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ABSTRACT: The paper is devoted to theoretical study of ultrashort electromagnetic pulses scattering on free electron 
in nonrelativistic limit. Two types of pulses are considered: (1) with carrier frequency and (2) without it. Analytical 
expressions for total scattering probability are derived. It is shown that in the first case the probability dependence 
upon pulse duration has inflecting point while in the second case this dependence is quadratic in all range of pulse 
duration.

INTRODUCTION
The paper considers the process of scattering of ultrashort electromagnetic pulses (USP) of different shapes by 
a free electron: analytical expressions for the scattering probability during the action of a pulse were obtained, 
corresponding dependences were plotted. Calculations were carried out for a corrected Gaussian pulse as well as 
for sine and cosine wavelet pulses without carrier frequency [1].

METHOD OF CALCULATION
Let us obtain a general expression for the total probability of scattering of an ultrashort electromagnetic pulse during 
the USP action [2].

At first, we will consider scattering of an electromagnetic field pulse by a spherical target as a consequence of 
induction of an alternative dipole moment in the target by the electric field of a scattered wave.

In the wave zone, for radiation of an alternative dipole moment (in view of a delay) the following equality is 
true [3]:
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For the second derivative of the dipole moment of the target that scatters a pulse, we have the following 
expansion into a Fourier integral:
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Here in the second equality it is taken into account that for a spherically symmetric target

	 ( ) ( ) ( )iω α ω ω=d E ,	 (3)

where ( )α ω  is the dynamic polarizability of the spherically symmetric target and
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is the Fourier transform of an electric field strength pulse scattered by the target.

From (1) - (2), the equality follows for an electric field strength pulse scattered in the direction n :

	
( ) ( )( ) ( ) ( )2

2

1, exp
2sc i
dt i t r c

c r
ωω ω α ω ω
π

∞

−∞

  
= − − −  

   
∫E r E n n

.
	 (5)

For simplicity, we assume a scattered pulse to be linearly polarized:

	 ( ) ( )i i iEω ω=E e , 
	 (6)

where ei is the real unit polarization vector in a scattered pulse. Then from (5) we obtain:
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It is easy to show that the magnitude of the triple vector product in the formula (7) is
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where θ is the angle between the vectors n and ei. Then from the formula (6) we have the expression in scalar writing 
for the strength of the electric field in a scattered pulse:
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The obtained expression makes it possible to calculate the shape of a scattered pulse for various types of targets 
[4].

We proceed from the formula (9) for the strength of the electric field in a scattered wave in the wave zone 
(r >> λ) obtained in the preceding paragraph within the framework of classical electrodynamics. Using this 
formula, we will calculate the energy ∆Esc of radiation scattered into a complete solid angle during the action of 
an electromagnetic pulse. For this purpose, we will use the expression for the radiation intensity in a transverse 
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electromagnetic wave propagating in vacuum:

	
( ) ( ) 2

, ,
4sc sc
cI t E t
π

=r r
.
	 (10)

Thus for the energy of a scattered electromagnetic pulse we have:
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Substituting here the explicit expression for the electric field strength ESC (t, r) from the formula (9), we find:
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Integrating in the right-hand side of this equation with respect to time, we obtain 2πδ (ω – ω’) under the sign of 
integration with respect to the frequencies ω and ω'. The delta-function “removes” integration with respect to one 
of frequencies, say, ω’, as a result of which we obtain:
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Let us use the expression for the cross-section of radiation scattering by a spherically symmetric target that is 
integrated with respect to the angle:
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Then the expression for the scattered energy can be rewritten as
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Hence for the scattered energy spectrum we have:
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and for the spectral probability we find:
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Thus for the total probability of scattering of an ultrashort electromagnetic pulse we finally obtain the 
expression:
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This formula coincides (accurate to replacement of the radiation scattering cross-section by the photoabsorption 
cross-section) with the expression for the photoabsorption probability during the action of an ultrashort pulse that 
was obtained earlier within the framework of the quantum-mechanical approach in the work [2]. It should be noted 
that (18) is applicable if WSC ≤ 1, by implication of the process probability. 

Let us consider the process of radiation scattering by a free electron in the nonrelativistic limit, that is, when 
the radiation energy is much less than the rest energy of an electron: 
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 Let us consider the process of radiation scattering by a free electron in the nonrelativistic 

limit, that is, when the radiation energy is much less than the rest energy of an electron:  
2cme .     (19) 

In this case it is possible to use the following expression for the Thomson cross-section of 

photon scattering by an electron that is integrated with respect to the angle [3]:  
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 Thus within the framework of the approximation (19) the scattering cross-section is 

independent on frequency and in the atomic units we will use in further calculations looks as 

follows: 
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where c = 137 is the velocity of light in the atomic system of units. 

 As scattered electromagnetic pulses, we will consider the following pulses:  
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where c = 137 is the velocity of light in the atomic system of units.
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where E0 is the peak value of the electric field strength, ω is the radiation carrier frequency, τ is the USP duration, 
φ is the initial phase.

These are a so-called corrected Gaussian pulse (CGP) (22), sine (23) and cosine (24) wavelet pulses 
respectively. Note that two last pulses have no carrier frequency.
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A feature of a CGP is the absence of a constant component in its spectrum, which distinguishes it from a 
traditional Gaussian pulse. It should be noted that the presence of such a constant component in the spectrum in the 
limit of ultrashort pulse durations results in the nonphysical nature of obtained results.

The Fourier transform for a CGP looks as follows:
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where ω' is the current frequency and ω is the carrier frequency of radiation. It should be noted that for this 
expression the condition ECGP (ω’ = 0) = 0 is true, which confirms the absence of a constant component in the CGP 
spectrum.

For sine and cosine wavelet pulses without carrier frequency, the Fourier transforms have the following 
expressions [1]:
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 On the contrary, in case of long multicycle pulses ( ix ) the expression (31) can be 
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Making similar rearrangements and using the expression (23), we obtain the dependence for the total probability 
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In case of a CGP, for times of interest to us, the approximate equality for the squared absolute value of the 
Fourier transform of the strength of the electric field in a pulse is true:
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In this case the expression for the total probability of the scattering process during the action of a pulse (18) 
will take the following form: 
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The inflection point of this function is equal to xi ≅ 1.3. 

Let us consider the limit of ultrashort pulses, when ωt << xi. In this case the expression (31) can be expanded 
into a Taylor series with respect to ωt, which gives
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On the contrary, in case of long multicycle pulses (ωt >> xi) the expression (31) can be transformed to the 
following form: 
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From the expressions (32), (33) it is seen that in the ultrashort limit the scattering process probability depends 
on the pulse duration as τ2, whereas in case of long multicycle pulses this dependence is proportional to τ (is linear). 

DISCUSSION OF RESULTS
Presented in Fig. 1 are the dependences of the total probability of scattering of sine and cosine wavelet pulses as 
functions of the pulse duration, E0 = 1 at. u.
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 As follows from the expressions (28) and (29), quadratic dependences are seen on the 
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2  in the expression 

(29), the plot of this dependence (the dotted curve) is above the sine wavelet plot (the solid 

curve). It should also be noted that in case of wavelet pulses the total probability of scattering 

depends only on the duration of these pulses τ. 
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As follows from the expressions (28) and (29), quadratic dependences are seen on the plot, and in case of a 
cosine wavelet pulse, due to the higher coefficient at τ2 in the expression (29), the plot of this dependence (the dotted 
curve) is above the sine wavelet plot (the solid curve). It should also be noted that in case of wavelet pulses the total 
probability of scattering depends only on the duration of these pulses τ.

Presented in Fig. 2 is the dependence of the total probability of scattering of an ultrashort pulse (CGP) by a free 
electron on the pulse duration at different carrier frequencies of radiation ω.
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Fig. 2. The dependence of the total probability of USP scattering by a free electron on the pulse 

duration for a CGP at different carrier frequencies: dash-and-dot curve – 0.11 eV, short dashes 

- 0.037 eV, dotted curve – 0.018 eV, solid curve – 0.009 eV 

  

 From Fig. 2 it follows that at long enough pulse durations τ the plots go to the linear 

dependence, and with decreasing carrier frequency of a pulse the slope of the straight line 

increases.  
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