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ABSTRACT: The scaling laws of the Green’s function of the Biberman-Holstein equation for the resonance
atomic radiation transfer in an infinite medium are analyzed in the view of superdiffusion transport. This includes
the scaling laws for the propagation front and asymptotic behavior far behind and far in advance of the propagation
front. These scalings are shown to be determined by the superdiffusion mechanism. These enabled us to formulate
possible implications for computational algorithms of treating the superdiffusive transport in a much broader
framework.

1. INTRODUCTION

The Biberman-Holstein equation [1, 2] is a fundamental tool for describing the radiative transfer in the atomic/ionic
spectral lines under condition of the complete redistribution over photon energy within spectral line width (i.e. under
condition of the full loss of memory by the atomic excitation during its lifetime) in the dementary act of absorption-
emission by an atom/ion in plasmas and gases (see, eg., [3, 4], for laboratory plasmas). The complexity of treating the
superdiffusivetransport is characterized by the divergence of the mean squared displacement [5] and the non-reducibility
of the integral equation over space variables to a diffusion-type transport equation (cf. [3-7]). Remind that the
superdiffusion is defined as a trangport for which the scaling law for the propagation front is as follows:

r(@)~t", y>1/2. Q)

The computational difficulties of solving an integral equation have stimulated developing the semi-analytic
approaches which managed to provide rather simple models. These models originate from the approximate solution
[6] of the integral equation and are known in applications as the escape probability methods (see, e.g., [8, 9]).

The Biberman-Holstein equation [1, 2] is derived from a couple of differential kinetic equations for photons
and two-level atoms. Alternatively to the Biberman-Holstein equation which is widdly used in laboratory plasmas,
in astrophysics the above-mentioned couple of kinetic equations is often reduced to an integral, in space variables,
equation for the radiation intensity, with the transport equation being of the same complexity as the Biberman-
Hoalstein equation (cf., eg., [10, 11]).

Because of multiple applications of the Biberman-Holstein approach, much efforts are spent on developing
analytic and computational algorithms for solving it. However, the opportunities of developing and extending this
experience beyond traditional frameworks are not exhausted.

Here we present a detailed analysis of the very old result for the Green's function of the non-steady-state
radiative transfer in an infinite medium. The solution was derived analytically by Veklenko [5] as early asin 1959.
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We useit for testing a new approach which prototype is based on the scaling laws for three main characteristics of
the Green's function, namely, scaling law for

» the propagation front, defined as a relevant-to-superdiffusion average displacement,
» asymptotic behavior far beyond and far in advance of the propagation front.

These scaling laws enabled us to formulate possible implications for computational algorithms of treating the
superdiffusive transport in a much broader framework.

2. GREEN'SFUNCTION OF BIBERMAN-HOLSTEIN EQUATION

The Biberman-Holstein equation for resonance radiative transfer in a uniform medium of two-level atoms/ions is
obtained from a system of equations for spatial density of excited atoms, F(r, ¢), and spectral intensity of resonance
radiation. This system is reduced to a single equation for F(r, ¢), which appears to be an integral equation, non-
reducible to a differential diffusion-type equation:

OF (r,1)
ot

=%JG(|'r ~nDF(r,0dv, —(%+ G)F(r,t) +q(r,1). @)

wheret tisthelifetimeof excited atomic state with respect to spontaneous radiative decay; c istherate of (collisional)
guenching of excitation; g is the source of excited atoms different from population by the absorption of the resonant
photon (e.g., collisional excitation). The kernel G is determined by the (normalized) emission spectral line shape,
g,, and the absorption coefficient £ . In homogeneous media, G depends on the distance » between the points of
emission and absorption of the photon:

1 dT(r)
Arr®  dr

G(r)=- , T(r)= ]:) €, eXp(—k,r)do. (3)

where T(r) is the Holstein function, which gives the probability for the photon to pass the distance » without any
absorption. The solution of the equation (2) in an infinite homogeneous medium with the boundary conditions
F(r,t = 0)=93(r) (or, equivalently, ¢(r, £) = 5(r) 5()), i.e. the Green’s function of Eq. (2), was obtained in [5] using
the Fourier transformation of Eq. (2):

F(r,t)="= l/:: ar{z "[ { (p)}—l]dp+2ﬂ5(r)}’ @

where

1=
J p)=;£swkwarctgk£dw (5)

]

Equation (6) gives the expression for Green's function for any spectral line shape.

It is noteworthy to recall that in the case of a monochromatic transport one has
k p
J =—arctg—
(p)=—arctg

and for large distance from the source one may expand J(p) in series of parameter p that gives finally the well-
known Green's function of the diffusion transport equation,

32 \ International Review of Atomic and Molecular Physics, 6 (1), January-June 2015



Scaling Laws of Biberman-Holstein Equation Green’s Function and Implications for Superdiffusion Transport Algorithms
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1
where D = e is the respective diffusion coefficient.

The non-locality (superdiffusion) of the radiative transfer described by the Biberman-Holstein demands special
definition of the mean time, 7 () , needed for a photon to pass the distance » from a point instant source, ¢(r, ) =

3(r —r,)d(¢ - t,). Theusually used concept of the average distance passed by a photon for the giventimeisinapplicable
in the case of superdiffusion, because the function F(r, ) decreases too slowly and this leads to the divergence of

the integral, which defines the mean squared devation, 72, The definition of 7 (») which is relevant to the case of
superdiffusion, is introduced in [5] and has the following form:

7= '(['([47rr12F (r,t)dndt. (7)

The analytic analysis of Eq. (4) and (7) is given in [5] for two spectral line shapes, namely, Lorentz line
shape

3 k, ] 3 2 1
_1+[2(a)—a))/Aco ]Z’Ew_ﬂAw l+[2(co—co)/Aco ]2' (8)
0 ¢ ¢ ¢ ¢

)

and Doppler line shape,

2 2
2l0-o 2 [In2 2l0-o
k, =k, exp4 - (—())\/Inz L€, = —— expq - (—O)\an . ©)
Aw, Ao, \ & Aw,
In particular, it was shown that for the Lorentz line shape (8) one has the motion, which corresponds to an
acceleration (roc?, i y = 2),

t =3tk /m =L T1kyr, t>>71 kg>>1, (10)

while for the Doppler line shape the respective motion is nearly like a free one (roct [n(t/7), i.€. v = 1):

t =14tkyryInkyr, t>>1, kjy>> 1. (11)

The results of humerical calculations of Green's function (4) are shown in Figure 1.

It follows from Figure 1 that in a certain point of the space, the evolution of the excitation takes the form of the
arriving excitation, with a rather distinct front, and of arather fast decay after thearrival of the front. That fact that
the Green's function has a clearly pronounced maximum enables one to assume the existence of an effective front
of the propagation of excitation. Therefore, in order to describe in a universal way the behavior of the Green's
function, one has to find the scaling laws for two asymptotics, namely, those far behind and far in advance of the
propagation front, and to identify how the average time of Eq. (7) is related to the local maximum of the Green's
function in the certain point of the space and whether it is possible to define reasonably the propagation front. We
start our analysis with clarifying the latter issue.
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Figure 1: Numerical calculations of the exact Green’s function [5] for various distances from the source for
(a) Lorentz line shape and (b) Doppler line shape; t standsfor time, 1 isthe lifetime of excited atomic state with
respect to spontaneous radiative decay; p=Kkr, and k; is the absorption coefficient for the frequency o,
corregponding to the center of the spectral line
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3. SCALING LAW FOR THE PROPAGATION FRONT

As seen from Egs. (10) and (11), the mean time for these spectral line shapes strongly deviates from the diffusion
law of Eq. (6), r o« (Df)¥2. The unification of Egs. (10) and (11), which extends this law to an arbitrary long-tailed
line shape, i.e. compatible with superdiffusion, was suggested in [7]:

7 (p) = CU[T (p)], >>1, (12)

wherep =k, and T, (p) is the asymptotics of the Holstein functional T at p>>1, and C is the constant close to unity.
The dependence of the propagation front essentially of the asymptoics of the Holstein function means that the main
contribution to this law comes from the long-free-path photons, that, in turn, mean that this law is essentially
superdiffusive one.

We suggest Eq. (12) with C = 1 to be the equation which defines the propagation front, p, (7).

Our numerical analysis of the Green’s function [5] for various line shapes shows that the scaling law defined by
Eq. (12) gives good approximation for the time moment when F(r, 7) attains its maximum value at the distance r
from the source. The results of such a comparison are shown in Figure 2.

It is seen that the scaling law of Eq. (12) gives good approximation of the local maximum of the exact Green's
function as a function of time.

4. SCALING LAWSFORASYMPTOTICS

For ashort time, 1 << ¢ << tﬂ(p) (or, equivalently, far in advance of propagation front arrival at the distance p, p >>
p ﬂ(t) >> 1), the asymptotics of the Green's function for Doppler and Lorentz line shapes were obtained in [5] and
have the following form for Doppler line shape,

2 t e 1 —
f(rit)= (47:)3/2 . s ko t>>t =1, Atkyr\/Inkgr. (13)
200 12000
Lorentz t(p)
50| line shape 10000 {| ——t, 1 ionko(?)
8000 IL— t(F(r,t) max)
= 100 S 6000
4000 ¢
t(p)
50 1 R t ( )) 1
Veklenko \f 2000 Doppler
— t(F(r,t) max) line shape
0 0
0 5000 10000 0 1000 2000
p P

Figure 2: Time moment when F(r, t) attains its maximum value at the distance r from the source (blue curve),
asafunction of p=kr, and its comparison with Eq. (4) for C = 1 (green curve) and C taken from exact value of the
averagetime in Egs. (10) and (11) (red): (C_ )" = 0.96 for Lorentz line shape and (C_)* = 0.82 for Doppler line shape.
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f(l”,l‘)zﬂ———rF, t>>7:3’5\/k0r/7r =1 7’1\/@ (14)

These asymptotics may be written in a universal form:

F=tG(p) (15

which corresponds to the direct excitation of distant atoms by the photons from the source (which is the dightly

diffused but still approximately a point) in the far wings of the spectral line shape. Thus, Eq. (15) has essentially
superdiffusive nature.

The Green's function far behind the propagation front, p << p, (£), or equivalently t >>¢_>> 1, may be estimated
assuming the local uniformity of the excitation distribution due to the fast exchange of atoms with photons in the
core of the spectral line shape. The respective quasi-plateau solution in the 3D case takes the form:

_;  (t)=r).
F(t>>t4)= :ﬂ(r*(t))sn( (1)-r) (16)

It is natural to expect that 7*(£) « r,(t), whereas the exact relation between them is available from comparison

of Eq. (16) with numerical calculations of the exact Green's function [5]. Such a comparison is shown in Figures 4
and 5.

As seen from Figures 4 and 5, comparison of Eq. (16) with numerical calculations of the exact Green's function
[5] proves the asymptotics (16) to give a good scaling for the time dependence for various line shapes
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Figure 3: Comparison of the exact Green's function F(r, t) with its asymptotics for short times,
(a) Lorentz line shape, (b) Doppler line shape; t stands for time, T isthelifetime of excited atomic state with
respect to spontaneous radiative decay; p=Kr, k, isthe absorption coefficient for the frequency o,
corresponding to the center of the spectral line
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Figure 4: Comparison of the exact Green’sfunction F(r, t) with its model asymptotic for large times,
wherer'(t) =r, (t); (a) Lorentzline shape, (b) Doppler line shape

International Review of Atomic and Molecular Physics, 6 (1), January-June 2015

/ ~



A.B. Kukushkin, P.A. Sdvizhenskii, V.V. Voloshinov, and A.S. Tarasov

250 ¢ : .
L
= §200
o ———— B T
S E
O >
c o
f 3 150+ -
9 >‘100" .
g O
°
WS 50
3 5= 1000
O L 1 1
0 2000 4000 6000 8000 10000
t/r
(@
10 T .
5 . 9 /)-500’.
2L 8f 1
22 7t ]
=
= <« 6 1
S
3 ‘
>O 4,. -
® o
S s 3t |
o X
oW oL 4
O >
= 0 ;[ SO R— -
0 A L A
0 2000 4000 6000 8000 10000 12000
t/r

(b)

Figure 5: (a) Theexact Green'sfunction F(r, t) divided by its model asymptotics of Eq. (16) for largetimesin the case of
Lorentz line shape, (b) model asymptotics for largetimes, Eq. (16), divided by exact Green’s function F(r, t) in the case of
Doppler line shape

200
F(r,t) = —n(rf, (t) — r)
20 (1)) (17)
3
However, the absolute values of Eq. (16) and the asymptotics of the exact Green's function may differ by a

constant which amounts to a factor of unity for Doppler line shape and ~200 for Lorentz line shape.

It is possible to estimate analytically a constant by which Eq. (16) differs from Eq. (17), the asymptotics of
the exact Green's function. For example, consider the Lorentz line shape. For this purpose we investigate Eg. (4)

38 \ International Review of Atomic and Molecular Physics, 6 (1), January-June 2015



Scaling Laws of Biberman-Holstein Equation Green’s Function and Implications for Superdiffusion Transport Algorithms

at small p. Expanding the imaginary exponent into a series and using an approximate form [5] of J(p) function at
small p,

J(p)xl—% 2 p=0,

k (18)

one has

FpT)== 0 J( Jexp[—zm] o

where p = kg, P = plk,, T = tlt.
The comparison of Eg. (19) with model asymptotic solution (16) at large times is shown in Figure 6.

Introducing anew variable O = 7+/2P/3in Eq. (19) and neglecting all terms except the first onein parentheses

in the integrand, we express the resulting equation in terms of the quasi-plateau (17), where for r, (r) we use the
function inverse to the average time needed for a photon to pass the given distance. In the case of Lorentz line

shape, itis[5] T =1.69/p(T=t/1, p=ky),s0 p,(T)= (T/1.69)°, and we finally obtain

FRT)=191— 5 (T)= k( T)

4 1.69

77r(l?r (T))3 (20)

Thus, one can see that the constant by which Eq. (16) differs from the asymptotics of the exact Green’s function,
Eq. (17), appears to be close to 200 (cf. Figure5 (a)).Thelarge value of the constant may be explained by the longer

400+ T ‘ I T
: I Exact/Asymptotic, p = 50, t, =12.0
H [

350 \ i — =Exact/Asymptotic, p = 100, Lo = 16.9 |_
© | ‘l ...... Exact/Asymptotic, p =200, t, - =24.9
g 300 & ‘I Exact/Asymptotic, p = 300, t,  =29.3 |-
; 1 l‘ ~-~- Exact/Asymptotic, p = 400, t, = =33.8
» 2501 i \ 1
< 1 H i
= s 3 |
8200} i
ai T P et EE R

150 - 1

100 1 1 1 1 1 1

100 200 300 400 500 600 700 800 900 1000

t/r

Figure 6: The Green function F(r, t) from Eq. (19) divided by its model asymptotics for large times, Eq. (16), for different
distances p =k r from the source. Time T, is the aver age time needed for a photon to pass the given distance p.
Asit was already in Figure 4a, theratio tends to a constant » 200
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precursor to the excitation front of Eq. (8) in the case of the longer PDF tail that, in turn, stems from a wider wings
of the Lorentz line shape.

Thus, Eq. (17) for theasymptoticsfar behind the propagation front has essentially superdiffusive nature, similarly
to that of equations for the propagation front and for asymptotics far in advance of the propagation front.

5. IMPLICATIONS FOR SUPERDIFFUSION TRANSPORT ALGORITHMS

Therevealed scaling laws for superdiffusion transport of resonanceradiation in plasmas and gases suggest thefollowing
implications for the algorithms of treating the superdiffusion transport far beyond the above physics problem.

All the scaling laws of Secs. 3 and 4 are closely related to the dominant contribution of the long-free-path
travels of the carriers of the excitation of the medium. Such a phenomenon is well known in mathematics and
various applied problems as the Lévy flights (see, eg., [12-14]). The respective step-length probability distribution
function (PDF) has, at largedistances, a power-law decay, rather than exponential one. It isthelong-tailed PDF that
is responsible for the domination of the Lévy flights in many transport problems. The complexity of treating
simultaneously the diffusion-like evolution of excitation, which is transported in the central part of the spectral line
shape, with the essentially superdiffusion transport, which comes from the transport in the wings of the line shape,
has been recognized and already used in the quasi-steady-state problems (see Sec. 1). However, in the non-steady-
state problems of resonance radiation transport, and many other problems beyond this physics, the capabilities of
the scaling laws inherent to the L évy flights-based transport are not exhausted. For instance, to simplify the treatment
of such problems the truncated PDF are used, which are substantiated by the reasonable arguments. However, as
seen from the resonance radiation transport, the truncation is not necessary and even may be incorrect. Despite the
model of complete redistribution (CRD) of photons over frequency within the spectral line shape, assumed in the
Biberman-Holstein equation, may be violated in the far wings of the line shape, the range of detuning from the rest-
frame transition frequency, where the CRD is applicable, is pretty broad, and an artificial truncation of the wings
may be an oversimplification of the problem, dictated by the difficulty of treating the superdiffusion.

The main implications of considerations of Secs. 2-4 may be formulated in terms of identifying the role of Lévy
flights and using the scaling laws in the computational algorithms. Thegeneral algorithm of solving the superdiffusion
transport problem may include the following steps.

* Identification of scaling laws for the propagation front by comparing the scaling law of Eq. (12) with exact
solutions of the transport equation in some particular cases.

* Identification of scaling laws for far in advance and far behind the propagation front by comparing the
scaling law of Egs. (15) and (16) with exact solutions of the transport problem in some particular cases.

* Identification of the class of functions, which may interpolate between the asymptotics far in advance and
far behind the propagation front, and obey the law of propagation front. For instance, for the Biberman-
Holstein equation one could suggest the following interpolation, where the parameters of interpolation,
including the constant, should be considered as the free parameters to be found by comparing with the
available set of exact solutions:

F(r,f) ~ tG(«/rZ +Bp$,(t)) 21)

» Elaboration of the algorithm of mathematical identification of the free parameters of the above (or similar)
interpolation, using a set of a number of exact numerical solutions of the problem.

The latter algorithm should be implemented in a distributed computational environment. To this end, it has to
include the following procedures and obey the following conditions:

» al integration in equations must be implemented via open source procedure in ANSI C programming
language, e.g. GSL (GNU Scientific Library), https://www.gnu.org/software/gsl;
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» for the purpose of above integration procedure, all the discrete series of input data (either experimental or
phantom theoretical) should be processed by the smoothing routines, eg. by GSL cubic splineg;

» theproblemof free parameters’ identification should be stated as a mathematical programming (optimization)
problem and formulated in terms of the AMPL modeing language (ampl.com).

All the components listed above may be implemented as web-services and deployed in the distributed computing
environment by means of the Everest programming toolkit [15], http://everest.distcomp.org. Special “ distributed
enhancement” of the standard AMPL -tranglator, namely the AMPL X toolkit, http://gitlab.com/ssmir/amplx, is used
to integrate all these web-services together within the computing scenario also available as a composite web-
service. This service may be used by researchers to perform multivariant calculations. The computing infrastructure
of the Center for Distributed Computing, dcs.isa.ru, of Institute for Information Transmission Problems (Kharkevich
Institute), iitp.ru, is used for these purposes.

6. CONCLUSIONS

The revealed scaling laws of the Green's function of the Biberman-Holstein equation for the resonance atomic
radiation transfer in an infinite medium suggest the possibility of using them in the computational algorithms of
superdiffusion transport in the transport problems far beyond the physics of radiative transfer. The latter hint is
suggested by therole of the long-free-path carriers which are identified in many mathematical and applied problems
as the Lévy flights. These scaling laws includes those for the propagation front and for asymptotic behavior far
behind and far in advance of the propagation front. These enabled us to formulate the possible computational
algorithm of treating the superdiffusive transport in a much broader framework.
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