. (19) – over
�-components.*/

The functions f� (cos �) and f� (cos �) in Eqs. (18), (19) depend on the direction of observation. For the observation
parallel to B:

f� (cos �) = (1 – cos2 �), f� (cos �) = (1 + cos2 �)/2. (21)

For the observation perpendicular to B:

f� (cos �) = (1 + cos2 �)/2, f� (cos �) = (3 – cos2 �)/4. (22)

*/ For hydrogen lines having the component of X�� = 0 (which is usually the �-component), the sum in (19) should be complemented by J
0
�

 
(��), where J

0

is the relative intensity of the component. Physically this means that the contribution of this component to the overall profile is controlled by other broadening
mechanisms (typically, by the Doppler broadening). However, first, for 50% of hydrogen lines, such as those with even values of (n� – n�), there is no
component of X�� = 0. Second, for high-n hydrogen lines (n� >> n�) with odd values of (n� – n�), the contribution of this component to the overall profile is
relatively small and can be neglected.
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 Now we consider the second practically important case is where the distribution of the turbulent field has the
shape of a very oblate spheroid, so that essentially it’s the following two-dimensional distribution in the plane
perpendicular to B:

W
t2(Et

) dE
t
 = (2E

t /E
2
perp) exp [– E

t
2/E2

perp)] dE
t
. (23)

This situation is typical for the Bernstein modes. Obviously in this case the total electric field E = E
t
 + E

L
 is

confined in the plane perpendicular to B. Its distribution has the form:

2 2 1/ 2
2 2

0 0 0

( ) (1/ ) ( ) ( ) [ ( 2 cos ) ]L L L t t t t L t LW E dE dE dE W E dE W E d E E E E E
� � �

� � �� � � � �� � � . (24)

After using the �-function to perform the integration over the angle � (which is the angle between vectors E
t
 and

E
L
), the result reduces to the following:

max

min

2 2 2 2 1/ 2
2 2

0

( ) ( / ) ( ) ( )/{[( ) ][ ( ) ]}
E

t t t L L L t L t L
E

W E dE dE E dE W E dE W E E E E E E E
�

� � � � � �� � , (25)

where the lower and upper limits of the integration over E
L
 are

Emin = E – E
t
, Emax = E + E

t
. (26)

Based on the total field distribution from Eq. (25), the profiles S (��) of hydrogen lines can be calculated as
follows.

S (��) = S� (��) + S� (��), (27)

S� (��) = 2
( , )

[ /( | |)] [ /( | |)]J k X f W k X�� �� � ��
� � �

��� , (28)

S� (��) = 2
( , )

[ /( | |)] [ /( | |)]J k X f W k X�� �� � ��
� � �

��� . (29)

Here for the observation parallel to B

f� = 1, f� = 1/2, (30)

while for the observation perpendicular to B

f� = 1/2, f� = 3/4. (31)

We note for completeness that, while the argument of the line profiles in Eqs. (17)-(19) and (27)-(29) is the
detuning �� from the unperturbed frequency �0 of the spectral line, the corresponding profiles in the wavelength
scale S (��), i.e., where the argument is the detuning from the unperturbed wavelength of the spectral line, can be

obtained from the same Eqs. (17)-(19) and (27)-(29) by changing the constant k = 3 � /(2m
e
e) in Eq. (20) to

k0 = [3 � /(2m
e
e)] �0

2/(2�c), (32)

where �0 is the unperturbed wavelength.

3. LORENTZ-BROADENED PROFILES OF HIGHLY-EXCITED HYDROGEN LINES AND A REVISION
OF THE INGLIS-TELLER DIAGNOSTIC METHOD

In non-turbulent magnetized plasmas, the Lorentz broadening can predominate over other broadening mechanisms
for highly-excited hydrogen lines. In the previous section we showed that the Lorentz broadening can significantly
exceed the Zeeman splitting for high-n hydrogen lines. Now let us estimate the ratio of the Lorentz and Doppler
broadenings.
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 The Doppler Full Width and Half Maximum (FWHM) is

(��
D
)1/2 = 2(ln 2)1/2 �0vT /c = 1.665 �0vT /c, (33)

where �0 is the unperturbed frequency of the spectral line. For highly-excited hydrogen lines, where n� >> n�, one

can use the expression �0 = m
e 
e4/(2n�

2 � 3).

The Lorentz-broadened profile of a Stark component of a hydrogen line reproduces the shape of the Lorentz
field distribution from Eq. (13)

S�� (��) = (2��/��2
L��) exp (– ��

2/��2
L��), ��

L�� = kX�� Bv
T 

/c. (34)

Its FWHM is

(��
L��)1/2 = 2.715 ��

L��. (35)

The corresponding FWHM (��
L
)1/2 of the entire hydrogen line can be estimated by using in Eqs. (34), (35) the

average value < k | X�� |> = (n�
2 – n�

2) � /(m
e 
e), which for n� >> n� becomes < k | X�� |> = n�

2 � /(m
e 
e). Therefore, for the

ratio of the FWHM by these two broadening mechanisms we get

(��
L
)1/2 /(��D

)1/2 = n�
2 n�

2 B (Tesla)/526. (36)

We note that this ratio does not depend on the temperature.

For Balmer lines (n� = 2) Eq. (36) becomes

(��
L
)1/2 /(��D

)1/2 = n�
2 B (Tesla)/131. (37)

So, e.g., for the egde plasmas of tokamaks, where Balmer lines of n� ~ (10 – 16) have been observed, the
Lorentz broadening dominates over the Doppler broadening when the magnetic field exceeds the critical value
B

c
 ~ 1 Tesla. This condition is fulfilled in the modern tokamaks and will be fulfilled also in the future tokamaks.

Another example: in solar chromosphere, where Balmer lines of n� ~ (25 – 30) have been observed, the Lorentz
broadening dominates over the Doppler broadening when the magnetic field exceeds the critical value B

c
 ~ (0.15 – 0.2)

Tesla. This condition can be fulfilled in sunspots where B can be as high as 0.4 Tesla.

Therefore it is practically useful to calculate Lorentz-broadened profiles of highly-excited Balmer lines. To
ensure that for each particular hydrogen line, the profile will be universal, i.e., applicable for any B and T, we chose
the argument � of the profiles as

� = c ��/(kBv
T
). (38)

We calculated the corresponding profiles as follows:

P (�) = P� (�) + P� (�), (39)

P� (�) =
( , )� � �
� (J�� /| X�� |) f� W(�/| X�� |), (40)

P� (�) =
( , )� � �
� (J�� /| X�� |) f� W(�/|

 
X�� |), (41)

where

W(u) = 2u exp (– u2) (42)

(Eq. (42) is the renormalized Eq. (13)). The quantities f�, f� in Eqs. (40), (41) are given by Eq. (30) for the observation
parallel to B or by Eq. (31) for the observation perpendicular to B, respectively.

As an example, Fig. 1 presents calculated universal Lorentz-broadened profiles of the Balmer line H18 for the
observations perpendicular to B (solid line) and parallel to B (dashed line).
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The resulting extensive tables of the universal profiles P(�) of hydrogen lines will be published elsewhere. Here
we present the following practically important result derived from these tables for highly excited Balmer lines.

For any two adjacent high-n Balmer lines (such as, e.g., H16 and H17, or H17 and H18), the sum of their half widths
at half maximum in the frequency scale, the sum being denoted here simply as ��1/2 , turned out to be

��1/2 = A [3n2 �Bv
T  
/(2 me 

ec)], (43)

where the constant A depends on the direction of observation as follows:

A = 0.80 (observation perpendicular to B) (44)

A = 1.00 (observation parallel to B), (45)

A = 0.86 (“isotropic” observation). (46)

Here by the “isotropic” observation we describe the situation where along the line of sight there are regions with
various directions of the magnetic field, which could be sometimes the case in astrophysics.

The results presented in Eqs. (43)-(46) lead to a revision of the diagnostic method based on the principal quantum
number nmax of the last observed line in the spectral series of hydrogen lines, such as, e.g., Lyman, or Balmer, or
Paschen lines (though typically Balmer lines are used). This method was first proposed by Inglis and Teller [10].
The idea of the method was that the Stark broadening of hydrogen lines by the ion microfield (in case it is quasistatic)
in the spectral series scales as ~ n2. Therefore, at some value n = nmax, the sum of the Stark half widths at half
maximum of the two adjacent lines becomes equal to the unperturbed separation of these two lines, so that they (and
the higher lines) merge into a quasicontinuum. Since the Stark broadening is controlled by the ion density N

i
 (equal

to the electron density N
e
 for hydrogen plasmas), this had led previously to the following simple reasoning.

At the electric field E, for the multiplet of the principal quantum number n >> 1, the separation �� (n) of the
most shifted Stark sublevel from the unperturbed frequency �0(n) is �� (n) = 3n2 �E/(2 me 

e). Then the sum of the
“halfwidths” of the two adjacent Stark multiplets of the principal quantum numbers n and n + 1 is

��1/2(n) = 3n2 �E/(m
e 
e). (47)

Figure 1: Calculated universal Lorentz-broadened profiles P( ) of the Balmer line H
18

 for the observations perpendicular to B

(solid line) and parallel to B (dashed line). The argument  = c /(kBv
T
), where k = 3 /(2

 
m

e 
e). The intensities of both

profiles are relative to the intensity of the 2nd maximum (whose intensity is set as unity). The 1st maximum would be
smeared out by the Doppler broadening
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The unperturbed separation (in the frequency scale) between the hydrogen spectral lines, originating from the
highly-excited levels n and n + 1 is

�0(n + 1) – �0(n) = m
e 
e4/(n3 � 3). (48)

By equating (47) and (48) one finds

n5
max

 E = E
at 

/3 = 1.714 � 107 CGS, E
at
 = m2 e5/ � 4 (49)

(E
at
 = 1.714 � 107 CGS = 5.142 � 109 V/cm is the atomic unit of electric field). For the field E, Inglis and Teller [10]

used the most probable field of the Holtsmark distribution, which they estimated as Emax. = 3.7 eN
i
2/3 = 3.7 eN

e
2/3, and

obtained from Eq. (49) the following relation:

N
e 
n15

max
/2   = 0.027/a0

3 = 1.8 � 1023 cm–3, (50)

where a0 is the Bohr radius. We note that Hey [18], by using a more accurate value of the most probable Holtsmark
field Emax = 4.18 eN

e
2/3, obtained a slightly more accurate numerical constant in the right side of Eq. (50), namely

0.0225/a0
3, while Griem [19] suggested this constant to be even twice smaller.

Thus, Inglis-Teller relation (50) constituted a simple method for measuring the electron density by the number
nmax of the observed lines of a hydrogen spectral series. The simplicity of this method is the reason why, despite the
existence of more sophisticated (but more demanding experimentally) spectroscopic methods for measuring N

e
, this

method is still used in both laboratory and astrophysical plasmas. For example, Welch et al., [13] used it (with the
constant in the right side of Eq. (50) suggested by Griem [19]) for determining the electron density in the
low-density discharge at Alcator C-Mod.

However, in magnetized plasmas the Lorentz field E
L
 can significantly exceed the most probable Holtsmark

field Emax, as shown in Sect. 2. In this situation the number nmax of the last observable hydrogen line will not be
controlled by the electron density, but rather by different parameters, as shown below. Let us first conduct a simplified
reasoning along the approach of Inglis and Teller [10]. By substituting E = E

L
 in the left side of Eq. (49), we obtain

the following relation

n10
max

 B2 T(K) = 1.78 � 1018 M /Mp
or n10

max
 B2 T(eV) = 1.54 � 1014 M /Mp

, (51)

where B is the magnetic field in Tesla; M and M
p
 are the atomic and proton masses, respectively.

More accurate relations can be derived using the results of our calculations of Lorentz-broadened profiles of
high-n Balmer lines and the corresponding formulas (43)-(46) for the sum of the half widths at half maximum of
two adjacent Balmer lines. In this more accurate way we obtained the following relations.

For the observation perpendicular to B:

n10
max

 B2 T (K) = 2.79 � 1018 M /Mp
or n10

max
 B2 T (eV) = 2.40 � 1014 M /Mp

. (52.A)

For the observation parallel to B:

n10
max

 B2 T (K) = 1.78 � 1018 M /Mp
or n10

max
 B2 T (eV) = 1.54 � 1014 M /Mp

. (52.B)

For the “isotropic” case (the meaning of which was explained after Eq. (46)):

n10
max

 B2 T (K) = 2.38 � 1018 M /Mp
or n10

max
 B2 T (eV) = 2.05 � 1014 M /Mp

. (52.C)

Thus, the above formulas, by using the observable quantity nmax, allow to measure the atomic temperature T, if
the magnetic field is known, or the magnetic field B, if the temperature is known. The accuracy can be increased by
taking into account additional broadening mechanisms as follows

[(��1/2(n))2 + ��
Z
2 + (��

D
)2

1/2]
1/2 = m

e 
e4/(n3� 3), (53)

where the sum ��1/2(n) of Lorentz halfwidths of the two adjacent high-n Balmer lines, the Zeeman width ��
Z
, and

the Doppler width (��
D
)1/2 are given by Eqs. (47), (11), and (33), respectively.
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We also note that the Lorentz and Zeeman mechanisms can be combined together “exactly” using the fact that
the problem of a hydrogen atom in the crossed electric and magnetic fields allows an analytical solution which is
exact within the subspace spanned on the states of the principal quantum number n. This fact, being the consequence
of the O(4) symmetry of the hydrogen atom (and of the corresponding Kepler problem), was presented already in
1927 by Born in frames of the “old quantum theory” [20] and was later elaborated in more detail in the contemporary
quantum theory by Demkov, Monozon, and Ostrovsky [21]. The characteristic frequencies, arising in this solution,
are ��, where

� = {[��
L /(n – 1)]2 + ��

Z
2}1/2, � = – (n – 1), – (n – 2), …, (n – 1), (54)

��
L
 and ��

Z
 being given in Eq. (11). It is seen that the characteristic frequencies �� are similar to the left side

of Eq. (53) if in the latter the Doppler broadening would be disregarded.

For example, for the low-density discharge at Alcator C-Mod [13], where deuterium Balmer lines up to nmax = 16
were observed and the magnetic field was B = 8 Tesla, we obtain from Eq. (53): T = 6 eV.

Another example: in solar chromosphere, where Balmer lines up to nmax ~ 30 have been observed, assuming
T ~ 104 K and the average non-thermal velocity vnonth ~ 20 km/s, we obtain from Eq. (53): B ~ 0.2 Tesla.

4. LORENTZ-DOPPLER BROADENING OF HIGHLY-EXCITED HYDROGEN LINES

In this section we make an allowance for the Doppler broadening. The most prominent feature of the combined
Lorentz-Doppler broadening is that it does not reduce to the convolution of Lorentz and Doppler broadenings, as
first noted by Galushkin [1]. These two broadening mechanisms entangle in a more complicated way because in the
laboratory reference frame, the Lorentz-Doppler profile of a Stark component of a hydrogen line is proportional to
the following �-function (in the frequency scale) � [�� – (�0v/c) cos � – (kX�� Bv/c) sin �], where � is the angle
between the direction of observation and the atomic velocity v, and � is the angle between vectors v and B.

For obtaining the results in the most universal way, we use the following dimensionless notations,

w = c ��/(v
T 
�0) = c ��/(v

T 
�0), b = kX�� B/�0, u = v/v

T
, (55)

where w is the scaled detuning from the unperturbed frequency or from the unperturbed wavelength of a hydrogen
spectral line, b is the scaled magnetic field, and u is the scaled atomic velocity. The quantities k and X�� were defined
in Eq. (20).

We start from the situation where the direction of the observation is along B. This case has never been studied
(to the best of our knowledge). In this case, the Lorentz-Doppler profile of a Stark component of a hydrogen line can
be expressed as follows

Ipar(w, b) =
0

�

� du f (u) 
1

0
� d (cos �) � (w – u cos � – b sin �), (56)

where the velocity distribution f (u) is usually taken as the Maxwell distribution

f (u) = (4u2/�1/2) exp (– u2). (57)

For brevity we denote cos � = x. The root x0 of the argument of the �-function in Eq. (56) is

x0(u, b) = [u – b (1 + b2 – u2)1/2]/(1 + b2). (58)

Using the properties of the �-function, Eq. ( 56) can be reduced to

Ipar (w, b) = (2/�1/2)
miny

�

� dy y exp (– y
2)/{1 – bx0 (w/y, b)/[1 – x0

2(w/y, b)]1/2}, (59)
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where ymin is given as follows. For b > 0:

ymin = w/(1 + b2)1/2 for w > 0, ymin = – w for w < 0. (60)

For b < 0:

ymin = w/(1 + b2)1/2 for w < 0, ymin = – w for w > 0. (61)

Figures 2 and 3 show the Lorentz-Doppler profile from Eq. (59) for the scaled magnetic field b = 0.2 and b = 1,
respectively. For comparison, the corresponding pure Doppler profile is also shown in these Figures. Figure 4
shows the Lorentz-Doppler profile from Eq. (59) for a larger the scaled magnetic field b = 10.

Figure 2: The Lorentz-Doppler profile from Eq. (59) for the scaled magnetic field b = 0.2 (solid line). For comparison, the
corresponding pure Doppler profile is also shown (dashed line). The direction of observation is parallel to the magnetic
field B

Figure 3: The same as in Fig. 2, but for the scaled magnetic field b = 1
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 It is seen that, as the magnetic field increases, the maximum of the profile shifts further away from the unperturbed
frequency of the spectral line and the profile becomes more and more asymmetric. However, to avoid any confusion
we emphasized that the profiles in Figs. 2-4 are for a Stark component shifted to the blue side, i.e., for a Stark
component, for which X�� > 0 in Eq. (20) so that b > 0. For a pair of Stark components, corresponding to two equal
by magnitude and opposite by sign values of X�� (and consequently, of b), the resulting profile I

 
(w, b) = Ipar (w, b) +

Ipar (w, – b)] is symmetric – see Fig. 5 combining the cases of b = 10 and b = – 10.

Figure 4: The Lorentz-Doppler profile from Eq. (59) for the scaled magnetic field b = 10. The direction of observation is parallel
to the magnetic field B.
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Figure 5: The resulting Lorentz-Doppler profile for a pair of Stark components, corresponding to two equal by magnitude and
opposite by sign values of X  (in Eq. (20)). Specifically, it is the combined profile corresponding to the cases of b = 10
and b = –
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We note that for large magnetic fields (b >> 1), the combined profile of such two Stark components closely
resembles the shape of the pure Lorentz-broadened profile symmetrized as S�� (��) + S�� (– ��), where S�� (��) is
given by Eq. (34).

Based on the universal function Ipar (w, b) from Eq. (59), the profiles S (��) of hydrogen lines in the frequency
scale can be calculated as follows (for the observation along B)

S (��) = S� (��) + S� (��), (62)

S� (��) = [c /(vT 
�0)] 

( , )� � �
� J�� f� Ipar[c �� /(vT 

�0)], (63)

S� (��) = [c /(vT 
�0)] 

( , )� � �
� J�� f� Ipar[c �� /(vT 

�0)], (64)

where f� = 1, f� = 1/2 (see Eq. (30)).

For the case of a nonzero angle � between the direction of observation and the magnetic field, the relative
configuration of the vectors B, E

L
, and v, as well as the choice of the reference frame is shown in Fig. 6.

Figure 6: Relative configuration of the magnetic B and Lorentz E
L
 fields and of the direction of the observation s (“s” stands for

“spectrometer”). The z axis is along B. The direction of the observation s constitutes a non-zero angle ø with B. The xz
plane is spanned on vectors B and s. The atomic velocity v has a component v

z
 along B and a component v

R
 perpendicular

to B. The component v
R
 constitutes an angle  with the x-axis

If we would disregard for a moment the angular dependence of the intensities of �- and �-components of
hydrogen lines, then the Lorentz-Doppler profile of a Stark component can be expressed as follows

I (w, b) =
0

�

� du
z
 f

z
(u

z
) 

0

�

� du
R
 f

R
(u

R
) 

1

0
� d (cos �) 

0

�

� (d�/�) � [w – u
z
 cos � – u

R
(b + sin � cos �)]. (65)
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Here

f
z
(u

z
) = � – 1/2 exp (– u

z
2) (66)

is the 1-D Maxwell (i,e,. Bolzmann) distribution of the scaled component u
z
 = v

z /vT
 of the atomic velocity parallel to

B, and

f
R
(u

R
) = 2u

R
 exp (– u

R
2) (67)

is the 2-D Maxwell distribution of the scaled component u
R
 = v

R /vT
 of the atomic velocity perpendicular to B.

For allowing for the angular dependence of the intensities of �- and �-components, the corresponding angular
factors (as functions of �) should be entered in Eq. (65) into the integral over d (cos �). For example, for the
simplest case, where only the component of the radiation polarized along B is observed, this factor is sin2 �. Of
course, such component of the radiation is only one part of the corresponding �-Stark-component of the hydrogen
line.

For obtaining more specific results, we consider below the case of the observation perpendicular to B, i.e., the
case of � = �/2. In this case, Eq. (65) reduces to:

Iper (w, b) =
0

�

� du
R
 f

R
(u

R
) 

0

�

� (d�/�) � [w – u
R
(b + cos �)]. (68)

For the subcase of | b | < 1, using the properties of the �-function, Eq. (65) can be simplified to:

Iper (w, b) = [��(1 – b)1/2] – 1 
minRu

�

� du
R 2u

R exp (– uR
2)/{[u

R
 – w/(1 + b)] [uR

 + w/(1 – b)]}1/2. (69)

For 0 < b < 1:

uR min = w/(1 + b) for w > 0, uR min = – w/(1 – b) for w < 0. (70)

For – 1 < b < 0:

uR min = – w/(1 – b) for w > 0, uR min = w/(1 + b) for w > 0. (71)

We note that an expression equivalent to our Eq. (69) was previously obtained by Breton et al., [3]. However, in
[3] the lower limit of the integration was set (in our notations) to uR min = w/(1 + b) regardless of the sign of b and of
the sign of the scaled detuning w from the unperturbed position of the spectral line. Therefore, their calculations of
the profiles of the H� and H� lines seem to contain errors.

Equation (69) yields the spectral line profile for the simplest case, where only the component of the radiation
polarized along B is observed. Such component of the radiation is only one part of the corresponding �-Stark-
component of the hydrogen line, as mentioned above. For allowing for the angular dependence of the intensities of
�- and �-components, the following factors should be entered in Eq. (69) into the integral over du

R
:

(b – w/u
R
)2 for �-components, [(1 – b2/2) uR

2 + bwu
R
 – w2/2]/u

R
2 for �-components.  (72)

Now we proceed to the subcase of | b | > 1. Using the properties of the �-function, Eq. (65) can be simplified as
follows.

For b > 1 and w > 0:

Iper (w, b) = [� (1 – b)1/2] – 1 
max

min

R

R

u

u
� du

R 2u
R exp (– uR

2)/{[w/(b – 1) – u
R
] [uR

 – w/(b + 1)]}1/2, (73)

where

uR min = w/(1 + b), uR max = w/(b – 1). (74)
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 For b > 1 and w < 0, or for b < – 1 and w > 0:

Iper (w, b) = 0. (75)

 For b < –1 and w < 0:

Iper (w, b) = [� (1 – b)1/2] – 1 
max

min

R

R

u

u
� du

R 2u
R
 exp (– uR

2)/{[w/(b + 1) – u
R
] [uR

 – w/(b – 1)]}1/2, (76)

where

uR min = w/(b – 1), uR max = w/(1 + b). (77)

 Similarly to the subcase of | b | < 1, in the subcase of | b | > 1, Eqs. (73), (76) yield the spectral line profile for the
simplest situation, where only the component of the radiation polarized along B is observed. For allowing for the
angular dependence of the intensities of �- and �-components, the corresponding factors given by Eq. (72) should
be entered in Eqs. (73), (76) into the integral over du

R
.

 Finally we consider the remaining subcase of | b | = 1. Using the properties of the �-function, Eq. (65) can be
simplified as follows.

 For b = 1 and w > 0, or for b = – 1 and w < 0:

Iper (w) = (� | w |)
 – 1 

| |/ 2w

�

� du
R 2u

R
 exp (– uR

2)/(u
R
 – | w |/2 )1/2. (78)

The integral in Eq. (78) can be calculated analytically, so that Eq. (78) takes the form

Iper (w) = [� (1/4) � (– 1/4) | w |]
 – 1 [� (– 1/4) F (3/4, 1/2; – w

2/4) – � (1/4) | w |F (5/4, 3/2; –
 
w2/4)], (79)

where � (z) is the gamma-function, F (�, �; z) is the confluent hypergeometric function.

For b = 1 and w < 0, or b = – 1 and w > 0:

Iper (w) = 0. (80)

Similarly to the subcases of | b | < 1 and | b | < 1, in the subcase of | b | = 1, Eqs. (78) yields the spectral line profile
for the simplest situation, where only the component of the radiation polarized along B is observed. For allowing for
the angular dependence of the intensities of �- and �-components, the corresponding factors given by Eq. (72), with
the substitution of b = 1 or b = – 1, should be entered in Eqs. (78) into the integral over du

R
.

Finally we emphasize that the above results for the subcases of | b | > 1 and | b | = 1 have never been presented in
the literature – to the best of our knowledge.

5. CONCLUSIONS

We presented several new aspects concerning magnetized plasmas where the Lorentz broadening of hydrogen (or
deuterium, or tritium) spectral lines is significant. For plasmas containing a low-frequency electrostatic turbulence
we derived analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen
lines. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore
very important to be diagnosed in magnetized plasmas.

Second, for non-turbulent magnetized plasmas we derived analytically Lorentz-broadened profiles of
highly-excited hydrogen lines. We obtained formulas for the principal quantum number nmax of the last observable
hydrogen line in the spectral series. These formulas differ very significantly from the corresponding Inglis-Teller
result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature.
In other words, this method allows measuring the atomic temperature T, if the magnetic field is known, or the
magnetic field B, if the temperature is known.
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Third, we discussed Lorentz-Doppler broadening of highly-excited hydrogen lines. These two broadening
mechanisms entangle in a more complicated way than a simple convolution. We produced several new analytical
results.

We demonstrated that our findings lead to a significantly revised interpretation of the previous and future
experimental/observational data at least in two research areas. One of the research areas is magnetic fusion, i.e.,
controlled thermonuclear fusion based on a magnetic confinement of the fuel plasma. The other research area is
solar physics.
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