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ABSTRACT: One-planet Binary Star Systems (OBSS) have a limited analogy to objects studied in atomic/molecular
physics: One-electron Rydberg Quasimolecules (ORQ). Specifically, ORQ, consisting of two fully-stripped ions of the
nuclear charges Z and Z� plus one highly-excited electron, are encountered in various plasmas containing more than one
kind of ions. Classical analytical studies of ORQ resulted in the discovery of classical stable conic-helical electronic
orbits. As for studies of planets in binary star systems, they are important because it was estimated that about the half of
binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. Previously it was shown
that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable or metastable
conic-helical planetary orbits, whose axis of symmetry coincides with the interstellar axis. That study was performed in
frames of the nonrelativistic classical mechanics. In the present paper we extend that study to the relativistic classical
mechanics. We show that relativistic effects in OBSS can become significant for the situations where the mass of the
planet is relatively small (such planets are so-called planetoids).

1. INTRODUCTION

One-electron Rydberg Quasimolecules (hereafter, ORQ), consisting of two fully-stripped ions of the nuclear charges
Z and Z� plus one highly-excited electron, are encountered in various plasmas containing more than one kind of
ions. Examples are (but not limited to) magnetic fusion plasmas, laser-produced plasmas, plasmas used for x-ray
and VUV lasers, solar plasmas etc. In these plasmas, a fully-stripped ion of the nuclear charge Z� can come close to
a hydrogenlike ion of the nuclear charge Z and form a short-lived molecule (i.e., quasimolecule). Conversely, a
fully-stripped ion of the nuclear charge Z can come close to a hydrogenlike ion of the nuclear charge Z� and form a
quasimolecule. Such quasimolecules are a very useful playground for theoretical and experimental studies of charge
exchange, which is a physical process of the primary importance for many areas of physics (e.g., for the areas
listed above).

Classical analytical studies of ORQ were first presented in papers [1, 2] and later in the book [3]. The latest
works were presented in the review [4]. The primary result was the discovery of classical stable electronic orbits of
the shape of a helix on the surface of a cone.

In astrophysics, One-planet Binary Star Systems (hereafter, OBSS) have a limited analogy to ORQ studied in
atomic/molecular physics. It should be emphasized that studies of planets in binary star systems are especially
important for the ongoing search of an extraterrestrial life. This is because it was estimated that about the half of
binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges (see, e.g., [5-7]).
Therefore, the stability of planets around binary stars is the subject of a continuing interest.

In paper [8] one of us showed that stable (or metastable) conic-helical orbits are possible for OBSS. The
overwhelming majority of papers on planetary orbits around binary stars considered only various types of the
planetary motion in the orbital plane of the two stars (see, e.g., [5-7, 9-14] and references therein) – to the best of
our knowledge. In distinction, in paper [8] there was presented the motion of a planet, roughly speaking, in the
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plane perpendicular to the interstellar axis – more rigorously, the planet orbit is a helix on a conical surface, whose
axis of symmetry coincides with the interstellar axis (Fig. 1). From a general point of view, paper [8] presented a
new chapter in the centuries-old classical three-body problem.

It should be emphasized that there is only a limited similarity between ORQ and OBSS because of the following
distinctions between these two physical systems. First, in ORQ the attractive centers (nuclei Z and Z�) can be
stationary and still be stable, while in binary star systems the rotation of the stars is necessary for the stability.

Second, in ORQ the attractive centers can engage in oscillations (called vibrations) and be stable without any
rotation. This is not the case for OBSS.

Third, in ORQ the electronic degree of freedom has a much larger characteristic frequency and energy than the
nuclear degrees of freedom. This is the basis for the standard Born-Oppenheimer approximation, where the primary
contribution to the energy of the system can be obtained by freezing the nuclear motion. If necessary, the nuclear
motion can be later taken into account by perturbation theory.

The Born-Oppenheimer approximation is a particular case of the general analytical method for system that can
be separated into rapid and slow subsystems. For ORQ, this method is applicable because the ratio of frequencies
(and energies) of the electronic motion, the vibrational nuclear motion, and the rotational nuclear motion is
1: (m

e
/M

n
)1/2: (m

e
/M

n
). Here m

e
 is the electron mass and M

n
 is the total mass of the two nuclei, so that m

e
/M

n
< 1/3600

and the separation of the slow and rapid subsystems is justified “automatically”. This is, generally speaking, not the
case for OBSS.

Indeed, for OBSS the analogue of molecular oscillations (vibrations) is a periodic change of the separation
between the two stars, which occurs for eccentric stellar orbits. One distinction from ORQ is that both oscillations
and rotations have the same frequency: the Kepler frequency � of the two stars orbiting their barycenter. Another

Figure  1: Sketch of the conic-helical motion of the planet in the model binary star system where the stars are stationary.
We stretched the trajectory along the interstellar axis to make its details better visible.
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distinction from ORQ is that the primary frequency � of the helical motion of the planet is not “automatically”
much greater than the stars Kepler frequency �.

In paper [8] it was shown that there are ranges of parameters where actually � >> �. Further it was demonstrated
that there are ranges of parameters where the planetary motion is stable for a model case of stationary stars and
that there are ranges of parameters where the planetary motion is stable (or metastable) for the real case of stars
rotating in circular or elliptical orbits. The analysis in paper [8] was based on the non-relativistic classical
mechanics.

In the present paper we extend the study from paper [8] to the relativistic classical mechanics. We show that
relativistic effects in OBSS can become important for the situations where the mass of the planet is relatively small
(such planets are so-called planetoids).

The paper is organized as follows. In Sect. 2 we reiterate the main results from the “non-relativistic” paper [8].
In Sect. 3 we present the relativistic study of OBSS and of the stability of planetoids in conic-helical orbits. In Sect.
4 we present conclusions.

2. THE MAIN RESULTS OF THE NON-RELATIVISTIC STUDY FROM PAPER [8]

In paper [8], first, there was considered a model system consisting of two immobile stars of masses � and ��, and a
planet of a unit mass moving around a circle in the plane perpendicular to the interstellar axis, on which the circle
is centered. The mass � is at the origin and the Oz axis is directed to the mass �� located at z = R. After introducing
notations

Z = G�, Z� = G�� (1)

where G is the gravitational constant, the Hamilton function of the system is written in the cylindrical coordinates
(z, �, �) as

� �
2

2 2
2

1
,

2 z

p
H p p U z�

�

� �
� � � � �� ��� � (2)

where the potential energy is

� �
� �2 2 2 2

,
Z Z

U z
z R z

�
� � � �

� � � � � (3)

The relation between the momenta and the corresponding velocities follows from the Hamiltonian equations of
the motion:

2,  ,  z
z

pdz H d H d H
p p

dt p dt p dt p
�

�
� �

� � � � �
� � � � � �
� � � � (4)

Since H does not depend on �, the corresponding momentum is conserved:

2 const
d

p M
dt�

�
� � � � (5)

Physically, the separation constant M is a projection of the planet angular momentum on the interstellar axis.
Thus, the z- and �-motions can be determined separately from the �-motion. Then the �-motion can be found from
the �-motion via Eq. (5).

The Hamilton function for the z- and �-motions can be represented in the form



N. Kryukov and E. Oks

10 International Review of Atomic and Molecular Physics, 6 (1), January-June 2015

� �
2 2

,  
2 eff

p pz
H U z

� �
� � � (6)

where an effective potential energy (EPE) is:

� �
2

2
( , ) ,  

2eff

M
U z U z� � � �

� (7)

After introducing scaled (dimensionless) variables w and v, a scaled projection of the angular momentum m, as
well as a ratio of the star masses b,

,  ,  ,  
z M

w v m b
R R ZR

� ��
� � � �

� (8)

the EPE can be re-written as

� � � �,  ,  ,  ,  ,  , ,  eff eff eff

Z
U u w v m b u w v m b

R
�

� �
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2 2 2 2 2

1
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m b

v w v w v
� � �
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By equating to zero the derivative of the EPE with respect to w

0eff effU uZ

w R w

� �
� �

� �
(10)

a relation was found

� �� � � � � �3/ 2 3/ 22 2 22 11

b w

w w vw v
�

� �� � (11)

which determines a line v0(w) in the plane (w, v), where the equilibrium points of the EPE are located:

� � � �
� �

4 / 32 /3 2/ 3 2

0 2/ 32 /3 2/ 3

1
,  

1

w w b w
v w b

b w w
�

� �
�

� � (12)

For b < 1, the equilibrium value of v exists for 0 � w < b/(1 + b) and for 1/(1 + b1/2) � w � 1.

For b > 1, the equilibrium value of v exists for 0 � w � 1/(1 + b1/2) and for b/(1 + b) < w � 1.

For b = 1, the equilibrium value of v exists for the entire range of 0 � w � 1. Below we refer to these intervals as
the “allowed ranges” of w.

By equating to zero the derivative of the EPE with respect to v

0eff effU uZ

v R v

� �
� �

� �
(13)

and then substituting v0(w, b) from Eq. (12) instead of v, another relation was found:
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While deriving Eq. (14), we used Eq. (11) to eliminate an explicit dependence on b, so that b enters Eq. (14)
only implicitly–as an argument of the function v0(w, b). In a number of subsequent derivations, we will also use Eq.
(11) for the same purpose without a further notice.

For each set of (w, b), where w belongs to the allowed ranges, Eq. (14) determines an equilibrium value of
m0(w, b)–in addition to the equilibrium value of v0(w, b) determined by Eq. (12). Then for some value of b, there was
considered a set of equilibrium values (w

i
, v0i

, m0i
) and the EPE u

eff
 was expanded in terms of �w and �v, where

0,  i iw w w v v v� � � � � � (15)

The expansion has the form

� �
2 2

0 0 0 0,  ,  ,  
2 2eff ww vv wv eff i i i

w v
u u u u u w v u u w v m

� �
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In the subsequent formulas the suffix i is dropped for brevity.

Since generally u
wv
� 0, a rotation of the reference frame is required in order to transform the EPE to so-called

“normal” coordinates, diagonalizing the matrix of the second derivatives of the EPE [15, 16]:

�w� = �wcos� + �vsin�, �v� = –�wsin� + �vcos� (17)

where

� � 01 22
tg 2 wv

ww vv

w vu

u u P

�
� � �
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so that

� �1 / 1 /
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P Q P Q
w

� �
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Here

� � � � � �� �22 2 2 2
0 0 01 ,  1P w w v Q w v w v� � � � � � � (20)

In the normal coordinates, the EPE takes the form

2 2
2 2

0 2 2effu u w v� �� �
� � � � � � � (21)

where

� �3/ 42 2
0

1 1 3

1

w

w Qw v
�� � �
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The scaled (dimensionless) frequency �+ of small oscillations around the equilibrium in the direction of the
normal coordinate �v� is always real. According to the notations from paper [8], any frequency F and its scaled
(dimensionless) counterpart f are related as follows:
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3R
f F

Z
� (23)

As for the quantity �–, it is real if
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0

1 1
, 1 9 1 1

2 4
v w b w w w w w w� � � � � � � � � �critv w� (24)

Physically, under the condition (24), the quantity �– is the frequency of small oscillations around the equilibrium
in the direction of the normal coordinate �w�.

Thus, if v0(w, b) > v
crit

(w), the EPE has a two-dimensional minimum at the equilibrium values of w and v = v0(w, b),
so that the equilibrium is stable. After introducing a scaled (dimensionless) time

3

Z
t

R
� � (25)

the following final expression for the small oscillations around the stable equilibrium was obtained:
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w
cos(�–��+�w

) cos� + a
v
 cos(�+��+��v

) sin�
�v(�) = a

w
cos(�–��+�w

) sin� – a
v
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) cos� (26)

Here amplitudes a
w
, a

v
 and phases �

w
, �

v
 are determined by initial conditions; sin � and cos � are given by

Eq. (19). Compared to the corresponding Eq. (28) from [8], here in Eq. (26) we corrected a typographic error in
signs.

The solution for the �-motion turned out to be
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where

� �3/ 42 2
0

1

1
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w w v
�
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is a scaled (dimensionless) primary frequency of the �-motion. Equations (27), (28) show that the �-motion is a
rotation about the internuclear axis with the frequency f

p
, slightly modulated by oscillations of the scaled radius of

the orbit v at the frequencies �+ and �– . In other words, for the stable motion, the planetary trajectory is a helix on
the surface of a cone, with the axis coinciding with the interstellar axis. In this conic-helical state, the planet, while
spiraling on the surface of the cone, oscillates between two end-circles which result from cutting the cone by two
parallel planes perpendicular to its axis (Fig. 1).

Further in paper [8] there was a study of effects of the stars rotation and the eccentricity of their orbits on the
conic-helical orbit of the planet for the situations where the Kepler frequency

� �
3

G

R

� � ��
� � (29)
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of the two stars orbiting their barycenter (which is also the frequency of oscillations of the interstellar distance in
the case of eccentric stellar orbits) is much smaller than the primary frequency of the revolution of the planet
around the interstellar axis. This situation allows applying the standard method of the separation of rapid and slow
subsystems.

According to Eq. (23), the scaled, dimensionless counterpart of the Kepler frequency is

3

1s

R
f b

Z
� � � � (30)

The ratio of the scaled primary frequency f
p
 of the planetary motion (given by Eq. (28)) to the scaled Kepler

frequency f
s
 of the stars is

� �
� �� � � �� �3/ 42 2

0

1
,

1 1 ,
k w b

b w w v w b
�

� � � (31)

This ratio becomes sufficiently large if the projection of the planetary orbit on the interstellar axis is either close
to the star of the smaller mass (w << 1) or close to the star of the larger mass ((1 – w) << 1). Those are the ranges of
parameters where the separation into the rapid and slow subsystems is justified.

In the reference frame rotating together with the stars with the Kepler frequency �, there is an additional force
(see, e.g., [15-17]):

F1 = 2v �  –  � (  � r) (32)

Since v ~ ��, where � is the primary frequency of the planetary motion and � is the average radius of the
planetary orbit, and because � >> �, then the additional force is approximately

F1 � 2v � (33)

Expression (33) has a clear physical meaning for the quantal counterpart-problem of ORQ. Namely, it is a
“Lorentz electric field” v × Beff/c in the effective magnetic field Beff = c  in atomic units (or Beff = m

e
c  in the CGS

units, m
e
 being the electron mass).

In paper [8] the Ox axis was chosen along vector , which is obviously perpendicular to the interstellar axis
chosen as the Oz axis. Since the planetary velocity v is primarily in the xy-plane perpendicular to the interstellar
axis, then the additional force F1 is primarily along the interstellar axis.

Representing r/� = ex cos �t + ey sin �t, so that v/� = (–� sin �t)ex + (� cos �t)ey, and using  = �ex, Eq. (32)
yields:

F1 = �(–2��cos�tez + �2 sin�tey) (34)

In the ranges of parameters where � >> �, Eq. (34) becomes

F1 � –2���cos�tez (35)

Thus, for the z�-motion (which in the scaled coordinates is wv-motion), the situation represents a two-dimensional
oscillator, having the eigenfrequencies �+ and �– defined by Eq. (22), that is driven by the force F1 oscillating at the
frequency �. Using the well-known formulas for driven oscillators (see, e.g. [17]), the solution in the coordinates
w�, v� rotated by the angle � (defined by Eq. (18)) compared to the coordinates w, v (i.e., in the coordinates, where
the two oscillators are decoupled) can be immediately written. Then coming back to the original scaled coordinates
w, v, one obtains:

� � � �
2 2

0 2 22 2

cos sin
2 , coss p p

p p

w v w b f f
f f� �

� �� �
� � � � � �� �� � � �� �
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� � � �0 2 22 2
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(36)

Using the relation (�+
2 + �–

2)/2 = f
p

2 and Eq. (19), the latter formulas can be finally re-written in the following
simple form:

� � � �0
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2 , cos2
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v w b f
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� �

� �
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2 2

2 , sin 2
coss p

p

v w b f
v f

� �

� �
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� � � (37)

We note that in Eqs. (32)–(37) we corrected some typographic errors compared to the corresponding equations
from paper [8].

Equation (37) shows that the trajectory of the planet is conic-helical. The forced oscillations of the “circular”
planetary orbit are primarily along the interstellar axis. For the quantal counterpart-problem of ORQ this should
have been expected. Indeed, the electron in a circular orbit is like a charged “ring”: so, in the monochromatic
electric (Lorentz) field perpendicular to the axis of the charged ring, the ring should oscillate along its axis.

Figure 2 shows the scaled amplitude �w0 = 2v0(w, b)�
s 
f
p
(cos 2�)/|(�+

2 – �–
2)| of the oscillations of the planetary

orbit along the interstellar axis versus the scaled projection w = z/R of the average plane of the planetary orbit on the
interstellar axis, for three values of the ratio b of the stellar masses. It is seen that �w0 << 1 (i.e., the amplitude of the
oscillations is much smaller than the interstellar distance) for b greater or of the order of 10. For the validity
condition � >> � of this result to be satisfied with a large margin of “safety”, the average plane of the planetary
orbit should be very close to the star of the smaller mass (and the closer it is in the range of w < 0.05, the smaller is
the amplitude �w0, as seen from Fig. 2). As long as the primary frequency � of the planet revolution about the
interstellar axis exceeds by many orders of magnitude the Kepler frequency � of stars rotation, the conic-helical
planetary orbit would remain stable for a very long time. (Rigorously speaking, the planet is in a metastable state,

Figure 2: The scaled amplitude w
0
 of the oscillations of the planetary orbit along the interstellar

axis versus the scaled projection w = z/R of the average plane of the planetary orbit on the interstellar axis,
for three values of the ratio b of the stellar masses: b = 100 (solid line), b = 30 (dashed line), and b = 10 (dotted line).
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which is yet another analogy with atomic/molecular systems: they have metastable states living by many orders of
magnitude longer than other states of the system.)

Figure 3 shows the scaled amplitude �v = 2v0(w, b) �
s
f
p
 (sin 2�)/|�+

2 – �–
2| of the oscillations of the planetary

orbit in the plane perpendicular to the interstellar axis versus the scaled projection w = z/R of the average plane of
the planetary orbit on the interstellar axis, for three values of the ratio b of the stellar masses. It is seen that for the
range of b greater or of the order of 10 (required for having �w0 << 1), we have also �v << 1.

Finally, the effect of the eccentric orbits of the stars was studied in paper [8]. In the reference frame rotating
together with the stars with the Kepler frequency �, a non-zero eccentricity � of the stars orbits results in the
oscillation of the interstellar distance R with the frequency �. In the ranges of parameters where � >> �, the
oscillation of the interstellar distance is an adiabatic “perturbation” of the planetary motion. According to the
principle of adiabatic invariance, the planetary motion will adjust to the slowly varying R while keeping as the
constant the average nonzero projection M of the planetary angular momentum on the interstellar axis. The projection
of the planetary angular momentum on the interstellar axis undergoes small oscillations (caused by stars rotation)
around the nonzero average M, the latter being the adiabatic invariant.

Particularly, for the average plane of the planetary orbit close to the star of the smaller mass, it was shown in
paper [8] that the eccentricity � of the stars orbit would not affect the stability of the planetary motion if � does not
exceed some critical value �c(b) given by Eq. (53) of paper [8].

3. RELATIVISTIC EFFECTS

The relativistic force acting on the planet (scaled by its mass, i.e., the force divided by the mass of the planet) is
given by the formula

2
0

0 2c

� ��
� � � �� �� �

F a V V V� (38)

where V is the velocity of the planet and �0 = (1 – V2/c2)–1/2. The additional acceleration given by (32) can be
substituted into (38) as the last factor, with V as the time derivative of the position in the rotating reference frame

Figure 3: The scaled amplitude v
0
 of the oscillations of the planetary orbit along the radial coordinate

versus the scaled projection w = z/R of the average plane of the planetary orbit on the interstellar axis,
for three values of the ratio b of the stellar masses: b = 100 (solid line), b = 30 (dashed line), and b = 10 (dotted line).
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r = �cos�tex + �sin�tey (39)

After the calculation, we obtain the following values for the components of the force:

2 2
0

0 sin 2 sin
2xF V t t

� � �
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�

2 2
0

0 sin sin 2 cos
2yF V t t t

� �� ��
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02 coszF V t� � � � � (40)

(here � = V/c). As � << �, the dominant term is the z-projection of the force (given by the third equation in (40)).
By analogy with the non-relativistic case in Sect. 2, we derive the small oscillations about the equilibrium due to the
dominant force term:

� � � �2 2 2

2 cos2
cos ,

1

v
w

� �

�� �
� � � ��

� � � � �

�� �
 � � � �2 2 2

2 sin 2
cos

1

v
v

� �

�� �
� � � �

� �� ��

�� �
(41)

where � was given by Eq. (19), v = �/R (its equilibrium value given by (12)) and the tilde above means scaling by
multiplying by (R3/Z)1/2. We can now find the conditions, under which the amplitude of the oscillations is small
while the condition � << � stays valid. In the relativistic case, the Hamiltonian, divided by the mass m of the planet
h = H/m, for the OBSS case is given by

� �

2
2 2 2 2 2

2 2 2 2 2
z

p Z Z
h c m c p p mc

z R z

�
�

�
� � � � � � �
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(42)

In a circular state, p
z
 = p� = 0 and |p�|/m = const = L. Using the scaling

2
,  ,  

L R Z
E r R

cR Z L
� � � � �� (43)

we write the scaled energy for the circular state:

� �

2 2

22 2 2 2

1
1 1

1

b c R

Z vw v w v

� �
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�
(44)

For the relativistic motion,

2

21

mV
L

V
c

�
�

� (45)

and, using the scaling � = vR from (8) and the first formula in (43), we can find the speed of the planet in the
relativistic OBSS case in the units of the speed of light:

2

1

1
p

� �
�
�

(46)



Astrophysical Analogue of One-Electron Rydberg Quasimolecules: One-Planet Binary Star Systems

International Review of Atomic and Molecular Physics, 6 (1), January-June 2015 17

where p = v2. From the first and the third formulas in (43), �2 = �/r2, where � = (Z/(cL))2. Thus,

2

1

1
pr

� �

�
�

(47)

The equilibrium values for p and r can be obtained from differentiating (44) with respect to w and v. The first
differentiation gives the same relation as in the non-relativistic case, so the equilibrium value of p is the squared
right-hand side of (12). The second differentiation (with respect to v), with the later substitution of the equilibrium
value of v (or p), yields the equilibrium value of �, which is related to r by �2 = �/r2 mentioned above. Using the
substitution [4]

1/ 3
1

1
w

� �� � �� �� � (48)

which significantly simplifies the formulas in the two-Coulomb-center problem, we find the speed of the planet in
the circular state (in the units of the speed of light):

� �
� � � �

34 2/ 3

33 31 1

b� � �
� �

� � � �
(49)

From (45) with the substituted value of V = ��, the first relation in (43), the second relation in (8) and using
�2 = �/r2, we find

21
c

R pr

�
� � �� (50)

and

21
R

c
Z pr

�
� � ��� (51)

As given in (1), and measuring now the mass of the star � in the units of the mass of the Sun (in distinction
to the nonrelativistic case in Sect. 2, where the star masses were measured in units of the mass of the planet), we
get

Z GM� �� (52)

where M�= 1.989 × 1033 g. Substituting (52) into (51), we obtain

21
R

s pr

�
� � ��

�
� (53)

where the quantity 2/s GM c� � (which is one half of the Schwarzschild radius of the Sun and is approximately

equal to 147700 cm).

As defined above, �1/2 = Z/(cL), and substituting the scaling relation for L from (43), �2 = �/r2 and (52), we
have
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s
r

R

�
� � (54)

We substitute (54) into (49), and then substitute the resulting equation for � and the solution for � into (53),
obtaining the equation for the scaled frequency of the revolution of the planet that only depends on the ratio R/(�s)
and � (or w–see (48)). Finally, from (41), and because ��  = (1 + b)1/2 from (29) and (30), the amplitudes of the small
oscillations about the equilibrium on the w-axis and v-axis are

0 2 2

2 1 cos2p b
w

� �

� �
� � �

� ��
�

0 2 2

2 1 sin 2p b
v

� �

� �
� � �

� ��
� (55)

where � is given by Eqs. (17) – (19), and substituting the equation for the scaled frequency of the revolution of the
planet obtained previously, the equilibrium values for p and r, the equation for b and the frequencies from (22), we
derive the amplitudes of the small oscillations of the planet on the w-axis and the v-axis in the relativistic case:

� � � �
� � � �

7 / 43/ 2 3 4 2/ 3 2 / 3

0 9/ 4 9/ 42 / 3 2 3

1 1

3 1 1

b b b
w

b

� � � � � � � �
� �

� � � �

� � � �
� � � �

7 / 43 4 2/ 3

0 7 / 4 9 / 42 / 3 2 3

1 1

3 1 1

b b
v

b

� � � � � �
� �

� � � �
(56)

The amplitude in the relativistic case is the same as in the non-relativistic case.

We checked that the ratio of the frequencies of the revolution of the planet � and the Kepler frequency �
of the revolution of the stars about their barycenter is much greater than 1. By using the previously found
values of � and � and substituting the equilibrium values of p, r, � and �, we derive the formula for the ratio
k of the frequencies depending on the axial coordinate for the given interstellar distance R and the star masses
� and ��:

� � � �
� �

� � � �� �
� �

3/ 4 5/ 4 4 2 /3 2 / 3 2 32/ 3 2 3

3/ 4 3/ 23/ 2 3 3

1 11 1
1

1 1 1

b bb s
k

Rb

� � � � � �� � � � �
� �

� � � � � � �
(57)

From Eq. (57) it can be found out that k in the relativistic case is equal to the non-relativistic k
NR

 multiplied by
(1 –��2)1/2. Figure 4 shows the ratio k/k

NR
 versus the scaled radius of the orbit v, for the masses of the stars � = 1 and

�� = 100 (in the units of the mass of the Sun) and the interstellar distance R = 100 a.u. It is seen that the relativistic
effects become significant when v ~ 10–9 or smaller.

The range of v = (1 ÷ 2) × 10–9 for R = 100 a.u. corresponds to the range of the radius of the planetary
orbit � = (15 ÷ 30) km. Since the radius of the planet should be smaller than �, in this case it should be a
planetoid.

Figure 5 show the dependence k(v) for the example where the mass of the lighter star � = 1 and the heavier star
�� = 100 (in the units of the mass of the Sun) and for the interstellar distance R = 100 a.u. (wide binary system). It
is seen that the ratio of the frequencies is greater than 1012 for v < 2 × 10–9, which means that such a system would
be stable for a very long time.
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Figure 5: The ratio of the revolution frequency of the planet
and the Kepler frequency of the rotation of the stars versus the
scaled orbit radius v = /R, for the example where the mass of
the lighter star  = 1 and the heavier star  = 100 (in the units

of the mass of the Sun) and the interstellar distance R = 100 a.u.
in the relativistic case.

Figure 6: The scaled amplitude w
0
 of the oscillations of the

planetary orbit along the interstellar axis versus the scaled
orbit radius v = /R for the example where the mass of the
lighter star  = 1 and the heavier star  = 100 (in the units

of the mass of the Sun).

Figure 4: The ratio of the relativistic and non-relativistic k (which is the ratio of the frequencies of the
revolution of the planet  and the Kepler frequency  of the revolution of the stars about their barycenter)

 versus the scaled radius of the planetary orbit v = /R, for the masses of the stars  = 1 and  = 100
(in the units of the mass of the Sun) and the interstellar distance R = 100 a.u.

In Fig. 6 we present the plot of the scaled amplitude �w0 of the axial oscillations of the planetary orbit from Eq.
(56) versus the scaled radial coordinate v for the mass of the lighter star � = 1 and the heavier star ���= 100, in the
units of the mass of the Sun. It is seen that the amplitude of oscillations is really much smaller – about quadrillion
(!) times smaller – than the interstellar distance.
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4. CONCLUSIONS

We extended the nonrelativistic study from paper [8] to the relativistic classical mechanics (and also corrected
some printing errors from paper [8]). We showed that relativistic effects in OBSS can become significant for the
situations where the mass of the planet is relatively small (such planets are so-called planetoids). In this case the
conic-helical trajectory of the planetoid encloses the star of the lighter mass, the average plane of the planetary orbit
practically coinciding with the position of the star of the lighter mass. It is counterintuitive that a distant heavier star
can cause such a modification of the planetoid orbit around the lighter star. We showed that in this case the frequency
of the rapid subsystem (i.e., the frequency of the planetoid revolution around the lighter star) exceeds the frequency
of the slow subsystem (i.e., the Kepler frequency of the stars rotation around their barycenter) by more than a
trillion times. This means that the standard analytical method of separating rapid and slow subsystems, which we
used, is well justified and that this configuration will remain stable for a very long time.

NOTE ADDED IN THE PROOF

 A fiction writer, Greg Egan, made comments about the (nonrelativistic) results from paper [8] in some blogs and similar non-
scientific outlets that do not engage the peer-review process (do not send a submission to referees and do not verify the content).
However, even within Egan’s model, based on a tilted orbital plane of the planet with respect to the interstellar axis (the model
having zero or little relevance to the scope of paper [8], where the orbital plane of the planet was not tilted), his calculations are
erroneous for the following reason.

He tried to calculate the projection of the planetary angular momentum M = R � P on the interstellar axis in the rotating
frame, i.e., in the frame rotating with the angular velocity 

s
 of the stars rotation. He used formula M = R � V, assuming that the

linear momentum of the planet of unit mass is P = V. However, it is well-known that in a rotating frame the linear momentum has
the form P = V – R � 

s
 (see, e,g, Eq. (39.10) of book [15]). Therefore, his results are incorrect even within his model.

It is also worth noting that Egan, while trying to show that the projection of the planetary angular momentum on the
interstellar axis has a time dependence, actually forces an open door. Neither in subsection 2.2 of paper [8] (devoted to the
analytical solution for the three-dimensional motion) nor in the entire section 3 of paper [8] (devoted to the effects of stars
rotation and of the eccentricity of their orbits) did it say that the projection of the planetary angular momentum on the interstellar
axis does not have any time dependence. Using Eq. (51) of paper [8], describing oscillations of the scaled radius v(�) of the
planetary orbit and of the scaled projection w(�) of the planetary orbit on the interstellar axis (� being the scaled time), it is easy
to obtain the following expression for the scaled projection m of the planetary angular momentum on the interstellar axis

m(�) = [1 + 2 �v
0
 cos(f

p
�) + O(�v

0
2)]f

p
, (*)

where

�v
0
 = [2v

0
�

s
f

p
/|�

+
2 – �

–
2|] sin2�. (**)

Here f
p
 is the scaled frequency of the rotation of the planet around the interstellar axis; the quantities �

± 
and � are defined

by Eqs. (23) and (20), respectively, from paper [8]. (The quantity � above has no relevance to the tilt angle � from Egan’s
model.) While deriving the above Eq. (*), the terms ~ �

s
 were omitted due to the inequality �

s 
<< f

p
.

The above Eq. (*) shows that the projection of the planetary angular momentum on the interstellar axis oscillates around a
nonzero average value. This is sufficient for the validity of the conclusions of paper [8].

In Egan’s blog, he attempted also to do simulations. However, first, not all codes are properly verified and validated.
Second, fully-numerical simulations are generally ill-suited for capturing so-called emergent principles and phenomena, such
as conservation laws and symmetries. Third, as any fully-numerical method, they lack the physical insight.

A number of physicists warned about this. In 2005 Post and Votta – two leading experts in computational science –
published a very insightful article (Physics Today, January 2005, p. 35), where they wrote, in particular:

“By verification we mean the determination that the code solves the chosen model correctly. Validation, on the other
hand, is the determination that the model itself captures the essential physical phenomena with adequate fidelity.
Without adequate verification and validation, computational results are not credible.”

They described the underlying problems as follows:
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“Part of the problem is simply that it’s hard to decide whether a code result is right or wrong. Our experience as
referees and editors tells us that the peer review process in computational science generally doesn’t provide as
effective a filter as it does for experiment or theory. Many things that a referee cannot detect could be wrong with a
computational-science paper. The code could have hidden defects, it might be applying algorithms improperly, or its
spatial or temporal resolution might be inappropriately coarse.

The existing peer review process for computational science is not effective. Seldom can a referee reproduce a paper’s
result.”

Their paper caused lots of comments published in Physics Today, August 2005, p. 12. In one of the comments, J. Loncaric
from Los Alamos wrote, in particular:

“…components can be combined, but their combination could be wrong even though the components test well
individually. A combination that is insensitive to minor component errors could still give invalid results. Each component
has an unstated region of applicability that is often horribly complicated to describe, yet the combination could
unexpectedly exceed individual component limits.”

The bottom line is that simulations cannot be considered as the ultimate test of an analytical theory. The ultimate tests of the
analytical theory are comparisons with observations/experiments and/or with a more rigorous analytical theory. Currently we
are performing simulations of the conic-helical orbits in the nonrelativistic regime. The simulations are confirming the stability
of these orbits (the simulations will be published elsewhere). The underlying code was properly verified and validated – in the
meaning defined by Post and Votta. However, codes are black boxes, so that it would be virtually impossible for a third party to
check our code. But this goes both ways. Namely, if somebody’s (say, John Doe’s) simulations would show an instability of the
conic-helical orbits, this would not disprove the analytical results of paper [8]. Indeed, first, it could be that the code by John
Doe was not properly verified and validated – in the meaning defined by Post and Votta – and there would be virtually no way
for us to check John Doe’s code. Second – but most importantly – the ultimate test of our analytical theory can be only the
comparison with a more rigorous analytical theory (or with observations).

The last, but not least. In the direct communication with Egan, in order to test his simulations skills, one of us offered him
to simulate a test case that has a known analytical solution. However, Egan’s simulations of the test case failed to reproduce the
known analytical solution.

In summary: Egan’s comments contain some new analytical results and some correct statement. However, it is shown
above that his new analytical results are incorrect, while his correct statement is not new (the statement that there is a time
dependence of the projection of the planetary angular momentum on the interstellar axis). His simulations skills also seem very
questionable since he failed to reproduce by simulations a test case that has a known analytical solution. Thus, the comments by
the fiction writer Mr. Egan seem to be his new work of fiction.
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