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ABSTRACT: The analytic form of the electrostatic potential felt by a slowly moving test charge in Maxwellian dusty
plasma is developed. It has been shown that the electrostatic potential is composed of three parts: i) the Debye-Hückel
screening term, ii) the near-field wake potential and iii) the dust charge perturbation effect. The last two terms depend
on the velocity of the test charge, the number density of the plasma electrons and the dust grain parameters. Precise
energy eigenvalues of hydrogen-like carbon ion under such plasma environment has been estimated by employing
Rayleigh-Ritz variational calculation. The form of the potential facilitates the removal of l-degeneracy and |m|-degeneracy
in the energy levels. A detailed analysis shows that the energy levels gradually move to the continuum with increasing
plasma electron density and the variation of ion velocity. Incidental degeneracy of the energy levels and level crossing
phenomena have been observed with the variation of plasma electron density.

Keywords: Dusty plasma, variational method, one-electron atom

I. INTRODUCTION

In recent years, dusty plasmas are attracting considerable attention in the field of plasma physics research. In
addition to electrons, ions, neutrals as present in ordinary plasmas, dusty plasmas contain massive particles of
nanometer to micrometer size. The dust grains may be metallic, conducting, or made of ice particulates. Plasma
with dust particles or grains can be termed as either ‘dust in plasma’ or ‘dusty plasma’ depending on the relative
values of three characteristic lengths : i) the dust grain radius (r

 d
), ii) the average inter-grain distance (a) and iii) the

Debye radius (�
D
). For ar Dd �� � , charged dust particles are considered as a collection of isolated screened

grains, which corresponds to ‘dust in plasma’. For the condition Dd ar ���  dust particles participate in the collective
behavior and in that case the plasma is said to be ‘dusty plasma’. Dusty plasmas are most abundant in astrophysical
objects like in the planetary rings, in cometary tails or in interstellar clouds [1, 2]. Dusty plasmas are also formed in
laboratory based experiments like dc and rf- discharges, plasma processing reactors, fusion plasma devices, solid-
fuel combustion products etc. [3]. Dusty plasmas play important role in formation of plasma crystals as under some
plasma conditions dust grains can order themselves into crystal-like structure [4, 5].

There are a number of theoretical studies of plasma wave modulation, transport phenomena of the particles, ion
drag forces, phase transitions, crystallization of dust grains under dusty plasma environment [6-13]. But the effect
of dusty plasma on the structural properties of atoms is rather scanty [14]. The most important part of such studies
is to develop an appropriate model interatomic potential from a pure electrostatic view which can mimic the conditions
of such plasma environment. Unlike the plasma modeled by exponentially screened Coulomb potential, the model
potential for dusty plasma contains a complex character [14-18]. The closed form of the far-field potential felt by a
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slowly moving test charge through unmagnetized dusty plasma in the spherical polar co-ordinate was first derived
by Shukla [15]. It is shown that the effective potential consists of three parts: exponentially screened Coulomb part,
far-field wake potential part and dust charge fluctuation term. Shukla et al. [16] developed another form of the far-
field potential of a slowly moving test charge in a plasma that consisted of positive dust grains and electrons. The
dust grain charge fluctuations and collisions among neutral atoms, electrons and dust grains were taken into account.
In the work of Moslem et al. [17], the Debye–Hückel screening potential and oscillatory wake field potential
distribution around a test charge particle moving in the dusty plasma medium were derived by solving the linearized
Vlasov equation along with the Poisson equation. Ali et al. [18] also used Vlasov-Poisson equation to formulate the
electrostatic potential caused by a test charge in unmagnetized non-Maxwellian dusty plasma where the plasma
particles are : superthermal hot electrons, cold fluid electrons, neutralizing cold cations and charge fluctuating
isolated dust grains.

The aim of the present paper is to formulate the near field potential felt by an atom/ion moving slowly through
unmagnetized dusty plasma and apply the potential to find the binding energies of one-electron ion. The binding
energies of moving hydrogen-like carbon (C5+) ion under different conditions of the classical dusty plasma are
estimated by using variational method. It is observed that the l-degeneracy of the hydrogenic energy levels
corresponding to a principal quantum number is lifted under this potential. Moreover, a partial removal of the m-
degeneracy is also observed. In particular, we have calculated the energy values of C5+ ion in 1s

0
, 2s

0
, 2p

0
 and 2p

1

states by varying the velocity of the ion and the plasma electron density as well. The details of the formulation of the
inter-atomic potential for slowly moving test charge under dusty plasma is given in the Sec. II, the details of the
variational method used for the atomic structure calculation is given in Sec. III, computational results are given in
Sec. IV and final conclusion in Sec. V.

II. NEAR-FIELD POTENTIAL FELT BY A SLOWLY MOVING “TEST CHARGE” IN CLASSICAL
DUSTY PLASMA

The field ( D
�

) of a charge q moving with a velocity u
� in a dielectric medium is given by the Poisson’s equation

[20],
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0
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q

D
����

��� �
� (1)

where ����
��

DD ,  D being the dielectric constant of the medium and � being the potential in the medium. Using

the relation and making a Fourier transform followed by an inverse Fourier transform, we obtain the expression for
the potential as [20]
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Here 1�=j  and �
0
 is the permittivity of free space. The dielectric constant of the medium is given by,,

� � die χ+χ+χ+=uk,kD 1
���
�� (3)

where, di,e,=ss |χ  is the electric susceptibility for the plasma species ‘s’ (s=e,i,d corresponding to electron, ion and

dust, respectively).

Considering the Maxwell-Boltzmann distribution for the plasma particles, the electric susceptibility due to the
thermal motion of plasma electrons and ions is given by [20],
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The electric susceptibility due to dust grain charging and thermal motion is given as [15],
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Tmε
=λ  is the Debye screening length of the plasma species ‘s’. T

s
, m

s
, q

s
 and n

s
 are absolute temperature,

mass, charge and equilibrium number density respectively of species ‘s’. The thermal speed of the plasma species

‘s’ is given by, 
s

sB
ts

m

TK
=v where K

B
 is the Boltzmann constant.

If we consider that the dust grain contains negative charges only, then the quasi-charge neutrality condition

within the effective Debye-sphere of the plasma becomes, ddeeii qn+qn=qn . For � �ukνc

��
�>> , electric

susceptibility due to the dust grain becomes,

� �
2222222

..

2
1

1

ci

ed

ci

ed

tdd

d
k

uk
j

kkv

uk
j

k ��
�

��
��

�
�

����

����
�

�
��
�

�
�� (5)

Using (4) and (5), one can obtain the modified form of (3) as,
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For very slowly moving atom/ion i.e. uvts >> , which means the thermal Mach number (defined as the ratio of

ion velocity and thermal velocity of plasma particles) remains below unity, the inverse of dielectric function becomes,
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Here, � is the angle between r
�  and u

�  and � �η+θ  is the angle between k
�

 and u
� . Using equation (8) one can

dissolve equation (2) into three parts that may be given as follows:
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The method of solving the integral can be found in ref. [21]. Thus the potential �
1
 is of the form of Debye-

Hückel potential [22], where �
t
 signifies the effective or total Debye length of the plasma. The inverse of Debye

length is known as Debye parameter or simply screening parameter (µ) i.e. 
t�

� 1� . The second part of the

potential ��is
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Here we have used the volume element ηdηdτdkk=kd 2sin3
�

 in spherical polar coordinate � �τη,k, . One can

get the imaginary solution of the angular part of the integral (11) as,
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Now using (12), equation (11) reduces to
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Here j
1
(kr) is the spherical Bessel function of first order [19]. The solution of integral (13) can be done using the

standard Meijer’s G function [19] and the solution technique described in [21], where in the limit r < 2 �
t
 the above

integral becomes
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(x) being the Macdonald function or modified Bessel function of second

kind [19].

Using the above result and putting �
1
 from equation (9) one can get from equation (13) as,
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This potential is called the near field wake potential and �
di,e,=s sts0

λvππε

qu
=C

2

1

24  is the wake-coefficient.

Let us now consider the third part of potential,
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Here, the angular part of the integration is same as the angular part in wake potential. So, by using equation (12)
one can rearrange equation (15) in the following way,
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Let us now consider a standard integral [23],
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Using the integrals (17) and (18) and the value of �
2
 from equation (9), equation (16) takes the following form,

θDe= tλ
r

cos3

�
�� (19)

where, 2224 ci

ed

0 νλ

uν

πε

q
=D . This potential is due to dust perturbation part and will vanish if the moving test charge

is static i.e. u = 0 and/or the electron-dust collision is absent i.e. v
ed 

= 0.

III. CALCULATION OF ENERGY LEVELS OF HYDROGENLIKE ION

To estimate the modified non-relativistic energy eigenvalues of slowly moving hydrogen-like ion in the presence of
an external classical dusty plasma environment, Rayleigh-Ritz variation calculation has been done (a.u. is used
hereafter). The expectation value of kinetic energy is given by,

2 2 2
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2 2 2
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Where 3 sin2d r = r θdθdωdr
� is the volume element in spherical polar � �ωθ,r,  co-ordinate ( ��� r0 ,

�� ��0 , �� 20 �� ). The effective potential energy of the atom can be written as,

� � θDe+θλrCrK+e
r

q
=V t

λr

t0
t

λr

eff coscos/
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Thus the expectation value of potential energy is given by,



S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukherjee

78 International Review of Atomic and Molecular Physics, 6 (2), July-December 2015

2 3
effV = V Ψ d r�

�
(22)

The normalization term is given by,

� rdΨ=N
�32 (23)

The trial wavefunction is taken as, � � � � � �θAωθ,YαrR=Ψ lmnl , where � �αrRnl  is the radial part of hydrogenic

wavefunction [24] with ‘�’ as variation parameter, � �ωθ,Ylm  is the spherical harmonics [24] and � � � �θβ+γ=θA cos
is the orbital distortion part [21] with ‘�’ and ‘�’ as variation parameters. For the static ion (u = 0), wake and dusty
potentials will be absent and in this case we set � = 1 and ��= 0.

Let us now consider the one-electron auxiliary integral for radial part,
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and the integral necessary to evaluate the expectation value of wake potential,
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where, � �xcbaF ;;,12  is the confluent Hypergeometric function and � �)Re()Re( ν>p  and � � 0Re >ξ+ρ [23].

The expectation values using (20),(22) and (23) for the 1s
0
, 2s

0
, 2p

0
 and 2p

1
 states are given as follows.

1s0 – state

Using the trial wavefunction as � � � �θAe=ωθ,r,Ψ αr� , the expectation values can be derived as
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2s0 – state

Using the trial wavefunction as � � � � � �θAeαr=ωθ,r,Ψ αr��1 , the expectation values can be derived as
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2p0 – state

Using the trial wavefunction as, � � � �θθAre=ωθ,r,Ψ αr cos� , the expectation values can be derived as

� � � � � � � �

� � � � � �

� �

2 2 2 2

1 1 1

2 2

1

2 2

1

4
2,2 2 3,2 4,2 2 2,2

3 5 3 15

4 4
2 3,2 6,0,2 4,2

3 5 5 5

2 4,2
3 5

� � � �
� ��� � � �� �

� � � �
� �

� � �
� �

� �
� �
� �

2

1

1 1

γ β γ β
T = + W α αW α +α W α + + W α

γ β
V = q + W α+ μ + CγβU α,μ + DγβW α + μ

γ β
N = + W α

2p1 – state

Using the trial wavefunction as, � � � �θAθere=ωθ,r,Ψ jωαrsin��  the expectation values can be derived as

� � � � � � � �

� � � � � �

� �

2 2 2 2

1 1 1

2 2

1

2 2

1

2 2,2 2 3,2 4,2 4 2,2
3 15 3 5

8 8
4 3,2 6,0,2 4,2

3 15 15 15

4 4,2
3 15

� � � �
� ��� � � �� �

� � � �
� �

� � �
� �

� �
� �
� �

2

1

1 1

γ β γ β
T = + W α αW α +α W α + + W α

γ β
V = q + W α+ μ + CγβU α,μ + DγβW α+ μ

γ β
N = + W α

The variational energy eigenvalue is now given as,

( , , )nlm

T V
E E

N

�
� � � � � (26)

The parameters � �γβ,α,  have been optimized using Nelder-Mead algorithm [25].
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IV. RESULTS AND DISCUSSION

The energy values of 1s
0
, 2s

0
, 2p

0
 and 2p

1
 states of C5+ ion are given in the table 1 where, the electron densities (n

e
)

are taken in such a way that the dust radius (r
d
) remains smaller than the effective Debye length (�

t
) and different ion

velocities are considered for which the thermal Mach number remains below unity. We have chosen typical size of
dust radius as r

d 
= 0.5 nm, charge accumulated on dust grain q

d 
= 100q

e
 and mass of dust grains as m

d 
= 12000m

H
,

where m
H
 is the mass of hydrogen atom.

In the table 1, the first row corresponding to each state indicates the energy eigenvalue of the free static C5+ ion.
For a fixed value of ion velocity (u) the energy eigenvalues for all the states decreases as n

e 
increases. Similar

feature can be seen as the ion velocity (u) increases for a fixed electron density n
e
. But the amount of decrease of

energy in the former case is much greater than the later one. Thus the effect of static screening or Debye-Hückel
part i. e. first part of the effective potential (21), which is a function of plasma electron density (n

e
) and dust

parameters, is more pronounced than the effect of the second and the third part of the effective potential (21)
namely, wake-part and dusty-part, where the later two parts are dependent on ion velocity u and plasma electron
density (n

e
).

As shown in the table, for the static case (u = 0) due to the effect of Debye-Hückel part in the potential, the
l-degeneracy gets removed at each density and as a result the energies of 2s

0
, 2p

0
 and 2p

1
 states become different.

Table 1
The energy eigenvalues –E (a.u.) of 1s

0
, 2s

0
, 2p

0
 and 2p

1
 states of C5+ ion moving in dusty plasma estimated with

different sets of electron number density (n
e
 in m-3) and ion velocity (u in ms-1)

State n
e
 (m-3) u (ms-1) -E (a.u.) State n

e
 (m-3) u (ms-1) -E (a.u.)

- - 18.0 - - 4.5

0 17.98216023 0 4.482196542

100 17.98216023 100 4.482162312

500 17.98216022 1020 500 4.482161888

1020 1000 17.98216020 1000 4.482161358

5000 17.98216008 5000 4.482157116

I
s0

10000 17.98215992 2p
0

10000 4.482151815

0 17.44281241 0 3.957701449

100 17.44281012 100 3.957652599

1023 500 17.44280094 1023 500 3.957476414

1000 17.44278948 1000 3.957276511

5000 17.44271391 5000 3.955684605

10000 17.44263049 10000 3.953694721

- - 4.5 - - 4.5

0 4.482198883 0 4.482196542

100 4.482175960 100 4.482137215

1020 500 4.482175932 1020 500 4.482137073

1000 4.482175898 1000 4.482136897

5000 4.482175675 5000 4.482135483

2s
0

10000 4.482175602 2p
1

10000 4.482133716

0 3.961873870 0 3.957701449

100 3.961868049 100 3.957656795

500 3.961844765 500 3.957598066

1023 1000 3.961815660 1023 1000 3.957524654

5000 3.961664635 5000 3.956990871

10000 3.961452745 10000 3.956327567



Binding Energies of Hydrogenlike Carbon under Maxwellian Dusty Plasma Environment

International Review of Atomic and Molecular Physics, 6 (2), July-December 2015 81

Because of the cos � term in the near field wake part and the dusty part in the effective potential, the degeneracy of
energy eigenvalues with respect to the absolute value of magnetic quantum number (|m|) is lifted (corresponding to
given n and l). For example, from the table 1, it can be seen that for ion velocity u = 1000 m/s and plasma electron
density n

e 
= 1023 m-3 the energy eigenvalues of 2p

0
 and 2p

1
 states are -3.95727651 a.u. and -3.95752465 a.u., which

indicates that both the states are no longer degenerate. It is also noteworthy that for n
e
=1020 m-3 the 2p

0 
state

energetically lies below 2p
1
, while for n

e
=1023 m-3, the 2p

0 
state energetically moves above to the 2p

1
 state, giving

rise to the level-crossing phenomenon. Thus one may opine that the relative positions of the states corresponding to
same n and l-values and different |m| values depend on the plasma density of the dusty plasma environment. Moreover,
it can also be argued that two different levels can be made degenerate i.e. incidental degeneracy [21] may occur by
tuning the plasma parameters.

If the dust charge perturbation term is removed from the effective potential (by setting v
ed

= 0), the energy of 1s
0

state for n
e
 = 1023 m-3 and u = 1000 ms-1, becomes -17.44377726 a.u., whereas with dust potential under the same

plasma conditions and ion velocity, the energy of 1s
0 
state becomes -17.44278948 a.u. (as shown in table 1). Thus

in the presence of dust potential part, the energy of 1s
0 
state becomes more positive by an amount of 9.8778 × 10-4

a.u.

V. CONCLUSION

The electrostatic potential for a moving ion under classical dusty plasma is derived where the thermal Mach number
remains less than unity and dust grain radius is smaller than the effective screening length of the plasma. Subsequently,
the effect of such potential on the change of the energy eigenvalues of different states of hydrogen-like carbon ion
is studied under the framework of Rayleigh-Ritz variational method. The removal of accidental (l) degeneracy and
absolute magnetic quantum number (|m|) degeneracy are reported in case of an ion moving in the dusty plasma
environment. Level-crossing phenomenon has been observed between 2p

0
 and 2p

1
 states with the variation of

plasma electron density. The present form of the potential may be useful for calculating spectral properties of other
ions within dusty plasma surrounding. The energy eigenvalues reported here may serve as benchmark for future
theoretical research and also for experimental measurements under such plasma environment.
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